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Standard-Library Exception Safety

Everything will work just as you expect it to,
unless your expectations are incorrect.

– Hyman Rosen

Exception safety — exception-safe implementation techniques — representing resources
— assignment — p pu us sh h_ _b ba ac ck k() — constructors and invariants — standard container
guarantees — insertion and removal of elements — guarantees and tradeoffs — s sw wa ap p()
— initialization and iterators — references to elements — predicates — s st tr ri in ng gs s, streams,
algorithms, v va al la ar rr ra ay y, and c co om mp pl le ex x — the C standard library — implications for library
users — advice — exercises.

E.1 Introduction

Standard-library functions often invoke operations that a user supplies as function or template argu-
ments. Naturally, some of these user-supplied operations will occasionally throw exceptions.
Other functions, such as allocator functions, can also throw exceptions. Consider:

v vo oi id d f f(v ve ec ct to or r<X X>& v v, c co on ns st t X X& g g)
{

v v[2 2] = g g; / / X’s assignment might throw an exception
v v.p pu us sh h_ _b ba ac ck k(g g) ; / / vector<X>’s allocator might throw an exception
s so or rt t(v v.b be eg gi in n() ,v v.e en nd d()) ; / / X’s less-than operation might throw an exception
v ve ec ct to or r<X X> u u = v v; / / X’s copy constructor might throw an exception
/ / ...

/ / u destroyed here: we must ensure that X’s destructor can work correctly
}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



936 Standard-Library Exception Safety Appendix E

What happens if the assignment throws an exception while trying to copy g g? Will v v be left with an
invalid element? What happens if the constructor that v v.p pu us sh h_ _b ba ac ck k() uses to copy g g throws
s st td d: :b ba ad d_ _a al ll lo oc c? Has the number of elements changed? Has an invalid element been added to the
container? What happens if X X’s less-than operator throws an exception during the sort? Have the
elements been partially sorted? Could an element have been removed from the container by the
sorting algorithm and not put back?

Finding the complete list of possible exceptions in this example is left as an exercise (§E.8[1]).
Explaining how this example is well behaved for every well-defined type X X – even an X X that throws
exceptions – is part of the aim of this appendix. Naturally, a major part of this explanation involves
giving meaning and effective terminology to the notions of ‘‘well behaved’’ and ‘‘well defined’’ in
the context of exceptions.

The purpose of this appendix is to
[1] identify how a user can design types that meet the standard library’s requirements,
[2] state the guarantees offered by the standard library,
[3] state the standard-library requirements on user-supplied code,
[4] demonstrate effective techniques for crafting exception-safe and efficient containers, and
[5] present a few general rules for exception-safe programming.

The discussion of exception safety necessarily focuses on worst-case behavior. That is, where
could an exception cause the most problems? How does the standard library protect itself and its
users from potential problems? And, how can users help prevent problems? Please don’t let this
discussion of exception-handling techniques distract from the central fact that throwing an excep-
tion is the best method for reporting an error (§14.1, §14.9). The discussion of concepts, tech-
niques, and standard-library guarantees is organized like this:

§E.2 discusses the notion of exception safety.
§E.3 presents techniques for implementing efficient exception-safe containers and operations.
§E.4 outlines the guarantees offered for standard-library containers and their operations.
§E.5 summarizes exception-safety issues for the non-container parts of the standard library.
§E.6 reviews exception safety from the point of view of a standard-library user.

As ever, the standard library provides examples of the kinds of concerns that must be addressed in
demanding applications. The techniques used to provide exception safety for the standard library
can be applied to a wide range of problems.

E.2 Exception Safety

An operation on an object is said to be exception safe if that operation leaves the object in a valid
state when the operation is terminated by throwing an exception. This valid state could be an error
state requiring cleanup, but it must be well defined so that reasonable error-handling code can be
written for the object. For example, an exception handler might destroy the object, repair the
object, repeat a variant of the operation, just carry on, etc.

In other words, the object will have an invariant (§24.3.7.1), its constructors will establish that
invariant, all further operations maintain that invariant even if an exception is thrown, and its
destructor will do final cleanup. An operation should take care that the invariant is maintained
before throwing an exception, so that the object is in a valid state. However, it is quite possible for
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Section E.2 Exception Safety 937

that valid state to be one that doesn’t suit the application. For example, a string may have been left
as the empty string or a container may have been left unsorted. Thus, ‘‘repair’’ means giving an
object a value that is more appropriate/desirable for the application than the one it was left with
after an operation failed. In the context of the standard library, the most interesting objects are con-
tainers.

Here, we consider under which conditions operations on standard-library containers can be con-
sidered exception safe. There can be only two conceptually really simple strategies:

[1] ‘‘No guarantees:’’ If an exception is thrown, any container being manipulated is possibly
corrupted.

[2] ‘‘Strong guarantee:’’ If an exception is thrown, any container being manipulated remains in
the state in which it was before the standard-library operation started.

Unfortunately, both answers are too simple for real use. Alternative [1] is unacceptable because it
implies that after an exception is thrown from a container operation, the container cannot be
accessed; it can’t even be destroyed without fear of run-time errors. Alternative [2] is unacceptable
because it imposes the cost of roll-back semantics on every individual standard-library operation.

To resolve this dilemma, the C++ standard library provides a set of exception-safety guarantees
that share the burden of producing correct programs between implementers of the standard library
and users of the standard library:

[3a] ‘‘Basic guarantee for all operations:’’ The basic invariants of the standard library are
maintained, and no resources, such as memory, are leaked.

[3b] ‘‘Strong guarantee for key operations:’’ In addition to providing the basic guarantee, either
the operation succeeds, or has no effects. This guarantee is provided for key library opera-
tions, such as p pu us sh h_ _b ba ac ck k(), single-element i in ns se er rt t() on a l li is st t, and u un ni in ni it ti ia al li iz ze ed d_ _c co op py y()
(§E.3.1, §E.4.1).

[3c] ‘‘Nothrow guarantee for some operations:’’ In addition to providing the basic guarantee,
some operations are guaranteed not to throw an exception This guarantee is provided for a
few simple operations, such as s sw wa ap p() and p po op p_ _b ba ac ck k() (§E.4.1).

Both the basic guarantee and the strong guarantee are provided on the condition that user-supplied
operations (such as assignments and s sw wa ap p() functions) do not leave container elements in invalid
states, that user-supplied operations do not leak resources, and that destructors do not throw excep-
tions. For example, consider these ‘‘handle-like’’ (§25.7) classes:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S Sa af fe e {
T T* p p; / / p points to a T allocated using new

p pu ub bl li ic c:
S Sa af fe e() :p p(n ne ew w T T) { }
˜S Sa af fe e() { d de el le et te e p p; }
S Sa af fe e& o op pe er ra at to or r=(c co on ns st t S Sa af fe e& a a) { *p p = *a a.p p; r re et tu ur rn n *t th hi is s; }
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s U Un ns sa af fe e { / / sloppy and dangerous code
T T* p p; / / p points to a T

p pu ub bl li ic c:
U Un ns sa af fe e(T T* p pp p) :p p(p pp p) { }
˜U Un ns sa af fe e() { i if f (!p p->d de es st tr ru uc ct ti ib bl le e()) t th hr ro ow w E E() ; d de el le et te e p p; }
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U Un ns sa af fe e& o op pe er ra at to or r=(c co on ns st t U Un ns sa af fe e& a a)
{

p p->˜T T() ; / / destroy old value (§10.4.11)
n ne ew w(p p) T T(a a.p p) ; / / construct copy of a.p in *p (§10.4.11)
r re et tu ur rn n *t th hi is s;

}

/ / ...
};

v vo oi id d f f(v ve ec ct to or r< S Sa af fe e<S So om me e_ _t ty yp pe e> >&v vg g, v ve ec ct to or r< U Un ns sa af fe e<S So om me e_ _t ty yp pe e> >&v vb b)
{

v vg g.a at t(1 1) = S Sa af fe e<S So om me e_ _t ty yp pe e>() ;
v vb b.a at t(1 1) = U Un ns sa af fe e<S So om me e_ _t ty yp pe e>(n ne ew w S So om me e_ _t ty yp pe e) ;
/ / ...

}

In this example, construction of a S Sa af fe e succeeds only if a T T is successfully constructed. The con-
struction of a T T can fail because allocation might fail (and throw s st td d: :b ba ad d_ _a al ll lo oc c) and because T T’s
constructor might throw an exception. However, in every successfully constructed S Sa af fe e, p p will
point to a successfully constructed T T; if a constructor fails, no T T object (or S Sa af fe e object) is created.
Similarly, T T’s assignment operator may throw an exception, causing S Sa af fe e’s assignment operator to
implicitly re-throw that exception. However, that is no problem as long as T T’s assignment operator
always leaves its operands in a good state. Therefore, S Sa af fe e is well behaved, and consequently every
standard-library operation on a S Sa af fe e will have a reasonable and well-defined result.

On the other hand, U Un ns sa af fe e() is carelessly written (or rather, it is carefully written to demon-
strate undesirable behavior). The construction of an U Un ns sa af fe e will not fail. Instead, the operations
on U Un ns sa af fe e, such as assignment and destruction, are left to deal with a variety of potential problems.
The assignment operator may fail by throwing an exception from T T’s copy constructor. This would
leave a T T in an undefined state because the old value of *p p was destroyed and no new value
replaced it. In general, the results of that are unpredictable. U Un ns sa af fe e’s destructor contains an ill-
conceived attempt to protect against undesirable destruction. However, throwing an exception dur-
ing exception handling will cause a call of t te er rm mi in na at te e() (§14.7), and the standard library requires
that a destructor return normally after destroying an object. The standard library does not – and
cannot – make any guarantees when a user supplies objects this badly behaved.

From the point of view of exception handling, S Sa af fe e and U Un ns sa af fe e differ in that S Sa af fe e uses its con-
structor to establish an invariant (§24.3.7.1) that allows its operations to be implemented simply
and safely. If that invariant cannot be established, an exception is thrown before an invalid object
is constructed. U Un ns sa af fe e, on the other hand, muddles along without a meaningful invariant, and the
individual operations throw exceptions without an overall error-handling strategy. Naturally, this
results in violations of the standard library’s (reasonable) assumptions about the behavior of types.
For example, U Un ns sa af fe e can leave invalid elements in a container after throwing an exception from
T T: :o op pe er ra at to or r=() and may throw an exception from its destructor.

Note that the standard-library guarantees relative to ill-behaved user-supplied operations are
analogous to the language guarantees relative to violations of the basic type system. If a basic
operation is not used according to its specification, the resulting behavior is undefined. For
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example, if you throw an exception from a destructor for a v ve ec ct to or r element, you have no more rea-
son to hope for a reasonable result than if you dereference a pointer initialized to a random number:

c cl la as ss s B Bo om mb b {
p pu ub bl li ic c:

/ / ...
˜B Bo om mb b() { t th hr ro ow w T Tr ro ou ub bl le e() ; };

};

v ve ec ct to or r<B Bo om mb b> b b(1 10 0) ; / / leads to undefined behavior

v vo oi id d f f()
{

i in nt t* p p = r re ei in nt te er rp pr re et t_ _c ca as st t<i in nt t*>(r ra an nd d()) ; / / leads to undefined behavior
*p p = 7 7;

}

Stated positively: If you obey the basic rules of the language and the standard library, the library
will behave well even when you throw exceptions.

