
X
Exercises

You cannot learn bicycling
from a correspondence course.

– anon

Exercises for Bjarne Stroustrup: The C++ Programming Language (4th Edition). Addison-Wesley
ISBN 978-0321563842.

Corrections, suggested improvements, and more exercises are welcome.
This version of the exercises is dated May 12, 2013.

X.1 Introduction
You can argue that programming is an art, a craft, a science, or even a branch of mathematics. In
any case, it inovolves some practical skills that cannot be learned simply by reading a book. The
skills have to be learned by trying to apply the principles and techniques learned from books, arti-
cles, lectures, etc.

This ‘‘appendix’’ contains exercises for the readers of TC++PL. They are sorted by chapter and
within a chapter roughly by difficulty. The exercises are mainly of the write-a-program variety.
Always write enough code for a solution to be compiled and run with at least a few test cases.

The exercises vary considerably in difficulty, so they are marked with an estimate of their diffi-
culty. The scale is exponential so that if a (∗1) exercise takes you ten minutes, a (∗2) might take an
hour, and a (∗3) might take a day. The time needed to write and test a program depends more on
your experience than on the exercise itself. A (∗1) exercise might take a day if you first have to get
acquainted with a new computer system in order to run it. On the other hand, a (∗5) exercise might
be done in an hour by someone who happens to have the right collection of programs handy. Many
of the exercises marked (∗1) and (∗2) can be thought of as similar to the drills that musicians, ath-
letes, and learners of a new natural language do to prevent unfamiliarity with simple subtasks from
impeding the performance of more challenging tasks. They are not intellectual challenges in their
own right.

2002 Exercises Appendix X

Any book on programming in C can be used as a source of extra exercises for Part II (The
basics; Chapters 6-15). Any book on data structures and algorithms can be used as a source of
exercises for Parts III (Abstraction Mechanisms; Chapters 16-29) and IV (The Standard Library;
Chapters 30-44).

I place this collection of exercises on the web because
• I do want to add another 80 pages to an already thick book.
• I want to add more exercises over the years.
• I hope readers will suggest improvements and new exercises so that eventually the set of

exercises will be massive – more extensive and useful than I could make it on my own.
I cannot promise the numbering of exercises to be stable as I add exercises. I plan for relative sta-
bility after an initial peiod of major changes, but for now expect details of numbering to change.

X.2 The Structure of This Book
The exercises for this chapter focus on the history and philosophy of C++. They mostly aim at an
undestanding of the rationale behind C++ facilities. Do not attempt these until you have a basic
understanding of C++.
[1] (∗1) What does (∗2.5) mean for an exercise?
[2] (∗2) Briefly describe the design aims of C++ and comment on the extent to which C++ meets

those.
[3] (∗4) Write an essay: What can a good programming language do for you and what can’t you

expect it to help with?
[4] (∗1) What are the main programming styles supported by C++?
[5] (∗2.5) List five language features offered by the 1985 version of C++, five features added by

C++98, and finally five new features added by C++11. In each case, order the features in
order of importance and for each feature write a sentence describing its role in programming.

[6] (∗3) Describe the difference between dynamic (run-time) and static (compile-time) type
checking and outline the strengths and weaknesses of each.

[7] (∗1.5) List the major components of the C++ standard library.
[8] (∗1.5) List five libraries that you would have liked to be part of the standard.
[9] (∗1) List three (or more) advantages from having a library as part of the standard.
[10] (∗3) List 20 major real-world C++ applications.
[11] (∗2) From §1.3 pick five suggestions that to you looks most likely to help improve your pro-

gramming style.
[12] (∗2) Make a ‘‘top-ten list’’ of helpful design and programming rules. Hint: §X.2.

X.3 A Tour of C++: The Basics
[1] When first reading this chapter, keep a record of information that was new or surprising to

you. Later, use that list to focus your further studies.
[2] (∗1) What does a compiler do? What does a linker do?
[3] (∗2) Get the ‘‘Hello, world!’’ program (§2.2.1) to run. This is not an exercise in program-

ming. It is an exercise to test your use of your edit-compile-link-execute tool chain.

Section X.3 A Tour of C++: The Basics 2003

[4] (∗1) List three (or more) C++ compilers.
[5] (∗1) Write out a bool, a char, an int, a double, and a string.
[6] (∗1) Read in a bool, a char, an int, a double, and a string.
[7] (∗2) What is an invariant and what good might it do?

X.4 A Tour of C++: Abstraction Mechanisms
[1] When first reading this chapter, keep a record of information that was new or surprising to

you. Later, use that list to focus your further studies.
[2] (∗2) Give five examples of concrete types that are built-in types in C++. Give five examples

of concrete types that are not built-in types in C++.

X.5 A Tour of C++: Containers and Algorithms
[1] When first reading this chapter, keep a record of information that was new or surprising to

you. Later, use that list to focus your further studies.
[2] (∗1) List five standard-library containers.
[3] (∗1) List five standard-library algorithms.
[4] (∗1) List five standard-library headers.
[5] (∗1.5) Write a program that reads a name (a string) and an age (an int) from the standard

input stream cin. Then output a message including the name and age to the standard output
stream cout.