In addition to achieving pure exception safety, we usually prefer to avoid resource leaks. That
is, an operation that throws an exception should not only leave its operands in well-defined states
but also ensure that every resource that it acquired is (eventually) released. For example, at the
point where an exception is thrown, all memory allocated must be either deallocated or owned by
some object, which in turn must ensure that the memory is properly deallocated.

The standard-library guarantees the absence of resource leaks provided that user-supplied opera-
tions called by the library also avoid resource leaks. Consider:

v vo oi id d l le ea ak k(b bo oo ol l a ab bo or rt t)
{

v ve ec ct to or r<i in nt t> v v(1 10 0) ; / / no leak
v ve ec ct to or r<i in nt t>* p p = n ne ew w v ve ec ct to or r<i in nt t>(1 10 0) ; / / potential memory leak
a au ut to o_ _p pt tr r< v ve ec ct to or r<i in nt t> > q q(n ne ew w v ve ec ct to or r<i in nt t>(1 10 0)) ; / / no leak (§14.4.2)

i if f (a ab bo or rt t) t th hr ro ow w U Up p() ;
/ / ...
d de el le et te e p p;

}

Upon throwing the exception, the v ve ec ct to or r called v v and the v ve ec ct to or r held by q q will be correctly
destroyed so that their resources are released. The v ve ec ct to or r pointed to by p p is not guarded against
exceptions and will not be destroyed. To make this piece of code safe, we must either explicitly
delete p p before throwing the exception or make sure it is owned by an object – such as an a au ut to o_ _p pt tr r
(§14.4.2) – that will properly destroy it if an exception is thrown.

Note that the language rules for partial construction and destruction ensure that exceptions
thrown while constructing sub-objects and members will be handled correctly without special atten-
tion from standard-library code (§14.4.1). This rule is an essential underpinning for all techniques
dealing with exceptions.

Also, remember that memory isn’t the only kind of resource that can leak. Opened files, locks,
network connections, and threads are examples of system resources that a function may have to
release or hand over to an object before throwing an exception.
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E.3 Exception-Safe Implementation Techniques

As usual, the standard library provides examples of problems that occur in many other contexts and
of solutions that apply widely. The basic tools available for writing exception-safe code are

[1] the try-block (§8.3.1), and
[2] the support for the ‘‘resource acquisition is initialization’’ technique (§14.4).

The general principles to follow are to
[3] never let go of a piece of information before we can store its replacement, and
[4] always leave objects in valid states when throwing or re-throwing an exception.

That way, we can always back out of an error situation. The practical difficulty in following these
principles is that innocent-looking operations (such as <, =, and s so or rt t()) might throw exceptions.
Knowing what to look for in an application takes experience.

When you are writing a library, the ideal is to aim at the strong exception-safety guarantee
(§E.2) and always to provide the basic guarantee. When writing a specific program, there may be
less concern for exception safety. For example, if I write a simple data analysis program for my
own use, I’m usually quite willing to have the program terminate in the unlikely event of virtual
memory exhaustion. However, correctness and basic exception safety are closely related.

The techniques for providing basic exception safety, such as defining and checking invariants
(§24.3.7.1), are similar to the techniques that are useful to get a program small and correct. It fol-
lows that the overhead of providing basic exception safety (the basic guarantee; §E.2) – or even the
strong guarantee – can be minimal or even insignificant; see §E.8[17].

Here, I will consider an implementation of the standard container v ve ec ct to or r (§16.3) to see what it
takes to achieve that ideal and where we might prefer to settle for more conditional safety.

E.3.1 A Simple Vector

A typical implementation of v ve ec ct to or r (§16.3) will consist of a handle holding pointers to the first ele-
ment, one-past-the-last element, and one-past-the-last allocated space (§17.1.3) (or the equivalent
information represented as a pointer plus offsets):

f fi ir rs st t
s sp pa ac ce e
l la as st t . .

elements
. . . . . . . . . . . . . . . . ..

..

. . . . . . . . . . . . . . . . . .....
extra space

v ve ec ct to or r:

Here is a declaration of v ve ec ct to or r simplified to present only what is needed to discuss exception safety
and avoidance of resource leaks:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >
c cl la as ss s v ve ec ct to or r {
p pr ri iv va at te e:

T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of element sequence, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space
A A a al ll lo oc c; / / allocator
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p pu ub bl li ic c:
e ex xp pl li ic ci it t v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l = T T() , c co on ns st t A A& = A A()) ;

v ve ec ct to or r(c co on ns st t v ve ec ct to or r& a a) ; / / copy constructor
v ve ec ct to or r& o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) ; / / copy assignment

˜v ve ec ct to or r() ;

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n s sp pa ac ce e-v v; }
s si iz ze e_ _t ty yp pe e c ca ap pa ac ci it ty y() c co on ns st t { r re et tu ur rn n l la as st t-v v; }

v vo oi id d p pu us sh h_ _b ba ac ck k(c co on ns st t T T&) ;

/ / ...
};

Consider first a naive implementation of a constructor:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a) / / warning: naive implementation

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements (§19.4.1)
s sp pa ac ce e = l la as st t = v v+n n;
f fo or r (T T* p p = v v; p p!=l la as st t; ++p p) a a.c co on ns st tr ru uc ct t(p p,v va al l) ; / / construct copy of val in *p (§19.4.1)

}

There are three sources of exceptions here:
[1] a al ll lo oc ca at te e() throws an exception indicating that no memory is available;
[2] the allocator’s copy constructor throws an exception;
[3] the copy constructor for the element type T T throws an exception because it can’t copy v va al l.

In all cases, no object is created, so v ve ec ct to or r’s destructor is not called (§14.4.1).
When a al ll lo oc ca at te e() fails, the t th hr ro ow w will exit before any resources are acquired, so all is well.
When T T’s copy constructor fails, we have acquired some memory that must be freed to avoid

memory leaks. A more difficult problem is that the copy constructor for T T might throw an excep-
tion after correctly constructing a few elements but before constructing them all.

To handle this problem, we could keep track of which elements have been constructed and
destroy those (and only those) in case of an error:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a) / / elaborate implementation

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements

i it te er ra at to or r p p;

t tr ry y {
i it te er ra at to or r e en nd d = v v+n n;
f fo or r (p p=v v; p p!=e en nd d; ++p p) a al ll lo oc c.c co on ns st tr ru uc ct t(p p,v va al l) ; / / construct element (§19.4.1)
l la as st t = s sp pa ac ce e = p p;

}
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c ca at tc ch h (...) {
f fo or r (i it te er ra at to or r q q = v v; q q!=p p; ++q q) a al ll lo oc c.d de es st tr ro oy y(q q) ; / / destroy constructed elements
a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,n n) ; / / free memory
t th hr ro ow w; / / re-throw

}
}

The overhead here is the overhead of the try-block. In a good C++ implementation, this overhead is
negligible compared to the cost of allocating memory and initializing elements. For implementa-
tions where entering a try-block incurs a cost, it may be worthwhile to add a test i if f(n n) before the
t tr ry y and handle the empty vector case separately.

The main part of this constructor is an exception-safe implementation of u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l():

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T>
v vo oi id d u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(F Fo or r b be eg g, F Fo or r e en nd d, c co on ns st t T T& x x)
{

F Fo or r p p;
t tr ry y {

f fo or r (p p=b be eg g; p p!=e en nd d; ++p p)
n ne ew w(s st ta at ti ic c_ _c ca as st t<v vo oi id d*>(&*p p)) T T(x x) ; / / construct copy of x in *p (§10.4.11)

}
c ca at tc ch h (...) { / / destroy constructed elements and rethrow:

f fo or r (F Fo or r q q = b be eg g; q q!=p p; ++q q) (&*q q)->˜T T() ; / / (§10.4.11)
t th hr ro ow w;

}
}

The curious construct &*p p takes care of iterators that are not pointers. In that case, we need to take
the address of the element obtained by dereference to get a pointer. The explicit cast to v vo oi id d*
ensures that the standard library placement function is used (§19.4.5), and not some user-defined
o op pe er ra at to or r n ne ew w() for T T*s. This code is operating at a rather low level where writing truly general
code can be difficult.

Fortunately, we don’t have to reimplement u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), because the standard library
provides the desired strong guarantee for it (§E.2). It is often essential to have initialization opera-
tions that either complete successfully, having initialized every element, or fail leaving no con-
structed elements behind. Consequently, the standard-library algorithms u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(),
u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l_ _n n(), and u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() (§19.4.4) are guaranteed to have this strong
exception-safety property (§E.4.4).

Note that the u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() algorithm does not protect against exceptions thrown by ele-
ment destructors or iterator operations (§E.4.4). Doing so would be prohibitively expensive (see
§E.8[16-17]).

The u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() algorithm can be applied to many kinds of sequences. Consequently,
it takes a forward iterator (§19.2.1) and cannot guarantee to destroy elements in the reverse order of
their construction.

Using u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), we can write:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



Section E.3.1 A Simple Vector 943

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a) / / messy implementation

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements
t tr ry y {

u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,v va al l) ; / / copy elements
s sp pa ac ce e = l la as st t = v v+n n;

}
c ca at tc ch h (...) {

a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,n n) ; / / free memory
t th hr ro ow w; / / re-throw

}
}

However, I wouldn’t call that pretty code. The next section will demonstrate how it can be made
much simpler.

Note that the constructor re-throws a caught exception. The intent is to make v ve ec ct to or r transparent
to exceptions so that the user can determine the exact cause of a problem. All standard-library con-
tainers have this property. Exception transparency is often the best policy for templates and other
‘‘thin’’ layers of software. This is in contrast to major parts of a system (‘‘modules’’) that gener-
ally need to take responsibility for all exceptions thrown. That is, the implementer of such a mod-
ule must be able to list every exception that the module can throw. Achieving this may involve
grouping exceptions (§14.2), mapping exceptions from lower-level routines into the module’s own
exceptions (§14.6.3), or exception specification (§14.6).

E.3.2 Representing Memory Explicitly

Experience revealed that writing correct exception-safe code using explicit try-blocks is more diffi-
cult than most people expect. In fact, it is unnecessarily difficult because there is an alternative:
The ‘‘resource acquisition is initialization’’ technique (§14.4) can be used to reduce the amount of
code needing to be written and to make the code more stylized. In this case, the key resource
required by the v ve ec ct to or r is memory to hold its elements. By providing an auxiliary class to represent
the notion of memory used by a v ve ec ct to or r, we can simplify the code and decrease the chance of acci-
dentally forgetting to release it:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >
s st tr ru uc ct t v ve ec ct to or r_ _b ba as se e {

A A a al ll lo oc c; / / allocator
T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of element sequence, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

v ve ec ct to or r_ _b ba as se e(c co on ns st t A A& a a, t ty yp pe en na am me e A A: :s si iz ze e_ _t ty yp pe e n n)
: a al ll lo oc c(a a) , v v(a a.a al ll lo oc ca at te e(n n)) , s sp pa ac ce e(v v+n n) , l la as st t(v v+n n) { }

˜v ve ec ct to or r_ _b ba as se e() { a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; }
};

As long as v v and l la as st t are correct, v ve ec ct to or r_ _b ba as se e can be destroyed. Class v ve ec ct to or r_ _b ba as se e deals with
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memory for a type T T, not objects of type T T. Consequently, a user of v ve ec ct to or r_ _b ba as se e must destroy all
constructed objects in a v ve ec ct to or r_ _b ba as se e before the v ve ec ct to or r_ _b ba as se e itself is destroyed.

Naturally, v ve ec ct to or r_ _b ba as se e itself is written so that if an exception is thrown (by the allocator’s copy
constructor or a al ll lo oc ca at te e() function) no v ve ec ct to or r_ _b ba as se e object is created and no memory is leaked.

We want to be able to s sw wa ap p() v ve ec ct to or r_ _b ba as se es. However, the default s sw wa ap p() doesn’t suit our
needs because it copies and destroys a temporary. Because v ve ec ct to or r_ _b ba as se e is a special-purpose class
that wasn’t given fool-proof copy semantics, that destructions would lead to undesirable sideef-
fects. Consequently, we provide a specialization:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s sw wa ap p(v ve ec ct to or r_ _b ba as se e<T T>& a a, v ve ec ct to or r_ _b ba as se e<T T>& b b)
{

s sw wa ap p(a a.a a,b b.a a) ; s sw wa ap p(a a.v v,b b.v v) ; s sw wa ap p(a a.s sp pa ac ce e,b b.s sp pa ac ce e) ; s sw wa ap p(a a.l la as st t,b b.l la as st t) ;
}

Given v ve ec ct to or r_ _b ba as se e, v ve ec ct to or r can be defined like this:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >
c cl la as ss s v ve ec ct to or r : p pr ri iv va at te e v ve ec ct to or r_ _b ba as se e<T T,A A> {

v vo oi id d d de es st tr ro oy y_ _e el le em me en nt ts s() { f fo or r (T T* p p = v v; p p!=s sp pa ac ce e; ++p p) p p->˜T T() ; } / / §10.4.11
p pu ub bl li ic c:

e ex xp pl li ic ci it t v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l = T T() , c co on ns st t A A& = A A()) ;

v ve ec ct to or r(c co on ns st t v ve ec ct to or r& a a) ; / / copy constructor
v ve ec ct to or r& o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) ; / / copy assignment

˜v ve ec ct to or r() { d de es st tr ro oy y_ _e el le em me en nt ts s() ; }

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n s sp pa ac ce e-v v; }
s si iz ze e_ _t ty yp pe e c ca ap pa ac ci it ty y() c co on ns st t { r re et tu ur rn n l la as st t-v v; }

v vo oi id d p pu us sh h_ _b ba ac ck k(c co on ns st t T T&) ;

/ / ...
};

The v ve ec ct to or r destructor explicitly invokes the T T destructor for every element. This implies that if an
element destructor throws an exception, the v ve ec ct to or r destruction fails. This can be a disaster if it hap-
pens during stack unwinding caused by an exception and t te er rm mi in na at te e() is called (§14.7). In the case
of normal destruction, throwing an exception from a destructor typically leads to resource leaks and
unpredictable behavior of code relying on reasonable behavior of objects. There is no really good
way to protect against exceptions thrown from destructors, so the library makes no guarantees if an
element destructor throws (§E.4).

Now the constructor can be simply defined:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a)

:v ve ec ct to or r_ _b ba as se e<T T,A A>(a a,n n) / / allocate space for n elements
{

u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,v va al l) ; / / copy elements
}

The copy constructor differs by using u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() instead of u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l():
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t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(c co on ns st t v ve ec ct to or r<T T,A A>& a a)

:v ve ec ct to or r_ _b ba as se e<T T,A A>(a a.a al ll lo oc c,a a.s si iz ze e())
{

u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n() ,a a.e en nd d() ,v v) ;
}

Note that this style of constructor relies on the fundamental language rule that when an exception is
thrown from a constructor, sub-objects (such as bases) that have already been completely con-
structed will be properly destroyed (§14.4.1). The u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() algorithm and its cousins
(§E.4.4) provide the equivalent guarantee for partially constructed sequences.

E.3.3 Assignment

As usual, assignment differs from construction in that an old value must be taken care of. Consider
a straightforward implementation:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) / / offers the strong guarantee (§E.2)
{

v ve ec ct to or r_ _b ba as se e<T T,A A> b b(a al ll lo oc c,a a.s si iz ze e()) ; / / get memory
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n() ,a a.e en nd d() ,b b.v v) ; / / copy elements
d de es st tr ro oy y_ _e el le em me en nt ts s() ;
a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; / / free old memory
v ve ec ct to or r_ _b ba as se e: :o op pe er ra at to or r=(b b) ; / / install new representation
b b.v v = 0 0; / / prevent deallocation
r re et tu ur rn n *t th hi is s;

}

This assignment is safe, but it repeats a lot of code from constructors and destructors. To avoid
this, we could write:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) / / offers the strong guarantee (§E.2)
{

v ve ec ct to or r t te em mp p(a a) ; / / copy a
s sw wa ap p< v ve ec ct to or r_ _b ba as se e<T T,A A> >(*t th hi is s,t te em mp p) ; / / swap representations
r re et tu ur rn n *t th hi is s;

}

The old elements are destroyed by t te em mp p’s destructor, and the memory used to hold them is deallo-
cated by t te em mp p’s v ve ec ct to or r_ _b ba as se e’s destructor.

The performance of the two versions ought to be equivalent. Essentially, they are just two dif-
ferent ways of specifying the same set of operations. However, the second implementation is
shorter and doesn’t replicate code from related v ve ec ct to or r functions, so writing the assignment that way
ought to be less error prone and lead to simpler maintenance.

Note the absence of the traditional test for self-assignment (§10.4.4). These assignment imple-
mentations work by first constructing a copy and then swapping representations. This obviously
handles self-assignment correctly. I decided that the efficiency gained from the test in the rare case
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of self-assignment was more than offset by its cost in the common case where a different v ve ec ct to or r is
assigned.

In either case, two potentially significant optimizations are missing:
[1] If the capacity of the vector assigned to is large enough to hold the assigned vector, we don’t

need to allocate new memory.
[2] An element assignment may be more efficient than an element destruction followed by an

element construction.
Implementing these optimizations, we get:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) / / optimized, basic guarantee (§E.2)
{

i if f (c ca ap pa ac ci it ty y() < a a.s si iz ze e()) { / / allocate new vector representation:
v ve ec ct to or r t te em mp p(a a) ; / / copy a
s sw wa ap p< v ve ec ct to or r_ _b ba as se e<T T,A A> >(*t th hi is s,t te em mp p) ; / / swap representations
r re et tu ur rn n *t th hi is s;

}

i if f (t th hi is s == &a a) r re et tu ur rn n *t th hi is s; / / protect against self assignment (§10.4.4)

/ / assign to old elements:
s si iz ze e_ _t ty yp pe e s sz z = s si iz ze e() ;
s si iz ze e_ _t ty yp pe e a as sz z = a a.s si iz ze e() ;
a al ll lo oc c = a a.g ge et t_ _a al ll lo oc ca at to or r() ; / / copy the allocator
i if f (a as sz z<=s sz z) {

c co op py y(a a.b be eg gi in n() ,a a.b be eg gi in n()+a as sz z,v v) ;
f fo or r (T T* p p = v v+a as sz z; p p!=s sp pa ac ce e; ++p p) p p->˜T T() ; / / destroy surplus elements (§10.4.11)

}
e el ls se e {

c co op py y(a a.b be eg gi in n() ,a a.b be eg gi in n()+s sz z,v v) ;
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n()+s sz z,a a.e en nd d() ,s sp pa ac ce e) ; / / construct extra elements

}
s sp pa ac ce e = v v+a as sz z;
r re et tu ur rn n *t th hi is s;

}

These optimizations are not free. The c co op py y() algorithm (§18.6.1) does not offer the strong
exception-safety guarantee. It does not guarantee that it will leave its target unchanged if an excep-
tion is thrown during copying. Thus, if T T: :o op pe er ra at to or r=() throws an exception during c co op py y(), the
v ve ec ct to or r being assigned to need not be a copy of the vector being assigned, and it need not be
unchanged. For example, the first five elements might be copies of elements of the assigned vector
and the rest unchanged. It is also plausible that an element – the element that was being copied
when T T: :o op pe er ra at to or r=() threw an exception – ends up with a value that is neither the old value nor a
copy of the corresponding element in the vector being assigned. However, if T T: :o op pe er ra at to or r=()
leaves its operands in a valid state if it throws an exception, the v ve ec ct to or r is still in a valid state – even
if it wasn’t the state we would have preferred.

Here, I have copied the allocator using an assignment. It is actually not required that every allo-
cator support assignment (§19.4.3); see also §E.8[9].
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The standard-library v ve ec ct to or r assignment offers the weaker exception-safety property of this last
implementation – and its potential performance advantages. That is, v ve ec ct to or r assignment provides
the basic guarantee, so it meets most people’s idea of exception safety. However, it does not pro-
vide the strong guarantee (§E.2). If you need an assignment that leaves the v ve ec ct to or r unchanged if an
exception is thrown, you must either use a library implementation that provides the strong guaran-
tee or provide your own assignment operation. For example:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, c co on ns st t v ve ec ct to or r<T T,A A>& b b) / / "obvious" a = b
{

v ve ec ct to or r<T T,A A> t te em mp p(a a.g ge et t_ _a al ll lo oc ca at to or r()) ;
t te em mp p.r re es se er rv ve e(b b.s si iz ze e()) ;
f fo or r (t ty yp pe en na am me e v ve ec ct to or r<T T,A A>: :i it te er ra at to or r p p = b b.b be eg gi in n() ; p p!=b b.e en nd d() ; ++p p)

t te em mp p.p pu us sh h_ _b ba ac ck k(*p p) ;
s sw wa ap p(a a,t te em mp p) ;

}

If there is insufficient memory for t te em mp p to be created with room for b b.s si iz ze e() elements,
s st td d: :b ba ad d_ _a al ll lo oc c is thrown before any changes are made to a a. Similarly, if p pu us sh h_ _b ba ac ck k() fails for
any reason, a a will remain untouched because we apply p pu us sh h_ _b ba ac ck k() to t te em mp p rather than to a a. In
that case, any elements of t te em mp p created by p pu us sh h_ _b ba ac ck k() will be destroyed before the exception
that caused the failure is re-thrown.

Swap does not copy v ve ec ct to or r elements. It simply swaps the data members of a v ve ec ct to or r; that is, it
swaps v ve ec ct to or r_ _b ba as se es (§E.3.2). Consequently, it does not throw exceptions even if operations on the
elements might (§E.4.3). Consequently, s sa af fe e_ _a as ss si ig gn n() does not do spurious copies of elements
and is reasonably efficient.