[6] (∗1.5) Redo §X.5[5], storing several (name,age) pairs in a class. Doing the reading and writ-
ing using your own >> and << operators.

[7] (∗2) Initialize a vector<int> with the elements 5, 9, −1, 200, and 0. Print it. Sort is, and print it
again.

[8] (∗1) Repeat §X.5[7] with a vector<string> initialized with "Kant", "Plato", "Aristotle",
"Kierkegard", and "Hume".

[9] (∗1) Open a file for writing (as an ofstream) and write a few hundred integers to it.
[10] (∗1) Open the file of integers from §X.5[9] for reading (as an ifstream) and read it.

X.6 A Tour of C++: Concurrency and Utilities
[1] When first reading this chapter, keep a record of information that was new or surprising to

you. Later, use that list to focus your further studies.
[2] (∗1.5) Write a program with two treads: one that writes hello ev ery second and one that

writes world! ev ery second.
[3] (∗2) Time a loop. Write out the time in milliseconds. Do this for the default setting of your

compiler and for a setting using an optimizer (e.g., −O2 or "release"). Be careful not to have
the optimizer eliminate your whole loop as dead code because you did not use a result.

[4] (∗2) Repeat the histogram drawing example from §5.6.3 for a normal_distribution and 30

rows.

2004 Exercises Appendix X

[5] (∗1.5) Use a reg ex to find all decimal numbers in a file.

X.7 Types and Declarations
[1] (∗2) Get the ‘‘Hello, world!’’ program (§2.2.1) to run. This is not an exercise in program-

ming. It is an exercise to test your use of your edit-compile-link-execute tool chain.
[2] (∗1) Write a program that prints signed if plain chars are signed on your implementation and

unsigned otherwise.
[3] (∗1.5) Find 5 different C++ constructs for which the meaning is undefined (§6.1). (∗1.5)

Find 5 different C++ constructs for which the meaning is implementation-defined (§6.1).
[4] (∗1) Find 10 different examples of nonportable C++ code.
[5] (∗1) For each declaration in §6.3, do the following: If the declaration is not a definition, write

a definition for it. If the declaration is a definition, write a declaration for it that is not also a
definition.

[6] (∗1.5) Write a program that prints the sizes of the fundamental types, a few pointer types, and
a few enumerations of your choice. Use the siz eof operator.

[7] (∗1.5) Write a program that prints out the letters 'a'..'z' and the digits '0'..'9' and their integer
values. Do the same for other printable characters. Do the same again but use hexadecimal
notation.

[8] (∗2) What, on your system, are the largest and the smallest values of the following types:
bool, char, shor t, int, long, long long, float, double, long double, unsigned and unsigned long.

[9] (∗1) What are the sizes (in number of chars) of the types mentioned in §X.7[8]?
[10] (∗1.5) What are the alignments (in number of chars) of the types mentioned in §X.7[8]?
[11] (∗2) Draw a graph of the integer and fundamental types where a type points to another type if

all values of the first can be represented as values of the second on every standards-conform-
ing implementation. Draw the same graph for the types on your favorite implementation.

[12] (∗1) What is the longest local name you can use in a C++ program on your system? What is
the longest external name you can use in a C++ program on your system? Are there any
restrictions on the characters you can use in a name?

[13] (∗1.5) Write a loop that prints out the values 4, 5, 9, 17, 12 without using an array or a vector.

X.8 Pointers, Arrays, and References
[1] (∗1) Write declarations for the following: a pointer to a character, an array of 10 integers, a

reference to an array of 10 integers, a pointer to an array of character strings, a pointer to a
pointer to a character, a constant integer, a pointer to a constant integer, and a constant
pointer to an integer. Initialize each one.

[2] (∗1.5) What, on your system, are the restrictions on the pointer types char∗, int∗, and void∗?
For example, may an int∗ have an odd value? Hint: alignment.

[3] (∗1) Use an alias (using) to define the types unsigned char, const unsigned char, pointer to
integer, pointer to pointer to char, pointer to array of char, array of 7 pointers to int, pointer to
an array of 7 pointers to int, and array of 8 arrays of 7 pointers to int.

Section X.8 Pointers, Arrays, and References 2005

[4] (∗1) Given two char∗s pointing into an array, find and output the number of characters
between the two pointed-to characters (zero if they point to the same element).

[5] (∗1) Given two int∗s pointing into an array, find and output the number of ints between the
two pointed-to ints (zero if they point to the same element).

[6] (∗2) What happens when you read and write beyond the bounds of an array. Do a few exper-
iments involving a global array of ints , a local array of ints, an array of ints allocated by new,
and a member array of ints. Try reading and writing just beyond the end and far beyond the
end. Try the same for just before and far before the beginning. See what happens for differ-
ent optimizer levels. Then try hard never to do out-of-range access by mistake.

[7] (∗1) Write a function that swaps (exchanges the values of) two integers. Use int∗ as the argu-
ment type. Write another swap function using int& as the argument type.

[8] (∗1.5) What is the size of the array str in the following example:

char str[] = "a short string";

What is the length of the string "a short string"?
[9] (∗1) Define functions f(char), g(char&), and h(const char&). Call them with the arguments 'a',

49, 3300, c, uc, and sc, where c is a char, uc is an unsigned char, and sc is a signed char.
Which calls are legal? Which calls cause the compiler to introduce a temporary variable?

[10] (∗1) Define an array of strings in which the strings contain the names of the months. Print
those strings. Pass the array to a function that prints those strings.

[11] (∗2) Read a sequence of words from input. Use Quit as a word that terminates the input.
Print the words in the order they were entered. Don’t print a word twice. Modify the pro-
gram to sort the words before printing them.

[12] (∗2) Write a function that counts the number of occurrences of a pair of letters in a string and
another that does the same in a zero-terminated array of char (a C-style string). For example,
the pair "ab" appears twice in "xabaacbaxabb".

[13] (∗2) Run some tests to see if your compiler really generates equivalent code for iteration
using pointers and iteration using indexing (§7.4.1). If different degrees of optimization can
be requested, see if and how that affects the quality of the generated code.

X.9 Structures, Unions, and Enumerations
[1] (∗1) Define a struct with a member of each of the types bool, char, int, long, double, and long

double. Order the members so as to get the largest size of the struct and the smallest size of
the struct.

[2] (∗1.5) Define a table of the names of months of the year and the number of days in each
month. Write out that table. Do this twice; once using an array of char for the names and an
array for the number of days and once using an array of structures, with each structure hold-
ing the name of a month and the number of days in it.

[3] (∗1.5) Find an example where it would make sense to use a name in its own initializer.
[4] (∗1.5) Define a struct Date to keep track of dates. Provide functions that read Dates from

input, write Dates to output, and initialize a Date with a date.

2006 Exercises Appendix X

[5] (∗2) Implement an enum called Season with enumerators spring, summer, autumn, and winter.
Define operators ++ and −− for Season. Define input (>>) and output (<<) operations for Sea-

son, providing string values. Provide a way to control the mapping between Season values
and their string representations. For example, I might want the strings to reflect the Danish
names for the seasons. For further study, see Chapter 39.

X.10 Statements
[1] (∗1) Rewrite the following for-statement as an equivalent while-statement:

for (i=0; i!=max_length; i++)
if (input_line[i] == '?')
quest_count++;

Rewrite it to use a pointer as the controlled variable, that is, so that the test is of the form
∗p=='?'. Rewrite it to use a range-for.

[2] (∗1) See how your compiler reacts to these errors:

void f(int a, int b)
{

if (a = 3) // ...
if (a&077 == 0) // ...
a := b+1;

}

Devise more simple errors and see how the compiler reacts.
[3] (∗1.5) What does the following example do?

void send(int∗ to, int∗ from, int count)
// Duff ’s device. Helpful comment deliberately deleted.

{
int n = (count+7)/8;
switch (count%8) {
case 0: do { ∗to++ = ∗from++;
case 7: ∗to++ = ∗from++;
case 6: ∗to++ = ∗from++;
case 5: ∗to++ = ∗from++;
case 4: ∗to++ = ∗from++;
case 3: ∗to++ = ∗from++;
case 2: ∗to++ = ∗from++;
case 1: ∗to++ = ∗from++;

} while (−−n>0);
}

}

Why would anyone write something like that? No, this is not recommended as good style.
[4] (∗2) Write a function atoi(const char∗) that takes a C-style string containing digits and returns

the corresponding int. For example, atoi("123") is 123. Modify atoi() to handle C++ octal and
hexadecimal notation in addition to plain decimal numbers. Modify atoi() to handle the C++
character constant notation.

Section X.10 Statements 2007

[5] (∗2) Write a function itoa(int i, char b[]) that creates a string representation of i in b and
returns b.

[6] Modify iota() from the previous exercise to take an extra ‘‘string length’’ argument to make
overflow less likely.

[7] (∗2.5) Write a program that strips comments out of a C++ program. That is, read from cin,
remove both // comments and /∗ ∗/ comments, and write the result to cout. Do not worry
about making the layout of the output look nice (that would be another, and much harder,
exercise). Do not worry about incorrect programs. Beware of //, /∗, and ∗/ in comments,
strings, and character constants.

[8] (∗2) Look at some programs to get an idea of the variety of indentation, naming, and com-
menting styles actually used.

X.11 Expressions
[1] (∗1) Fully parenthesize the following expressions:

a = b + c ∗ d << 2 & 8
a & 077 != 3
a == b || a == c && c < 5
c = x != 0
0 <= i < 7
f(1,2)+3
a = − 1 + + b −− − 5
a = b == c ++
a = b = c = 0
a[4][2] ∗= ∗ b ? c : ∗ d ∗ 2
a−b,c=d

[2] (∗2) Read a sequence of possibly whitespace-separated (name,value) pairs, where the name
is a single whitespace-separated word and the value is an integer or a floating-point value.
Compute and print the sum and mean for each name and the sum and mean for all names.
Hint: §10.2.8.