As is often the case, there are alternatives to the obvious implementation. We can let the library
perform the copy into the temporary for us:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, c co on ns st t v ve ec ct to or r<T T,A A>& b b) / / simple a = b
{

v ve ec ct to or r<T T,A A> t te em mp p(b b) ; / / copy the elements of b into a temporary
s sw wa ap p(a a,t te em mp p) ;

}

Indeed, we could simply use call-by-value (§7.2):

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, v ve ec ct to or r<T T,A A> b b) / / simple a = b (note: b is passed by value)
{

s sw wa ap p(a a,b b) ;
}

E.3.4 p pu us sh h_ _b ba ac ck k( () )

From an exception-safety point of view, p pu us sh h_ _b ba ac ck k() is similar to the assignment in that we must
take care that the v ve ec ct to or r remains unchanged if we fail to add a new element:
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t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d v ve ec ct to or r<T T,A A>: :p pu us sh h_ _b ba ac ck k(c co on ns st t T T& x x)
{

i if f (s sp pa ac ce e == l la as st t) { / / no more free space; relocate:
v ve ec ct to or r_ _b ba as se e b b(a al ll lo oc c,s si iz ze e()?2 2*s si iz ze e():2 2) ; / / double the allocation
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(v v,s sp pa ac ce e,b b.v v) ;
n ne ew w(b b.s sp pa ac ce e) T T(x x) ; / / place a copy of x in *b.space (§10.4.11)
++b b.s sp pa ac ce e;
d de es st tr ro oy y_ _e el le em me en nt ts s() ;
s sw wa ap p<v ve ec ct to or r_ _b ba as se e<T T,A A> >(b b,*t th hi is s) ; / / swap representations
r re et tu ur rn n;

}
n ne ew w(s sp pa ac ce e) T T(x x) ; / / place a copy of x in *space (§10.4.11)
++s sp pa ac ce e;

}

Naturally, the copy constructor used to initialize *s sp pa ac ce e might throw an exception. If that happens,
the value of the v ve ec ct to or r remains unchanged, with s sp pa ac ce e left unincremented. In that case, the v ve ec ct to or r
elements are not reallocated so that iterators referring to them are not invalidated. Thus, this imple-
mentation implements the strong guarantee that an exception thrown by an allocator or even a
user-supplied copy constructor leaves the v ve ec ct to or r unchanged. The standard library offers that guar-
antee for p pu us sh h_ _b ba ac ck k() (§E.4.1).

Note the absence of a try-block (except for the one hidden in u un ni in ni it ti ia al li iz ze ed d_ _c co op py y()). The
update was done by carefully ordering the operations so that if an exception is thrown, the v ve ec ct to or r
remains unchanged.

The approach of gaining exception safety through ordering and the ‘‘resource acquisition is
initialization’’ technique (§14.4) tends to be more elegant and more efficient than explicitly han-
dling errors using try-blocks. More problems with exception safety arise from a programmer order-
ing code in unfortunate ways than from lack of specific exception-handling code. The basic rule of
ordering is not to destroy information before its replacement has been constructed and can be
assigned without the possibility of an exception.

Exceptions introduce possibilities for surprises in the form of unexpected control flows. For a
piece of code with a simple local control flow, such as the o op pe er ra at to or r=(), s sa af fe e_ _a as ss si ig gn n(), and
p pu us sh h_ _b ba ac ck k() examples, the opportunities for surprises are limited. It is relatively simple to look at
such code and ask oneself ‘‘can this line of code throw an exception, and what happens if it does?’’
For large functions with complicated control structures, such as complicated conditional statements
and nested loops, this can be hard. Adding try-blocks increases this local control structure com-
plexity and can therefore be a source of confusion and errors (§14.4). I conjecture that the effec-
tiveness of the ordering approach and the ‘‘resource acquisition is initialization’’ approach com-
pared to more extensive use of try-blocks stems from the simplification of the local control flow.
Simple, stylized code is easier to understand and easier to get right.

Note that the v ve ec ct to or r implementation is presented as an example of the problems that exceptions
can pose and of techniques for addressing those problems. The standard does not require an imple-
mentation to be exactly like the one presented here. What the standard does guarantee is the sub-
ject of §E.4.
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E.3.5 Constructors and Invariants

From the point of view of exception safety, other v ve ec ct to or r operations are either equivalent to the ones
already examined (because they acquire and release resources in similar ways) or trivial (because
they don’t perform operations that require cleverness to maintain valid states). However, for most
classes, such ‘‘trivial’’ functions constitute the majority of code. The difficulty of writing such
functions depends critically on the environment that a constructor established for them to operate
in. Said differently, the complexity of ‘‘ordinary member functions’’ depends critically on choos-
ing a good class invariant (§24.3.7.1). By examining the ‘‘trivial’’ v ve ec ct to or r functions, it is possible
to gain insight into the interesting question of what makes a good invariant for a class and how con-
structors should be written to establish such invariants.

Operations such as v ve ec ct to or r subscripting (§16.3.3) are easy to write because they can rely on the
invariant established by the constructors and maintained by all functions that acquire or release
resources. In particular, a subscript operator can rely on v v referring to an array of elements:

t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A>
T T& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e i i)
{

r re et tu ur rn n v v[i i] ;
}

It is important and fundamental to have constructors acquire resources and establish a simple
invariant. To see why, consider an alternative definition of v ve ec ct to or r_ _b ba as se e:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > / / clumsy use of constructor
c cl la as ss s v ve ec ct to or r_ _b ba as se e {
p pu ub bl li ic c:

A A a al ll lo oc c; / / allocator
T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of element sequence, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

v ve ec ct to or r_ _b ba as se e(c co on ns st t A A& a a, t ty yp pe en na am me e A A: :s si iz ze e_ _t ty yp pe e n n) : a al ll lo oc c(a a) , v v(0 0) , s sp pa ac ce e(0 0) , l la as st t(0 0)
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ;
s sp pa ac ce e = l la as st t = v v+n n;

}

˜v ve ec ct to or r_ _b ba as se e() { i if f (v v) a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; }
};

Here, I construct a v ve ec ct to or r_ _b ba as se e in two stages: First, I establish a ‘‘safe state’’ where v v, s sp pa ac ce e, and
l la as st t are set to 0 0. Only after that has been done do I try to allocate memory. This is done out of
misplaced fear that if an exception happens during element allocation, a partially constructed object
could be left behind. This fear is misplaced because a partially constructed object cannot be ‘‘left
behind’’ and later accessed. The rules for static objects, automatic objects, member objects, and
elements of the standard-library containers prevent that. However, it could/can happen in pre-
standard libraries that used/use placement new (§10.4.11) to construct objects in containers
designed without concern for exception safety. Old habits can be hard to break.
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Note that this attempt to write safer code complicates the invariant for the class: It is no longer
guaranteed that v v points to allocated memory. Now v v might be 0 0. This has one immediate cost.
The standard-library requirements for allocators do not guarantee that we can safely deallocate a
pointer with the value 0 0 (§19.4.1). In this, allocators differ from d de el le et te e (§6.2.6). Consequently, I
had to add a test in the destructor. Also, each element is first initialized and then assigned. The
cost of doing that extra work can be significant for element types for which assignment is nontriv-
ial, such as s st tr ri in ng g and l li is st t.

This two-stage construct is not an uncommon style. Sometimes, it is even made explicit by
having the constructor do only some ‘‘simple and safe’’ initialization to put the object into a
destructible state. The real construction is left to an i in ni it t() function that the user must explicitly
call. For example:

t te em mp pl la at te e<c cl la as ss s T T> / / archaic (pre-standard, pre-exception) style
c cl la as ss s v ve ec ct to or r_ _b ba as se e {
p pu ub bl li ic c:

T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of element sequence, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

v ve ec ct to or r_ _b ba as se e() : v v(0 0) , s sp pa ac ce e(0 0) , l la as st t(0 0) { }
˜v ve ec ct to or r_ _b ba as se e() { f fr re ee e(v v) ; }

b bo oo ol l i in ni it t(s si iz ze e_ _t t n n) / / return true if initialization succeeded
{

i if f (v v = (T T*)m ma al ll lo oc c(s si iz ze eo of f(T T)*n n)) {
u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,T T()) ;
s sp pa ac ce e = l la as st t = v v+n n;
r re et tu ur rn n t tr ru ue e;

}
r re et tu ur rn n f fa al ls se e;

}
};

The perceived value of this style is
[1] The constructor can’t throw an exception, and the success of an initialization using i in ni it t()

can be tested by ‘‘usual’’ (that is, non-exception) means.
[2] There exists a trivial valid state. In case of a serious problem, an operation can give an

object that state.
[3] The acquisition of resources is delayed until a fully initialized object is actually needed.

The following subsections examine these points and shows why this two-stage construction tech-
nique doesn’t deliver its expected benefits. It can also be a source of problems.

E.3.5.1 Using i in ni it t( () ) Functions

The first point (using an i in ni it t() function in preference to a constructor) is bogus. Using construc-
tors and exception handling is a more general and systematic way of dealing with resource acquisi-
tion and initialization errors (§14.1, §14.4). This style is a relic of pre-exception C++.

Carefully written code using the two styles are roughly equivalent. Consider:
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i in nt t f f1 1(i in nt t n n)
{

v ve ec ct to or r<X X> v v;
/ / ...
i if f (v v.i in ni it t(n n)) {

/ / use v as vector of n elements
}
e el ls se e {

/ / handle_problem
}

}

and

i in nt t f f2 2(i in nt t n n)
t tr ry y {

v ve ec ct to or r v v<X X> v v(n n) ;
/ / ...
/ / use v as vector of n elements

}
c ca at tc ch h (...) {

/ / handle problem
}

However, having a separate i in ni it t() function is an opportunity to
[1] forget to call i in ni it t() (§10.2.3),
[2] forget to test on the success of i in ni it t(),
[3] call i in ni it t() more than once,
[4] forget that i in ni it t() might throw an exception, and
[5] use the object before calling i in ni it t().

The definition of v ve ec ct to or r<T T>: :i in ni it t() illustrates [4].
In a good C++ implementation, f f2 2() will be marginally faster than f f1 1() because it avoids the

test in the common case.

E.3.5.2 Relying on a Default Valid State

The second point (having an easy-to-construct ‘‘default’’ valid state) is correct in general, but in the
case of v ve ec ct to or r, it is achieved at an unnecessary cost. It is now possible to have a v ve ec ct to or r_ _b ba as se e with
v v==0 0, so the vector implementation must protect against that possibility throughout. For example:

t te em mp pl la at te e< c cl la as ss s T T>
T T& v ve ec ct to or r<T T>: :o op pe er ra at to or r[](s si iz ze e_ _t t i i)
{

i if f (v v) r re et tu ur rn n v v[i i] ;
/ / handle error

}

Leaving the possibility of v v==0 0 open makes the cost of non-range-checked subscripting equivalent
to range-checked access:
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t te em mp pl la at te e< c cl la as ss s T T>
T T& v ve ec ct to or r<T T>: :a at t(s si iz ze e_ _t t i i)
{

i if f (i i<v v.s si iz ze e()) r re et tu ur rn n v v[i i] ;
t th hr ro ow w o ou ut t_ _o of f_ _r ra an ng ge e("v ve ec ct to or r i in nd de ex x") ;

}

What fundamentally happened here was that I complicated the basic invariant for v ve ec ct to or r_ _b ba as se e by
introducing the possibility of v v==0 0. In consequence, the basic invariant for v ve ec ct to or r was similarly
complicated. The end result of this is that all code in v ve ec ct to or r and v ve ec ct to or r_ _b ba as se e must be more com-
plicated to cope. This is a source of potential errors, maintenance problems, and run-time over-
head. Note that conditional statements can be surprisingly costly on modern machine architectures.
Where efficiency matters, it can be crucial to implement a key operation, such as vector subscript-
ing, without conditional statements.