[3] (∗1) Write a table of values for the bitwise logical operations (§11.1.1) for all possible com-
binations of 0 and 1 operands.

[4] (∗2) Write 5 expressions for which the order of evaluation is undefined. Execute them to see
what one or – preferably – more implementations do with them.

[5] (∗1.5) What happens if you divide by zero on your system? What happens in case of over-
flow and underflow?

[6] (∗1) Fully parenthesize the following expressions:

∗p++
∗−−p
++a−−
(int∗)p−>m
∗p.m
∗a[i]

2008 Exercises Appendix X

[7] (∗2) Implement and test these functions: strlen(), which returns the length of a C-style string;
strcpy(), which copies a C-style string into another; and strcmp(), which compares two C-style
strings. Consider what the argument types and return types ought to be. Then compare your
functions with the standard library versions as declared in <cstring> (<string.h>) and as speci-
fied in §43.4.

[8] (∗2) Modify the program from §X.11[3] to also compute the median.
[9] (∗2) Write a function cat() that takes two C-style string arguments and returns a string that is

the concatenation of the arguments. Use new to find store for the result.
[10] (∗2) Write a function rev() that takes a C-style string argument and reverses the characters in

it. That is, after rev(p) the last character of p will be the first, etc.
[11] (∗2) Type in the calculator example and get it to work. Do not ‘‘save time’’ by using an

already entered text. You’ll learn most from finding and correcting ‘‘little silly errors.’’
[12] (∗2) Modify the calculator to report line numbers for errors.
[13] (∗3) Allow a user to define functions in the calculator. Hint: Define a function as a sequence

of operations just as a user would have typed them. Such a sequence can be stored either as a
character string or as a list of tokens. Then read and execute those operations when the func-
tion is called. If you want a user-defined function to take arguments, you will have to inv ent
a notation for that.

[14] (∗1.5) Convert the desk calculator to use a symbol structure instead of using the static vari-
ables number_value and string_value.

[1] (∗1) Copy all even non-zero elements of an int[] into a vector<int>. Use a pointer and ++ for
the traversal.

X.12 Select Operations
[2] (∗2) Allocate so much memory using new that bad_alloc is thrown. Report how much mem-

ory was allocated and how much time it took. Do this twice: once not writing to the allo-
cated memory and once writing to each element.

[3] Write a simple loop calculating a sum of elements (like std::accumulate()). Write it in a
dozen or more ways using for-statements, range-for statements, the for_each() algorithm,
using indices, pointers, and iterators, using ‘‘plain code’’, function objects, and lambdas, and
using different element types. See if you can find any performance differences between the
different versions.

[4] (∗2.5) Define an apply(v,f) that applies a function f to each element of v assumed to be a
vector<Shape∗>. Test apply() with a a variety of functions, function objects, and lambdas.
Note that by capturing variables from a lambda or storing values in a function object, you can
call Shape functions that takes arguments without having to have f() take explicit arguments.
Hint: there is a variety of ways of specifying apply()’s argument types; experiment.

[5] (∗4) Find a program of a few thousand lines of code, preferably a program used for a real-
world task, rather than an exercise solution. Count the number of casts (of all kinds). If not
already done, classify all casts by turning them into named casts. Eliminate as many
static_casts, reinterpre_casts, and const_casts as possible. This will most likely involve
adding specific type conversion functions, templates, etc.

Section X.13 Functions 2009

X.13 Functions
[1] (∗1) Write declarations for the following: a function taking arguments of type pointer to char-

acter and reference to integer and returning no value; a pointer to such a function; a function
taking such a pointer as an argument; and a function returning such a pointer. Write the defi-
nition of a function that takes such a pointer as an argument and returns its argument as the
return value. Hint: Use a type alias (using).

[2] (∗1) What does the following mean? What would it be good for?

using riffi = int (&) (int, int);

[3] (∗1.5) Write a program like ‘‘Hello, world!’’ that takes a name as a command-line argument
and writes ‘‘Hello, name !’’. Modify this program to take any number of names as arguments
and to say hello to each.

[4] (∗1.5) Write a program that reads an arbitrary number (possibly limited to some maximum
number) of files whose names are given as command-line arguments and writes them one
after another on cout. Because this program concatenates its arguments to produce its output,
you might call it cat.

[5] (∗2) Convert a small C program to C++. Modify the header files to declare all functions
called and to declare the type of every argument. Where possible, replace #defines with
enum, const, constexpr, or inline. Remove extern declarations from .cpp files and if necessary
convert all function definitions to C++ function definition syntax. Replace calls of malloc()

and free() with new and delete. Remove unnecessary casts.
[6] (∗2) Modify the result of §X.13[5] by eliminating arrays and ‘‘naked’’ news and deletes.

Hint: vector and array.
[7] (∗2) Implement ssor t() (§12.5) using a more efficient sorting algorithm. Hint: sor t() and

qsor t().
[8] (∗2.5) Consider:

struct Tnode {
string word;
int count;
Tnode∗ left;
Tnode∗ right;

};

Write a function for entering new words into a tree of Tnodes. Write a function to write out
a tree of Tnodes. Write a function to write out a tree of Tnodes with the words in alphabeti-
cal order. Modify Tnode so that it stores (only) a pointer to an arbitrarily long word stored
as an array of characters on free store using new. Modify the functions to use the new defi-
nition of Tnode.