Interestingly, the original definition of v ve ec ct to or r_ _b ba as se e already did have an easy-to-construct valid
state. No v ve ec ct to or r_ _b ba as se e object could exist unless the initial allocation succeeded. Consequently, the
implementer of v ve ec ct to or r could write an ‘‘emergency exit’’ function like this:

t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d v ve ec ct to or r<T T,A A>: :e em me er rg ge en nc cy y_ _e ex xi it t()
{

s sp pa ac ce e = v v; / / set the size of *this to 0
t th hr ro ow w T To ot ta al l_ _f fa ai il lu ur re e() ;

}

This is a bit drastic because it fails to call element destructors and to deallocate the space for ele-
ments held by the v ve ec ct to or r_ _b ba as se e. That is, it fails to provide the basic guarantee (§E.2). If we are
willing to trust the values of v v and s sp pa ac ce e and the element destructors, we can avoid potential
resource leaks:

t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d v ve ec ct to or r<T T,A A>: :e em me er rg ge en nc cy y_ _e ex xi it t()
{

d de es st tr ro oy y_ _e el le em me en nt ts s() ; / / clean up
t th hr ro ow w T To ot ta al l_ _f fa ai il lu ur re e() ;

}

Please note that the standard v ve ec ct to or r is such a clean design that it minimizes the problems caused by
two-phase construction. The i in ni it t() function is roughly equivalent to r re es si iz ze e(), and in most places
the possibility of v v==0 0 is already covered by s si iz ze e()==0 0 tests. The negative effects described for
two-phase construction become more marked when we consider application classes that acquire
significant resources, such as network connections and files. Such classes are rarely part of a
framework that guides their use and their implementation in the way the standard-library require-
ments guide the definition and use of v ve ec ct to or r. The problems also tend to increase as the mapping
between the application concepts and the resources required to implement them becomes more
complex. Few classes map as directly onto system resources as does v ve ec ct to or r.

The idea of having a ‘‘safe state’’ is in principle a good one. If we can’t put an object into a
valid state without fear of throwing an exception before completing that operation, we do indeed
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have a problem. However, this ‘‘safe state’’ should be one that is a natural part of the semantics of
the class rather than an implementation artifact that complicates the class invariant.

E.3.5.3 Delaying resource acquisition

Like the second point (§E.3.5.2), the third (to delay acquisition until a resource is needed) misap-
plies a good idea in a way that imposes cost without yielding benefits. In many cases, notably in
containers such as v ve ec ct to or r, the best way of delaying resource acquisition is for the programmer to
delay the creation of objects until they are needed. Consider a naive use of v ve ec ct to or r:

v vo oi id d f f(i in nt t n n)
{

v ve ec ct to or r<X X> v v(n n) ; / / make n default objects of type X
/ / ...

v v[3 3] = X X(9 99 9) ; / / real ‘‘initialization’’ of v[3]
/ / ...

}

Constructing an X X only to assign a new value to it later is wasteful – especially if an X X assignment
is expensive. Therefore, two-phase construction of X X can seem attractive. For example, the type X X
may itself be a v ve ec ct to or r, so we might consider two-phase construction of v ve ec ct to or r to optimize creation
of empty v ve ec ct to or rs. However, creating default (empty) vectors is already efficient, so complicating
the implementation with a special case for the empty vector seems futile. More generally, the best
solution to spurious initialization is rarely to remove complicated initialization from the element
constructors. Instead, a user can create elements only when needed. For example:

v vo oi id d f f2 2(i in nt t n n)
{

v ve ec ct to or r<X X> v v; / / make empty vector
/ / ...

v v.p pu us sh h_ _b ba ac ck k(X X(9 99 9)) ; / / construct element when needed
/ / ...

}

To sum up: the two-phase construction approach leads to more complicated invariants and typically
to less elegant, more error-prone, and harder-to-maintain code. Consequently, the language-
supported ‘‘constructor approach’’ should be preferred to the ‘‘i in ni it t()-function approach’’ when-
ever feasible. That is, resources should be acquired in constructors whenever delayed resource
acquisition isn’t mandated by the inherent semantics of a class.

E.4 Standard Container Guarantees

If a library operation itself throws an exception, it can – and does – make sure that the objects on
which it operates are left in a well-defined state. For example, a at t() throwing o ou ut t_ _o of f_ _r ra an ng ge e for a
v ve ec ct to or r (§16.3.3) is not a problem with exception safety for the v ve ec ct to or r. The writer of a at t() has no
problem making sure that a v ve ec ct to or r is in a well-defined state before throwing. The problems – for
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library implementers, for library users, and for people trying to understand code – come when a
user-supplied function throws an exception.

The standard-library containers offer the basic guarantee (§E.2): The basic invariants of the
library are maintained, and no resources are leaked as long as user code behaves as required. That
is, user-supplied operations should not leave container elements in invalid states or throw excep-
tions from destructors. By ‘‘operations,’’ I mean operations used by the standard-library imple-
mentation, such as constructors, assignments, destructors, and operations on iterators (§E.4.4).

It is relatively easy for the programmer to ensure that such operations meet the library’s expec-
tations. In fact, much naively written code conforms to the library’s requirements. The following
types clearly meet the standard library’s requirements for container element types:

[1] built-in types – including pointers,
[2] types without user-defined operations,
[3] classes with operations that neither throw exceptions nor leave operands in invalid states,
[4] classes with destructors that don’t throw exceptions and for which it is simple to verify that

operations used by the standard library (such as constructors, assignments, <, ==, and
s sw wa ap p()) don’t leave operands in invalid states.

In each case, we must also make sure that no resource is leaked. For example:

v vo oi id d f f(C Ci ir rc cl le e* p pc c, T Tr ri ia an ng gl le e* p pt t, v ve ec ct to or r<S Sh ha ap pe e*>& v v2 2)
{

v ve ec ct to or r<S Sh ha ap pe e*> v v(1 10 0) ; / / either create vector or throw bad_alloc
v v[3 3] = p pc c; / / no exception thrown
v v.i in ns se er rt t(v v.b be eg gi in n()+4 4,p pt t) ; / / either insert pt or no effect on v
v v2 2.e er ra as se e(v v2 2.b be eg gi in n()+3 3) ; / / either erase v2[3] or no effect on v2
v v2 2 = v v; / / copy v or no effect on v2
/ / ...

}

When f f() exits, v v will be properly destroyed, and v v2 2 will be in a valid state. This fragment does
not indicate who is responsible for deleting p pc c and p pt t. If f f() is responsible, it can either catch
exceptions and do the required deletion, or assign the pointers to local a au ut to o_ _p pt tr rs.

The more interesting question is: When do the library operations offer the strong guarantee that
an operation either succeeds or has no effect on its operands? For example:

v vo oi id d f f(v ve ec ct to or r<X X>& v vx x)
{

v vx x.i in ns se er rt t(v vx x.b be eg gi in n()+4 4,X X(7 7)) ; / / add element
}

In general, X X’s operations and v ve ec ct to or r<X X>’s allocator can throw an exception. What can we say
about the elements of v vx x when f f() exits because of an exception? The basic guarantee ensures that
no resources have been leaked and that v vx x has a set of valid elements. However, exactly what ele-
ments? Is v vx x unchanged? Could a default X X have been added? Could an element have been
removed because that was the only way for i in ns se er rt t() to recover while maintaining the basic guaran-
tee? Sometimes, it is not enough to know that a container is in a good state; we also want to know
exactly what state that is. After catching an exception, we typically want to know that the elements
are exactly those we intended, or we will have to start error recovery.
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E.4.1 Insertion and Removal of Elements

Inserting an element into a container and removing one are obvious examples of operations that
might leave a container in an unpredictable state if an exception is thrown. The reason is that inser-
tions and deletions invoke many operations that may throw exceptions:

[1] A new value is copied into a container.
[2] An element deleted from (erased from) a container must be destroyed.
[3] Sometimes, memory must be allocated to hold a new element.
[4] Sometimes, v ve ec ct to or r and d de eq qu ue e elements must be copied to new locations.
[5] Associative containers call comparison functions for elements.
[6] Many insertions and deletions involve iterator operations.

Each of these cases can cause an exception to be thrown.
If a destructor throws an exception, no guarantees are made (§E.2). Making guarantees in this

case would be prohibitively expensive. However, the library can and does protect itself – and its
users – from exceptions thrown by other user-supplied operations.

When manipulating a linked data structure, such as a l li is st t or a m ma ap p, elements can be added and
removed without affecting other elements in the container. This is not the case for a container
implemented using contiguous allocation of elements, such as a v ve ec ct to or r or a d de eq qu ue e. There, elements
sometimes need to be moved to new locations.

In addition to the basic guarantee, the standard library offers the strong guarantee for a few
operations that insert or remove elements. Because containers implemented as linked data struc-
tures behave differently from containers with contiguous allocation of elements, the standard pro-
vides slightly different guarantees for different kinds of containers:

[1] Guarantees for v ve ec ct to or r (§16.3) and d de eq qu ue e (§17.2.3):
– If an exception is thrown by a p pu us sh h_ _b ba ac ck k() or a p pu us sh h_ _f fr ro on nt t(), that function has no

effect.
– Unless thrown by the copy constructor or the assignment operator of the element type, if

an exception is thrown by an i in ns se er rt t(), that function has no effect.
– Unless thrown by the copy constructor or the assignment operator of the element type,

no e er ra as se e() throws an exception.
– No p po op p_ _b ba ac ck k() or p po op p_ _f fr ro on nt t() throws an exception.

[2] Guarantees for l li is st t (§17.2.2):
– If an exception is thrown by a p pu us sh h_ _b ba ac ck k() or a p pu us sh h_ _f fr ro on nt t(), that function has no

effect.
– If an exception is thrown by an i in ns se er rt t(), that function has no effect.
– No e er ra as se e(), p po op p_ _b ba ac ck k(), p po op p_ _f fr ro on nt t(), s sp pl li ic ce e(), or r re ev ve er rs se e() throws an exception.
– Unless thrown by a predicate or a comparison function, the l li is st t member functions

r re em mo ov ve e(), r re em mo ov ve e_ _i if f(), u un ni iq qu ue e(), s so or rt t(), and m me er rg ge e() do not throw exceptions.
[3] Guarantees for associative containers (§17.4):

– If an exception is thrown by an i in ns se er rt t() while inserting a single element, that function
has no effect.

– No e er ra as se e() throws an exception.
Note that where the strong guarantee is provided for an operation on a container, all iterators,
pointers to elements, and references to elements remain valid if an exception is thrown.
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These rules can be summarized in a table:
_ ______________________________________________________________________

Container-Operation Guarantees_ _______________________________________________________________________ ______________________________________________________________________
vector deque list map_ ______________________________________________________________________

c cl le ea ar r( () ) nothrow nothrow nothrow nothrow
(copy) (copy)

e er ra as se e( () ) nothrow nothrow nothrow nothrow
(copy) (copy)

1 1- -e el le em me en nt t i in ns se er rt t( () ) strong strong strong strong
(copy) (copy)

N N- -e el le em me en nt t i in ns se er rt t( () ) strong strong strong basic
(copy) (copy)

m me er rg ge e( () ) — — nothrow —
(comparison)

p pu us sh h_ _b ba ac ck k( () ) strong strong strong —

p pu us sh h_ _f fr ro on nt t( () ) — strong strong —

p po op p_ _b ba ac ck k( () ) nothrow nothrow nothrow —

p po op p_ _f fr ro on nt t( () ) — nothrow nothrow —

r re em mo ov ve e( () ) — — nothrow —
(comparison)

r re em mo ov ve e_ _i if f( () ) — — nothrow —
(predicate)

r re ev ve er rs se e( () ) — — nothrow —

s sp pl li ic ce e( () ) — — nothrow —

s sw wa ap p( () ) nothrow nothrow nothrow nothrow
(copy-of-comparison)

u un ni iq qu ue e( () ) — — nothrow —
(comparison)_ ______________________________________________________________________ 





















































































































In this table:
basic means that the operation provides only the basic guarantee (§E.2)
strong means that the operation provides the strong guarantee (§E.2)
nothrow means that the operation does not throw an exception (§E.2)
— means that the operation is not provided as a member of this container

Where a guarantee requires that some user-supplied operations not throw exceptions, those
operations are indicated in parentheses under the guarantee. These requirements are precisely
stated in the text preceding the table.
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The s sw wa ap p() functions differ from the other functions mentioned by not being members.
The guarantee for c cl le ea ar r() is derived from that offered by e er ra as se e() (§16.3.6). This table lists
guarantees offered in addition to the basic guarantee. Consequently this table does not list oper-
ations, such as r re ev ve er rs se e() and u un ni iq qu ue e() for v ve ec ct to or r, that are provided only as algorithms for all
sequences without additional guarantees.