[9] (∗2.5) Write a function to invert a two-dimensional array. Hint: §7.4.2.
[10] (∗2) Write an encryption program that reads from cin and writes the encoded characters to

cout. You might use this simple encryption scheme: the encrypted form of a character c is
cˆkey[i], where key is a string passed as a command-line argument. The program uses the
characters in key in a cyclic manner until all the input has been read. Re-encrypting encoded
text with the same key produces the original text. If no key (or a null string) is passed, then

2010 Exercises Appendix X

no encryption is done.
[11] (∗3.5) Write a program to help decipher messages encrypted with the method described in

§X.13[9] without knowing the key. Hint: See David Kahn: The Codebreakers, Macmillan,
1967, New York, pp. 207-213.

[12] (∗2) Without using copy and paste, implement and test TEA (the Tiny Encryption Algo-
rithm). D.J. Wheeler and R.M. Needham: TEA, a tiny encryption algorithm. Lecture Notes
in Computer Science 1008: 363366. http://143.53.36.235:8080/tea.htm.

[13] (∗1) How would you choose names for pointer to function types defined using a type alias?
[14] (∗2) Look at some programs to get an idea of the diversity of styles of names actually used.

How are uppercase letters used? How is the underscore used? When are short names such as
i and x used?

[15] (∗1) What is wrong with these macro definitions?

#define PI = 3.141593;
#define MAX(a,b) a>b?a:b
#define fac(a) (a)∗fac((a)−1)

[16] (∗3) Write a macro processor that defines and expands simple macros (like the C preproces-
sor does). Read from cin and write to cout. At first, don’t try to handle macros with argu-
ments. Hint: The desk calculator (§10.2) contains a symbol table and a lexical analyzer that
you could modify.

[17] (∗3) Write an error function that takes a printf-style format string containing %s, %c, and %d

directives and an arbitrary number of arguments. Don’t use printf(). Look at §43.3 if you
don’t know the meaning of %s, %c, and %d. Use <cstdarg>.

[18] (∗2) Implement a useful subset of print() from §12.2.5.
[19] (∗2) Add functions such as sqr t(), log(), and sin() to the desk calculator from §10.2. Hint: Pre-

define the names and call the functions through an array of pointers to functions. Don’t for-
get to check the arguments in a function call.

[20] (∗1) Write a factorial function that does not use recursion.
[21] (∗2) Write functions to add one day, one month, and one year to a Date as defined in §X.9[4].

Write a function that gives the day of the week for a given Date. Write a function that gives
the Date of the first Monday following a given Date.

X.14 Exception Handling
[1] (∗3) Write a Checked_ptr<T> that uses exceptions to signal run-time errors for a pointer sup-

posed to point to an element of an array (or one-beyond-the-end-of the array).
[2] (∗3) Write a function that searches a binary tree of nodes based on a char∗ field for a match.

If a node containing hello is found, find("hello") will return a pointer to that node. Use an
exception to indicate ‘‘not found.’’

[3] (∗3) Define a class Int that acts exactly like the built-in type int, except that it throws excep-
tions rather than overflowing or underflowing.

[4] (∗2.5) Take the basic operations for opening, closing, reading, and writing from the C inter-
face to your operating system and provide equivalent C++ functions that call the C functions
but throw exceptions in case of errors.

Section X.14 Exception Handling 2011

[5] (∗2.5) Write a complete Vector template with Rang e and Siz e exceptions.
[6] (∗1) Write a loop that computes the sum of a Vector as defined in §X.14[5] without examin-

ing the size of the Vector. Why is this a bad idea?
[7] (∗2.5) Consider using a class Exception as the base of all classes used as exceptions. What

should it look like? How should it be used? What good might it do? What disadvantages
might result from a requirement to use such a class?

[8] (∗1) Given:

int main() { /* ... */ }

Change it so that it catches all exceptions thrown from the ..., turns them into error mes-
sages, and abor t()s.

[9] (∗2) Write a class or template suitable for implementing callbacks.
[10] (∗2) Write a program consisting of functions calling each other to a calling depth of 10. Give

each function an argument that determines at which level an exception is thrown. Have
main() catch these exceptions and print out which exception is caught. Don’t forget the case
in which an exception is caught in the function that throws it.

[11] (∗2) Modify the program from §X.14[10] to measure if there is a difference in the cost of
catching exceptions depending on where in the function call stack the exception is thrown.
Add a string object to each function and measure again.

[12] (∗2) Write a function that either returns a value or that throws that value based on an argu-
ment. Measure the difference in run-time between the two ways.

[13] (∗2) Modify the calculator version from §X.15[2] to use exceptions. Keep a record of the
mistakes you make. Suggest ways of avoiding such mistakes in the future.

[14] (∗2.5) Write plus(), minus(), multiply(), and divide() functions that check for possible overflow
and underflow and that throw exceptions if such errors happen.