The ‘‘almost container’’ b ba as si ic c_ _s st tr ri in ng g (§17.5, §20.3) offers the basic guarantee for all opera-
tions (§E.5.1). The standard also guarantees that b ba as si ic c_ _s st tr ri in ng g’s e er ra as se e() and s sw wa ap p() don’t
throw, and offers the strong guarantee for b ba as si ic c_ _s st tr ri in ng g’s i in ns se er rt t() and p pu us sh h_ _b ba ac ck k().

In addition to ensuring that a container is unchanged, an operation providing the strong
guarantee also leaves all iterators, pointers, and references valid. For example:

v vo oi id d u up pd da at te e(m ma ap p<s st tr ri in ng g,X X>& m m, m ma ap p<s st tr ri in ng g,X X>: :i it te er ra at to or r c cu ur rr re en nt t)
{

X X x x;
s st tr ri in ng g s s;
w wh hi il le e (c ci in n>>s s>>x x)
t tr ry y {

c cu ur rr re en nt t = m m.i in ns se er rt t(c cu ur rr re en nt t,m ma ak ke e_ _p pa ai ir r(s s,x x)) ;
}
c ca at tc ch h(...) {

/ / here current still denotes the current element
}

}

E.4.2 Guarantees and Tradeoffs

The patchwork of additional guarantees reflects implementation realities. Programmers prefer
the strong guarantee with as few conditions as possible, but they also tend to insist that each
individual standard-library operation be optimally efficient. Both concerns are reasonable, but
for many operations, it is not possible to satisfy both simultaneously. To give a better idea of
the tradeoffs involved, I’ll examine ways of adding of single and multiple elements to l li is st ts,
v ve ec ct to or rs, and m ma ap ps.

Consider adding a single element to a l li is st t or a v ve ec ct to or r. As ever, p pu us sh h_ _b ba ac ck k() provides the
simplest way of doing that:

v vo oi id d f f(l li is st t<X X>& l ls st t, v ve ec ct to or r<X X>& v ve ec c, c co on ns st t X X& x x)
{

t tr ry y {
l ls st t.p pu us sh h_ _b ba ac ck k(x x) ; / / add to list

}
c ca at tc ch h (...) {

/ / lst is unchanged
r re et tu ur rn n;

}
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t tr ry y {
v ve ec c.p pu us sh h_ _b ba ac ck k(x x) ; / / add to vector

}
c ca at tc ch h (...) {

/ / vec is unchanged
r re et tu ur rn n;

}

/ / lst and vec each have a new element with the value x
}

Providing the strong guarantee in these cases is simple and cheap. It is also very useful because
it provides a completely exception-safe way of adding elements. However, p pu us sh h_ _b ba ac ck k() isn’t
defined for associative containers – a m ma ap p has no b ba ac ck k(). After all, the last element of an
associative container is defined by the order relation rather than by position.

The guarantees for i in ns se er rt t() are a bit more complicated. The reason is that sometimes
i in ns se er rt t() has to place an element in ‘‘the middle’’ of a container. This is no problem for a
linked data structure, such as l li is st t or m ma ap p. However, if there is free reserved space in a v ve ec ct to or r,
the obvious implementation of v ve ec ct to or r<X X>: :i in ns se er rt t() copies the elements after the insertion
point to make room. This is optimally efficient, but there is no simple way of restoring a v ve ec ct to or r
if X X’s copy assignment or copy constructor throws an exception (see §E.8[10-11]). Conse-
quently, v ve ec ct to or r provides a guarantee that is conditional upon element copy operations not
throwing exceptions. However, l li is st t and m ma ap p don’t need such a condition; they can simply link
in new elements after doing any necessary copying.

As an example, assume that X X’s copy assignment and copy constructor throw
X X: :c ca an nn no ot t_ _c co op py y if they cannot successfully create a copy:

v vo oi id d f f(l li is st t<X X>& l ls st t, v ve ec ct to or r<X X>& v ve ec c, m ma ap p<s st tr ri in ng g,X X>& m m, c co on ns st t X X& x x, c co on ns st t s st tr ri in ng g& s s)
{

t tr ry y {
l ls st t.i in ns se er rt t(l ls st t.b be eg gi in n() ,x x) ; / / add to list

}
c ca at tc ch h (...) {

/ / lst is unchanged
r re et tu ur rn n;

}

t tr ry y {
v ve ec c.i in ns se er rt t(v ve ec c.b be eg gi in n() ,x x) ; / / add to vector

}
c ca at tc ch h (X X: :c ca an nn no ot t_ _c co op py y) {

/ / oops: vec may or may not have a new element
r re et tu ur rn n;

}
c ca at tc ch h (...) {

/ / vec is unchanged
r re et tu ur rn n;

}
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t tr ry y {
m m.i in ns se er rt t(m ma ak ke e_ _p pa ai ir r(s s,x x)) ; / / add to map

}
c ca at tc ch h (...) {

/ / m is unchanged
r re et tu ur rn n;

}

/ / lst and vec each have a new element with the value x
/ / m has an element with the value (s,x)

}

If X X: :c ca an nn no ot t_ _c co op py y is caught, a new element may or may not have been inserted into v ve ec c. If a
new element was inserted, it will be an object in a valid state, but it is unspecified exactly what
the value is. It is possible that after X X: :c ca an nn no ot t_ _c co op py y, some element will have been ‘‘mysteri-
ously’’ duplicated (see §E.8[11]). Alternatively, i in ns se er rt t() may be implemented so that it deletes
some ‘‘trailing’’ elements to be certain that no invalid elements are left in a container.

Unfortunately, providing the strong guarantee for v ve ec ct to or r’s i in ns se er rt t() without the caveat
about exceptions thrown by copy operations is not feasible. The cost of completely protecting
against an exception while moving elements in a v ve ec ct to or r would be significant compared to sim-
ply providing the basic guarantee in that case.

Element types with copy operations that can throw exceptions are not uncommon. Exam-
ples from the standard library itself are v ve ec ct to or r<s st tr ri in ng g>, v ve ec ct to or r< v ve ec ct to or r<d do ou ub bl le e> >, and
m ma ap p<s st tr ri in ng g,i in nt t>.

The l li is st t and v ve ec ct to or r containers provide the same guarantees for i in ns se er rt t() of single and multi-
ple elements. The reason is simply that for v ve ec ct to or r and l li is st t, the same implementation strategies
apply to both single-element and multiple-element i in ns se er rt t(). However, m ma ap p provides the
strong guarantee for single-element i in ns se er rt t(), but only the basic guarantee for multiple-element
i in ns se er rt t(). A single-element i in ns se er rt t() for m ma ap p that provides the strong guarantee is easily
implemented. However, the obvious strategy for implementing multiple-element i in ns se er rt t() for a
m ma ap p is to insert the new elements one after another, and it is not easy to provide the strong guar-
antee for that. The problem with this is that there is no simple way of backing out of previous
successful insertions if the insertion of an element fails.

If we want an insertion function that provides the strong guarantee that either every element
was successfully added or the operation had no effect, we can build it by constructing a new
container and then s sw wa ap p():

t te em mp pl la at te e<c cl la as ss s C C, c cl la as ss s I It te er r>
v vo oi id d s sa af fe e_ _i in ns se er rt t(C C& c c, t ty yp pe en na am me e C C: :c co on ns st t_ _i it te er ra at to or r i i, I It te er r b be eg gi in n, I It te er r e en nd d)
{

C C t tm mp p(c c.b be eg gi in n() ,i i) ; / / copy leading elements to temporary
c co op py y(b be eg gi in n,e en nd d,i in ns se er rt te er r(t tm mp p,t tm mp p.e en nd d())) ; / / copy new elements
c co op py y(i i,c c.e en nd d() ,i in ns se er rt te er r(t tm mp p,t tm mp p.e en nd d())) ; / / copy trailing elements
s sw wa ap p(c c,t tm mp p) ;

}

As ever, this code may misbehave if the element destructor throws an exception. However, if
an element copy operation throws an exception, the argument container is unchanged.
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E.4.3 Swap

Like copy constructors and assignments, s sw wa ap p() operations are essential to many standard
algorithms and are often supplied by users. For example, s so or rt t() and s st ta ab bl le e_ _s so or rt t() typically
reorder elements, using s sw wa ap p(). Thus, if a s sw wa ap p() function throws an exception while
exchanging values from a container, the container could be left with unchanged elements or a
duplicate element rather than a pair of swapped elements.

Consider the obvious definition of the standard-library s sw wa ap p() function (§18.6.8):

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s sw wa ap p(T T& a a, T T& b b)
{

T T t tm mp p = a a;
a a = b b;
b b = t tm mp p;

}

Clearly, s sw wa ap p() doesn’t throw an exception unless the element type’s copy constructor or copy
assignment does.

With one minor exception for associative containers, standard container s sw wa ap p() functions
are guaranteed not to throw exceptions. Basically, containers are swapped by exchanging the
data structures that act as handles for the elements (§13.5, §17.1.3). Since the elements them-
selves are not moved, element constructors and assignments are not invoked, so they don’t get
an opportunity to throw an exception. In addition, the standard guarantees that no standard-
library s sw wa ap p() function invalidates any references, pointers, or iterators referring to the ele-
ments of the containers being swapped. This leaves only one potential source of exceptions:
The comparison object in an associative container is copied as part of the handle. The only pos-
sible exception from a s sw wa ap p() of standard containers is the copy constructor and assignment of
the container’s comparison object (§17.1.4.1). Fortunately, comparison objects usually have
trivial copy operations that do not have opportunities to throw exceptions.

A user-supplied s sw wa ap p() should be written to provide the same guarantees. This is rela-
tively simple to do as long as one remembers to swap types represented as handles by swapping
their handles, rather than slowly and elaborately copying the information referred to by the han-
dles (§13.5, §16.3.9, §17.1.3).

E.4.4 Initialization and Iterators

Allocation of memory for elements and the initialization of such memory are fundamental parts
of every container implementation (§E.3). Consequently, the standard algorithms for construct-
ing objects in uninitialized memory – u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l_ _n n(), and
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() (§19.4.4) – are guaranteed to leave no constructed objects behind if they
throw an exception. They provide the strong guarantee (§E.2). This sometimes involves
destroying elements, so the requirement that destructors not throw exceptions is essential to
these algorithms; see §E.8[14]. In addition, the iterators supplied as arguments to these algo-
rithms are required to be well behaved. That is, they must be valid iterators, refer to valid
sequences, and iterator operations (such as ++ and != and *) on a valid iterator are not allowed
to throw exceptions.
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Iterators are examples of objects that are copied freely by standard algorithms and opera-
tions on standard containers. Thus, copy constructors and copy assignments of iterators should
not throw exceptions. In particular, the standard guarantees that no copy constructor or assign-
ment operator of an iterator returned from a standard container throws an exception. For exam-
ple, an iterator returned by v ve ec ct to or r<T T>: :b be eg gi in n() can be copied without fear of exceptions.

Note that ++ and -- on an iterator can throw exceptions. For example, an
i is st tr re ea am mb bu uf f_ _i it te er ra at to or r (§19.2.6) could reasonably throw an exception to indicate an input error,
and a range-checked iterator could throw an exception to indicate an attempt to move outside its
valid range (§19.3). However, they cannot throw exceptions when moving an iterator from one
element of a sequence to another, without violating the definition of ++ and -- on an iterator.
Thus, u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l_ _n n(), and u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() assume that ++
and -- on their iterator arguments will not throw; if they do throw, either those ‘‘iterators’’
weren’t iterators according to the standard, or the ‘‘sequence’’ specified by them wasn’t a
sequence. Again, the standard containers do not protect the user from the user’s own undefined
behavior (§E.2).

E.4.5 References to Elements

When a reference, a pointer, or an iterator to an element of a container is handed to some code,
that code can corrupt the container by corrupting the element. For example:

v vo oi id d f f(c co on ns st t X X& x x)
{

l li is st t<X X> l ls st t;
l ls st t.p pu us sh h_ _b ba ac ck k(x x) ;
l li is st t<X X>: :i it te er ra at to or r i i = l ls st t.b be eg gi in n() ;
*i i = x x; / / copy x into list
/ / ...

}

If x x is corrupted, l li is st t’s destructor may not be able to properly destroy l ls st t. For example:

s st tr ru uc ct t X X {
i in nt t* p p;

X X() { p p = n ne ew w i in nt t; }
˜X X() { d de el le et te e p p; }
/ / ...

};

v vo oi id d m ma al li ic ci io ou us s()
{

X X x x;
x x.p p = r re ei in nt te er rp pr re et t_ _c ca as st t<i in nt t*>(7 7) ; / / corrupt x
f f(x x) ; / / time bomb

}

When the execution reaches the end on f f(), the l li is st t<X X> destructor is called, and that will in
turn invoke X X’s destructor for the corrupted value. The effect of executing d de el le et te e p p when p p
isn’t 0 0 and doesn’t point to an X X is undefined and could be an immediate crash. Alternatively, it

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



962 Standard-Library Exception Safety Appendix E

might leave the free store corrupted in a way that causes difficult-to-track problems much later
on in an apparently unrelated part of a program.

This possibility of corruption should not stop people from manipulating container elements
through references and iterators; it is often the simplest and most efficient way of doing things.
However, it is wise to take extra care with such references into containers. When the integrity
of a container is crucial, it might be worthwhile to offer safer alternatives to less experienced
users. For example, we might provide an operation that checks the validity of a new element
before copying it into an important container. Naturally, such checking can only be done with
knowledge of the application types.

In general, if an element of a container is corrupted, subsequent operations on the container
can fail in nasty ways. This is not particular to containers. Any object left in a bad state can
cause subsequent failure.

E.4.6 Predicates

Many standard algorithms and many operations on standard containers rely on predicates that
can be supplied by users. In particular, all associative containers depend on predicates for both
lookup and insertion.

A predicate used by a standard container operation may throw an exception. In that case,
every standard-library operation provides the basic guarantee, and some operations, such as
i in ns se er rt t() of a single element, provide the strong guarantee (§E.4.1). If a predicate throws an
exception from an operation on a container, the resulting set of elements in the container may
not be exactly what the user wanted, but it will be a set of valid elements. For example, if ==
throws an exception when invoked from l li is st t: :u un ni iq qu ue e() (§17.2.2.3), the user cannot assume
that no duplicates are in the list. All the user can safely assume is that every element on the list
is valid (see §E.5.3).

Fortunately, predicates rarely do anything that might throw an exception. However, user-
defined <, ==, and != predicates must be taken into account when considering exception safety.

The comparison object of an associative container is copied as part of a s sw wa ap p() (§E.4.3).
Consequently, it is a good idea to ensure that the copy operations of predicates that might be
used as comparison objects do not throw exceptions.

E.5 The Rest of the Standard Library

The crucial issue in exception safety is to maintain the consistency of objects; that is, we must
maintain the basic invariants for individual objects and the consistency of collections of objects.
In the context of the standard library, the objects for which it is the most difficult to provide
exception safety are the containers. From the point of view of exception safety, the rest of the
standard library is less interesting. However, note that from the perspective of exception safety,
a built-in array is a container that might be corrupted by an unsafe operation.

In general, standard-library functions throw only the exceptions that they are specified to
throw, plus any thrown by user-supplied operations that they may call. In addition, any func-
tion that (directly or indirectly) allocates memory can throw an exception to indicate memory
exhaustion (typically, s st td d: :b ba ad d_ _a al ll lo oc c).
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E.5.1 Strings

The operations on s st tr ri in ng gs can throw a variety of exceptions. However, b ba as si ic c_ _s st tr ri in ng g manipu-
lates its characters through the functions provided by c ch ha ar r_ _t tr ra ai it ts s (§20.2), and these functions
are not allowed to throw exceptions. That is, the c ch ha ar r_ _t tr ra ai it ts s supplied by the standard library
do not throw exceptions, and no guarantees are made if an operation of a user-defined
c ch ha ar r_ _t tr ra ai it ts s throws an exception. In particular, note that a type used as the element (character)
type for a b ba as si ic c_ _s st tr ri in ng g is not allowed to have a user-defined copy constructor or a user-defined
copy assignment. This removes a significant potential source of exception throws.

A b ba as si ic c_ _s st tr ri in ng g is very much like a standard container (§17.5, §20.3). In fact, its elements
constitute a sequence that can be accessed using b ba as si ic c_ _s st tr ri in ng g<C Ch h,T Tr r,A A>: :i it te er ra at to or rs and
b ba as si ic c_ _s st tr ri in ng g<C Ch h,T Tr r,A A>: :c co on ns st t_ _i it te er ra at to or rs. Consequently, a string implementation offers the
basic guarantee (§E.2), and the guarantees for e er ra as se e(), i in ns se er rt t(), p pu us sh h_ _b ba ac ck k() and s sw wa ap p()
(§E.4.1) apply to b ba as si ic c_ _s st tr ri in ng gs. For example, b ba as si ic c_ _s st tr ri in ng g<C Ch h,T Tr r,A A>: :p pu us sh h_ _b ba ac ck k()
offers the strong guarantee.

E.5.2 Streams

If required to do so, iostream functions throw exceptions to signal state changes (§21.3.6). The
semantics of this are well defined and pose no exception-safety problems. If a user-defined
o op pe er ra at to or r<<() or o op pe er ra at to or r>>() throws an exception, it may appear to the user as if the ios-
tream library threw an exception. However, such an exception will not affect the stream state
(§21.3.3). Further operations on the stream may not find the expected data – because the previ-
ous operation threw an exception instead of completing normally – but the stream itself is
uncorrupted. As ever after an I/O problem, a c cl le ea ar r() may be needed before doing further
reads/writes (§21.3.3, §21.3.5).

Like b ba as si ic c_ _s st tr ri in ng g, the iostreams rely on c ch ha ar r_ _t tr ra ai it ts s to manipulate characters (§20.2.1,
§E.5.1). Thus, an implementation can assume that operations on characters do not throw excep-
tions, and no guarantees are made if the user violates that assumption.

To allow for crucial optimizations, l lo oc ca al le es (§D.2) and f fa ac ce et ts (§D.3) are assumed not to
throw exceptions. If they do, a stream using them could be corrupted. However, the most
likely exception, a s st td d: :b ba ad d_ _c ca as st t from a u us se e_ _f fa ac ce et t (§D.3.1), can occur only in user-supplied
code outside the standard stream implementation. At worst, this will produce incomplete output
or cause a read to fail rather than corrupt the o os st tr re ea am m (or i is st tr re ea am m) itself.

E.5.3 Algorithms

Aside from u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(), u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), and u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l_ _n n() (§E.4.4),
the standard offers only the basic guarantee (§E.2) for algorithms. That is, provided that user-
supplied objects are well behaved, the algorithms will maintain all standard-library invariants
and leak no resources. To avoid undefined behavior, user-supplied operations should always
leave their operands in valid states, and destructors should not throw exceptions.

The algorithms themselves do not throw exceptions. Instead, they report errors and failures
through their return values. For example, search algorithms generally return the end of a
sequence to indicate ‘‘not found’’ (§18.2). Thus, exceptions thrown from a standard algorithm
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must originate from a user-supplied operation. That is, the exception must come from an opera-
tion on an element – such as a predicate (§18.4), an assignment, or a s sw wa ap p() – or from an allo-
cator (§19.4).

If such an operation throws an exception, the algorithm terminates immediately, and it is up
to the functions that invoked the algorithm to handle the exception. For some algorithms, it is
possible for an exception to occur at a point where the container is not in a state that the user
would consider good. For example, some sorting algorithms temporarily copy elements into a
buffer and later put them back into the container. Such a s so or rt t() might copy elements out of the
container (planning to write them back in proper order later), overwrite them, and then throw an
exception. From a user’s point of view, the container was corrupted. However, all elements are
in a valid state, so recovery should be reasonably straightforward.

Note that the standard algorithms access sequences through iterators. That is, the standard
algorithms never operate on containers directly, only on elements in a container. The fact that a
standard algorithm never directly adds or removes elements from a container simplifies the
analysis of the impact of exceptions. Similarly, if a data structure is accessed only through iter-
ators, pointers, and references to c co on ns st t (for example, through a c co on ns st t R Re ec c*), it is usually trivial
to verify that an exception has no undesired effects.

E.5.4 Valarray and Complex

The numeric functions do not explicitly throw exceptions (Chapter 22). However, v va al la ar rr ra ay y
needs to allocate memory and thus might throw s st td d: :b ba ad d_ _a al ll lo oc c. Furthermore, v va al la ar rr ra ay y or
c co om mp pl le ex x may be given an element type (scalar type) that throws exceptions. As ever, the stan-
dard library provides the basic guarantee (§E.2), but no specific guarantees are made about the
effects of a computation terminated by an exception.

Like b ba as si ic c_ _s st tr ri in ng g (§E.5.1), v va al la ar rr ra ay y and c co om mp pl le ex x are allowed to assume that their template
argument type does not have user-defined copy operations so that they can be bitwise copied.
Typically, these standard-library numeric types are optimized for speed, assuming that their ele-
ment type (scalar type) does not throw exceptions.

E.5.5 The C Standard Library

A standard-library operation without an exception specification may throw exceptions in an
implementation-defined manner. However, functions from the standard C library do not throw
exceptions unless they take a function argument that does. After all, these functions are shared
with C, and C doesn’t have exceptions. An implementation may declare a standard C function
with an empty exception-specification, t th hr ro ow w(), to help the compiler generate better code.

Functions such as q qs so or rt t() and b bs se ea ar rc ch h() (§18.11) take a pointer to function as argument.
They can therefore throw an exception if their arguments can. The basic guarantee (§E.2) cov-
ers these functions.
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E.6 Implications for Library Users

One way to look at exception safety in the context of the standard library is that we have no
problems unless we create them for ourselves: The library will function correctly as long as
user-supplied operations meet the standard library’s basic requirements (§E.2). In particular, no
exception thrown by a standard container operation will cause memory leaks from containers or
leave a container in an invalid state. Thus, the problem for the library user becomes: How can I
define my types so that they don’t cause undefined behavior or leak resources?