[15] (∗2) Modify the calculator to use the functions from §X.14[14].

X.15 Namespaces
[1] (∗2) Take some not-too-large program that uses at least one library that does not use name-

spaces and modify it to use a namespace for that library.
[2] (∗2.5) Modify the desk calculator program into a module with a simple interface specifying

calls and potential errors. Don’t expose implemetation details to users. Don’t make it easy
for users to supply bad data. Don’t use any global using-directives. Keep a record of the
mistakes you made. Suggest ways of avoiding such mistakes in the future.

X.16 Files
[1] (∗2) Find where the standard library headers are kept on your system. List their names. Are

any nonstandard headers kept together with the standard ones? Can any nonstandard headers
be #included using the <> notation?

[2] (∗2) Where are the headers for nonstandard ‘‘foundation’’ libraries kept?

2012 Exercises Appendix X

[3] (∗2.5) Write a program that reads a source file and writes out the names of files #included.
Indent file names to show files #included by included files. Try this program on some real
source files (to get an idea of the amount of information included).

[4] (∗3) Modify the program from the previous exercise to print the number of comment lines,
the number of non-comment lines, and the number of non-comment, whitespace-separated
words for each file #included.

[5] (∗2.5) An external include guard is a construct that tests outside the file it is guarding and
includes only once per compilation. Define such a construct, devise a way of testing it, and
discuss its advantages and disadvantages compared to the include guards described in
§15.3.3. Is there any significant run-time advantage to external include guards on your sys-
tem?

[6] (∗3) How is dynamic linking achieved on your system? What restrictions are placed on
dynamically linked code? What requirements are placed on code for it to be dynamically
linked?

[7] (∗3) Open and read 100 files containing 1500 characters each. Open and read one file con-
taining 150,000 characters. Is there a performance difference? What is the highest number
of files that can be simultaneously open on your system? Consider these questions in relation
to the use of #include files.

[8] (∗2) Modify the desk calculator so that it can be invoked from main() or from other functions
as a simple function call.

[9] (∗2) Draw the ‘‘module dependency diagrams’’ (§15.3.2) for the version of the calculator that
used error() instead of exceptions (§14.2.2).

X.17 Classes
[1] (∗1) Find the error in Date::add_year() in §16.2.3. Then find two additional errors in the ver-

sion in §16.2.10.
[2] (∗2.5) Complete and test Date. Reimplement it with ‘‘number of days after 1/1/1970’’ repre-

sentation.
[3] (∗2) Find a Date class that is in commercial use. Critique the facilities it offers. If possible,

then discuss that Date with a real user.
[4] (∗2) Define a class Histogram that keeps count of numbers in some intervals specified as

arguments to Histogram’s constructor. Provide functions to print out the histogram. Handle
out-of-range values.

[5] (∗2.5) Complete class Table to hold (name,value) pairs. Then modify the desk calculator pro-
gram from §10.2 to use class Table instead of map. Compare and contrast the two versions.

[6] (∗2) Rewrite Tnode from §X.13[8] as a class with constructors, destructors, etc. Define a tree
of Tnodes as a class with constructors, destructors, etc.

[7] (∗3) Define, implement, and test a set of integers, class Intset. Provide union, intersection,
and symmetric difference operations.

[8] (∗1.5) Modify class Intset into a set of nodes, where Node is a structure you define.
[9] (∗3) Define a class for analyzing, storing, evaluating, and printing simple arithmetic expres-

sions consisting of integer constants and the operators +, −, ∗, and /. The public interface

Section X.17 Classes 2013

should look like this:

class Expr {
// ...

public:
Expr(const char∗);
int eval();
void print();

};

The string argument for the constructor Expr::Expr() is the expression. The function
Expr::eval() returns the value of the expression, and Expr::print() prints a representation of the
expression on cout. A program might look like this:

Expr x("123/4+123∗4−3");
cout << "x = " << x.eval() << "\n";
x.print();

Define class Expr twice: once using a linked list of nodes as the representation and once
using a character string as the representation. Experiment with different ways of printing
the expression: fully parenthesized, postfix notation, assembly code, etc.

[10] (∗2) Define a class Char_queue so that the public interface does not depend on the representa-
tion. Implement Char_queue (a) as a linked list and (b) as a vector. Do not worry about con-
currency.

[11] (∗3) Design a symbol table class and a symbol table entry class for some language. Have a
look at a compiler for that language to see what the symbol table really looks like.

[12] (∗2) Modify the expression class from §X.17[11] to handle variables and the assignment
operator =. Use the symbol table class from §X.17[11].

[13] (∗1) Given this program:

#include <iostream>

int main()
{

std::cout << "Hello, world!\n";
}

modify it to produce this output:

Initializ e
Hello, world!
Clean up

Do not change main() in any way.
[14] (∗2) Define two classes, each with a static member, so that the construction of each static

member involves a reference to the other. Where might such constructs appear in real code?
How can these classes be modified to eliminate the order dependence in the constructors?