The basic rules are:
[1] When updating an object, don’t destroy its old representation before a new representa-

tion is completely constructed and can replace the old one without risk of exceptions.
For example, see the implementations of v ve ec ct to or r: :o op pe er ra at to or r=(), s sa af fe e_ _a as ss si ig gn n(), and
v ve ec ct to or r: :p pu us sh h_ _b ba ac ck k() in §E.3.

[2] Before throwing an exception, release every resource acquired that is not owned by
some (other) object.
[2a] The ‘‘resource acquisition is initialization’’ technique (§14.4) and the language rule

that partially constructed objects are destroyed to the extent that they were con-
structed (§14.4.1) can be most helpful here. For example, see l le ea ak k() in §E.2.

[2b] The u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() algorithm and its cousins provide automatic release of
resources in case of failure to complete construction of a set of objects (§E.4.4).

[3] Before throwing an exception, make sure that every operand is in a valid state. That is,
leave each object in a state that allows it to be accessed and destroyed without causing
undefined behavior or an exception to be thrown from a destructor. For example, see
v ve ec ct to or r’s assignment in §E.3.2.
[3a] Note that constructors are special in that when an exception is thrown from a con-

structor, no object is left behind to be destroyed later. This implies that we don’t
have to establish an invariant and that we must be sure to release all resources
acquired during a failed construction before throwing an exception.

[3b] Note that destructors are special in that an exception thrown from a destructor
almost certainly leads to violation of invariants and/or calls to t te er rm mi in na at te e().

In practice, it can be surprisingly difficult to follow these rules. The primary reason is that
exceptions can be thrown from places where people don’t expect them. A good example is
s st td d: :b ba ad d_ _a al ll lo oc c. Every function that directly or indirectly uses n ne ew w or an a al ll lo oc ca at to or r to acquire
memory can throw b ba ad d_ _a al ll lo oc c. In some programs, we can solve this particular problem by not
running out of memory. However, for programs that are meant to run for a long time or to
accept arbitrary amounts of input, we must expect to handle various failures to acquire
resources. Thus, we must assume every function capable of throwing an exception until we
have proved otherwise.

One simple way to try to avoid surprises is to use containers of elements that do not throw
exceptions (such as containers of pointers and containers of simple concrete types) or linked
containers (such as l li is st t) that provide the strong guarantee (§E.4). Another, complementary,
approach is to rely primarily on operations, such as p pu us sh h_ _b ba ac ck k(), that offer the strong guaran-
tee that an operation either succeeds or has no effect (§E.2). However, these approaches are by
themselves insufficient to avoid resource leaks and can lead to an ad hoc, overly restrictive, and

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



966 Standard-Library Exception Safety Appendix E

pessimistic approach to error handling and recovery. For example, a v ve ec ct to or r<T T*> is trivially
exception safe if operations on T T don’t throw exceptions. However, unless the objects pointed
to are deleted somewhere, an exception from the v ve ec ct to or r will lead to a resource leak. Thus,
introducing a H Ha an nd dl le e class to deal with deallocation (§25.7) and using v ve ec ct to or r<Handle<T> >
rather than the plain v ve ec ct to or r<T T*> will probably improve the resilience of the code.

When writing new code, it is possible to take a more systematic approach and make sure
that every resource is represented by a class with an invariant that provides the basic guarantee
(§E.2). Given that, it becomes feasible to identify the critical objects in an application and pro-
vide roll-back semantics (that is, the strong guarantee – possibly under some specific condi-
tions) for operations on such objects.

Most applications contain data structures and code that are not written with exception safety
in mind. Where necessary, such code can be fitted into an exception-safe framework by either
verifying that it doesn’t throw exceptions (as was the case for the C standard library; §E.5.5) or
through the use of interface classes for which the exception behavior and resource management
can be precisely specified.

When designing types intended for use in an exception-safe environment, we must pay spe-
cial attention to the operations used by the standard library: constructors, destructors, assign-
ments, comparisons, swap functions, functions used as predicates, and operations on iterators.
This is best done by defining a class invariant that can be simply established by all constructors.
Sometimes, we must design our class invariants so that we can put an object into a state where
it can be destroyed even when an operation suffers a failure at an ‘‘inconvenient’’ point. Ide-
ally, that state isn’t an artifact defined simply to aid exception handling, but a state that follows
naturally from the semantics of the type (§E.3.5).

When considering exception safety, the emphasis should be on defining valid states for
objects (invariants) and on proper release of resources. It is therefore important to represent
resources directly as classes. The v ve ec ct to or r_ _b ba as se e (§E.3.2) is a simple example of this. The con-
structors for such resource classes acquire lower-level resources (such as the raw memory for
v ve ec ct to or r_ _b ba as se e) and establish invariants (such as the proper initialization of the pointers of a
v ve ec ct to or r_ _b ba as se e). The destructors of such classes implicitly free lower-level resources. The rules
for partial construction (§14.4.1) and the ‘‘resource acquisition is initialization’’ technique
(§14.4) support this way of handling resources.

A well-written constructor establishes the class invariant for an object (§24.3.7.1). That is,
the constructor gives the object a value that allows subsequent operations to be written simply
and to complete successfully. This implies that a constructor often needs to acquire resources.
If that cannot be done, the constructor can throw an exception so that we can deal with that
problem before an object is created. This approach is directly supported by the language and
the standard library (§E.3.5).

The requirement to release resources and to place operands in valid states before throwing
an exception means that the burden of exception handling is shared among the function throw-
ing, the functions on the call chain to the handler, and the handler. Throwing an exception does
not make handling an error ‘‘somebody else’s problem.’’ It is the obligation of functions
throwing or passing along an exception to release resources that they own and to put operands
in consistent states. Unless they do that, an exception handler can do little more than try to ter-
minate gracefully.
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E.7 Advice

[1] Be clear about what degree of exception safety you want; §E.2.
[2] Exception safety should be part of an overall strategy for fault tolerance; §E.2.
[3] Provide the basic guarantee for all classes. That is, maintain an invariant, and don’t leak

resources; §E.2, §E.3.2, §E.4.
[4] Where possible and affordable, provide the strong guarantee that an operation either suc-

ceeds or leaves all operands unchanged; §E.2, §E.3.
[5] Don’t throw an exception from a destructor; §E.2, §E.3.2, §E.4.
[6] Don’t throw an exception from an iterator navigating a valid sequence; §E.4.1, §E.4.4.
[7] Exception safety involves careful examination of individual operations; §E.3.
[8] Design templates to be transparent to exceptions; §E.3.1.
[9] Prefer the constructor approach to resource requisition to using i in ni it t() functions; §E.3.5.
[10] Define an invariant for a class to make it clear what is a valid state; §E.2, §E.6.
[11] Make sure that an object can always be put into a valid state without fear of an exception

being thrown; §E.3.2, §E.6.
[12] Keep invariants simple; §E.3.5.
[13] Leave all operands in valid states before throwing an exception; §E.2, §E.6.
[14] Avoid resource leaks; §E.2, §E.3.1, §E.6.
[15] Represent resources directly; §E.3.2, §E.6.
[16] Remember that s sw wa ap p() can sometimes be an alternative to copying elements; §E.3.3.
[17] Where possible, rely on ordering of operations rather than on explicit use of try-blocks;

§E.3.4.
[18] Don’t destroy ‘‘old’’ information until its replacement has been safely produced; §E.3.3,

§E.6.
[19] Rely on the ‘‘resource acquisition is initialization’’ technique; §E.3, §E.3.2, §E.6.
[20] Make sure that comparison operations for associative containers can be copied; §E.3.3.
[21] Identify critical data structures and provide them with operations that provide the strong

guarantee; §E.6

E.8 Exercises

1. (∗1) List all exceptions that could possibly be thrown from f f() in §E.1.
2. (∗1) Answer the questions after the example in §E.1.
3. (∗1) Define a class T Te es st te er r that occasionally throws exceptions from basic operations, such

as copy constructors. Use T Te es st te er r to test your standard-library containers.
4. (∗1) Find the error in the ‘‘messy’’ version of v ve ec ct to or r’s constructor (§E.3.1), and write a

program to get it to crash. Hint: First implement v ve ec ct to or r’s destructor.
5. (∗2) Implement a simple list providing the basic guarantee. Be very specific about what

the list requires of its users to provide the guarantee.
6. (∗3) Implement a simple list providing the strong guarantee. Carefully test this list. Give

an argument why people should believe it to be safe.
7. (∗2.5) Reimplement S St tr ri in ng g from §11.12 to be as safe as a standard container.
8. (∗2) Compare the run time of the various versions of v ve ec ct to or r’s assignment and
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s sa af fe e_ _a as ss si ig gn n() (§E.3.3).
9. (∗1.5) Copy an allocator without using an assignment operator (as needed to improve

o op pe er ra at to or r=() in §E.3.3).
10. (∗2) Add single-element and multiple-element e er ra as se e() and i in ns se er rt t() that provide the

basic guarantee to v ve ec ct to or r (§E.3.2).
11. (∗2) Add single-element and multiple-element e er ra as se e() and i in ns se er rt t() that provide the

strong guarantee to v ve ec ct to or r (§E.3.2). Compare the cost and complexity of these solutions to
the solutions to exercise 10.

12. (∗2) Write a s sa af fe e_ _i in ns se er rt t() (§E.4.2) that inserts elements into the existing v ve ec ct to or r (rather
than copying to a temporary). What constraints do you have to impose on operations?

13. (∗2) Write a s sa af fe e_ _i in ns se er rt t() (§E.4.2) that inserts elements into the existing m ma ap p (rather than
copying to a temporary). What constraints do you have to impose on operations?

14. (∗2.5) Compare the size, complexity, and performance of the s sa af fe e_ _i in ns se er rt t() functions
from exercises 12 and 13 to the s sa af fe e_ _i in ns se er rt t() from §E.4.2.

15. (∗2.5) Write a better (simpler and faster) s sa af fe e_ _i in ns se er rt t() for associative containers only.
Use traits to write a s sa af fe e_ _i in ns se er rt t() that automatically selects the optimal s sa af fe e_ _i in ns se er rt t() for
a container. Hint: §19.2.3.

16. (∗2.5) Try to rewrite u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() (§19.4.4, §E.3.1) to handle destructors that
throw exceptions. Is that possible? If so, at what cost? If not, why not?

17. (∗2.5) Try to rewrite u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() (§19.4.4, §E.3.1) to handle iterators that throw
exceptions for ++ and --. Is that possible? If so, at what cost? If not, why not?

18. (∗3) Take a container from a library different from the standard library. Examine its docu-
mentation to see what exception-safety guarantees it provides. Do some tests to see how
resilient it is against exceptions thrown by memory allocation and user-supplied code.
Compare it to a corresponding standard-library container.

19. (∗3) Try to optimize the v ve ec ct to or r from §E.3 by disregarding the possibility of exceptions.
For example, remove all try-blocks. Compare the performance against the version from
§E.3 and against a standard-library v ve ec ct to or r implementation. Also, compare the size and the
complexity of the source code of these different v ve ec ct to or rs.

20. (∗1) Define invariants for v ve ec ct to or r (§E.3) with and without the possibility of v v==0 0 (§E.3.5) .
21. (∗2.5) Read the source of an implementation of v ve ec ct to or r. What guarantees are implemented

for assignment, multi-element i in ns se er rt t(), and r re es si iz ze e()?
22. (∗3) Write a version of h ha as sh h_ _m ma ap p (§17.6) that is as safe as a standard container.
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