2014 Exercises Appendix X

[15] (∗2.5) Compare class Date (§16.3) with your solution to §X.9[4] and §X.13[21]. Discuss
errors found and likely differences in maintenance of the two solutions.

[16] (∗3) Write a function that, given an istream and a vector<string>, produces a
map<string,vector<int> > holding each string and the numbers of the lines on which the string
appears. Run the program on a text-file with no fewer than 1,000 lines looking for no fewer
than 10 words.

X.18 Construction, Cleanup, Copy, and Move
[1] (∗2) Implement the functions of the ‘‘cannonical complete class’’ X from §17.1 to do noting

but print out their name and the address of their object (and of their argument where applica-
ble). Now test X by defining variables, members, objects on the free store, passing argu-
ments, etc.

[2] (∗2) Define a resource handle, a ‘‘smart pointer’’ that holds a pointer to an object on the free
store passed as an argument to a constructor. ‘‘Forget’’ to define copy operations. Now test
the handle by defining variables, members, objects on the free store, passing arguments, etc.,
and see where leaks occur.

[3] (∗1.5) When do you need a constructor? When do memberwise construction suffice? When
is memberwise construction preferable?

[4] (∗1) Design, implement and test a Vector class with an initializer-list constructor and no con-
structor that takes a integer as a size. Instead, give it a constructo that takes a Count type, so
that you can’t get ambiguities between and integer number of elements and an integer ele-
ment value.

[5] (∗3) Write an extremely simple document editor with only three commands: ‘‘Insert a string

as line number n,’’ ‘‘delete line n,’’ and ‘‘undo the last (non-undo) operation.’’ In addition,
provide a cursor to a character in the document (or one beyond the last character) that can be
moved forwards and backwards. Do not let any command lead to an invalid cursor. Hint:
§17.5.1.3.

[6] (∗3) Implement a simple Matrix along the lines of the one in §17.5.2. Measure the perfor-
mance of an addition of 1000-by-1000 matrices with and without move operations. If you
did not have the option of adding move operations, what would you do?

X.19 Overloading
[1] (∗2) In the following program, which conversions are used in each expression?

struct X {
int i;
X(int);
X operator+(int);

};

Section X.19 Overloading 2015

struct Y {
int i;
Y(X);
Y operator+(X);
operator int();

};

extern X operator∗(X, Y);
extern int f(X);

X x = 1;
Y y = x;
int i = 2;

int main()
{

i + 10;
y + 10;
y + 10 ∗ y;

x + y + i;
x ∗ x + i;

f(7);
f(y);

y + y;
106 + y;

}

Modify the program so that it will run and print the values of each legal expression.
[2] (∗2) Complete and test class String from §19.3.
[3] (∗2) Define a class INT that behaves exactly like an int. Hint: Define INT::operator int().
[4] (∗1) Define a class RINT that behaves like an int except that the only operations allowed are +

(unary and binary), − (unary and binary), ∗, /, and %. Hint: Do not define RINT::operator int().
[5] (∗3) Define a class LINT that behaves like a RINT, except that it has at least 64 bits of preci-

sion.
[6] (∗4) Define a class implementing arbitrary precision arithmetic. Test it by calculating the

factorial of 1000. Hint: You will need to manage storage in a way similar to what was done
for class String.

[7] (∗2) Write a program that has been rendered unreadable through use of operator overloading
and macros. An idea: Define + to mean − and vice versa for INTs. Then, use a macro to
define int to mean INT. Redefine popular functions using reference type arguments. Writing
a few misleading comments can also create great confusion.

[8] (∗3) Swap the result of §X.19[7] with a friend. Without running it, figure out what your
friend’s program does. When you have completed this exercise, you’ll know what to avoid.

2016 Exercises Appendix X

[9] (∗2) Define a type Vec4 as a vector of four floats. Define operator[] for Vec4. Define opera-
tors +, −, ∗, /, =, +=, −=, ∗=, and /= for combinations of vectors and floating-point numbers.

[10] (∗3) Define a class Mat4 as a vector of four Vec4s. Define operator[] to return a Vec4 for Mat4.
Define the usual matrix operations for this type. Define a function doing Gaussian elimina-
tion for a Mat4.

[11] (∗2) Define a class Vector similar to Vec4 but with the size given as an argument to the con-
structor Vector::Vector(int).

[12] (∗3) Define a class Matrix similar to Mat4 but with the dimensions given as arguments to the
constructor Matrix::Matrix(int,int).

[13] (∗1) Given two structures:

struct S { int x, y; };
struct T { char∗ p; char∗ q; };

write a class C that allows the use of x and p from some S and T, much as if x and p had been
members of C. Hint: pointer to member.

[14] (∗1.5) Define a class Index to hold the index for an exponentiation function mypow(dou-

ble,Index). Find a way to have 2∗∗I call mypow(2,I).
[15] (∗2) Define a class Imaginar y to represent imaginary numbers. Define class Complex based on

that. Implement the fundamental arithmetic operators. Define i as a user-defined literal suf-
fix meaning ‘‘imaginary.’’

X.20 Special Operations
[1] (∗2) Complete class Ptr from §19.2.4 and test it. To be complete, Ptr must have at least the

operators ∗, −>, =, ++, and −− defined. Do not cause a run-time error until a wild pointer is
actually dereferenced.

[2] (∗2) Define an external iterator for class String:

class String_iter {
// refer to string and string element

public:
String_iter(String& s); // iterator for s
char& next(); // reference to next element

// more operations of your choice
};

Compare this in utility, programming style, and efficiency to having an internal iterator for
String (that is, a notion of a current element for the String and operations relating to that ele-
ment).

[3] (∗1.5) Provide a substring operator for a string class by overloading (). What other operations
would you like to be able to do on a string?

[4] (∗3) Design class String so that the substring operator can be used on the left-hand side of an
assignment. First, write a version in which a string can be assigned to a substring of the
same length. Then, write a version in which the lengths may differ.

Section X.20 Special Operations 2017

[5] (∗2) Define an operation for String that produces a C-string representation of its value. Dis-
cuss the pros and cons of having that operation as a conversion operator. Discuss alternatives
for allocating the memory for that C-string representation.

[6] (∗2.5) Define and implement a simple regular expression pattern match facility for class
String.

[7] (∗1.5) Modify the pattern match facility from §X.20[6] to work on the standard library string.
Note that you cannot modify the definition of string.

X.21 Derived Classes
[1] (∗1) Define

class Base {
public:

vir tual void iam() { cout << "Base\n"; }
};

Derive two classes from Base, and for each define iam() to write out the name of the class.
Create objects of these classes and call iam() for them. Assign pointers to objects of the
derived classes to Base∗ pointers and call iam() through those pointers.

[2] (∗3.5) Implement a simple graphics system using whatever graphics facilities are available on
your system (if you don’t hav e a good graphics system or have no experience with one, you
might consider a simple ‘‘huge bit ASCII implementation’’ where a point is a character posi-
tion and you write by placing a suitable character, such as ∗ in a position): Window(n,m) cre-
ates an area of size n times m on the screen. Points on the screen are addressed using (x,y)
coordinates (Cartesian). A Window w has a current position w.current(). Initially, current is
Point(0,0). The current position can be set by w.current(p) where p is a Point. A Point is speci-
fied by a coordinate pair: Point(x,y). A Line is specified by a pair of Points: Line(w.cur-

rent(),p2); class Shape is the common interface to Dots, Lines, Rectangles, Circles, etc. A Point

is not a Shape. A Dot, Dot(p) can be used to represent a Point p on the screen. A Shape is
invisible unless draw()n. For example: w.draw(Circle(w.current(),10)). Every Shape has 9 con-
tact points: e (east), w (west), n (north), s (south), ne, nw, se, sw, and c (center). For exam-
ple, Line(x.c(),y.nw()) creates a line from x’s center to y’s top left corner. After draw()ing a
Shape the current position is the Shape’s se(). A Rectangle is specified by its bottom left and
top right corner: Rectangle(w.current(),Point(10,10)). As a simple test, display a simple
‘‘child’s drawing of a house’’ with a roof, two windows, and a door.

[3] (∗2) Important aspects of a Shape appear on the screen as a set of line segments. Implement
operations to vary the appearance of these segments: s.thickness(n) sets the line thickness to
0, 1, 2, or 3, where 2 is the default and 0 means invisible. In addition, a line segment can be
solid, dashed, or dotted. This is set by the function Shape::outline().

[4] (∗2.5) Provide a function Line::arrowhead() that adds arrow heads to an end of a line. A line
has two ends and an arrowhead can point in two directions relative to the line, so the argu-
ment or arguments to arrowhead() must be able to express at least four alternatives.

[5] (∗3.5) Make sure that points and line segments that fall outside the Window do not appear on
the screen. This is often called ‘‘clipping.’’ As an exercise only, do not rely on the

2018 Exercises Appendix X

implementation graphics system for this.
[6] (∗2.5) Add a Te xt type to the graphics system. A Te xt is a rectangular Shape displaying char-

acters. By default, a character takes up one coordinate unit along each coordinate axis.
[7] (∗2) Define a function that draws a line connecting two shapes by finding the two closest

‘‘contact points’’ and connecting them.
[8] (∗3) Add a notion of color to the simple graphics system. Three things can be colored: the

background, the inside of a closed shape, and the outlines of shapes.
[9] (∗2) Consider:

class Char_vec {
int sz;
char element[1];

public:
static Char_vec∗ new_char_vec(int s);
char& operator[](int i) { return element[i]; }
// ...

};

Define new_char_vec() to allocate contiguous memory for a Char_vec object so that the ele-
ments can be indexed through element as shown. Under what circumstances does this trick
cause serious problems?

[10] (∗2.5) Given classes Circle, Square, and Triangle derived from a class Shape, define a function
intersect() that takes two Shape∗ arguments and calls suitable functions to determine if the
two shapes overlap. It will be necessary to add suitable (virtual) functions to the classes to
achieve this. Don’t bother to write the code that checks for overlap; just make sure the right
functions are called. This is commonly referred to as double dispatch or a multi-method.

[11] (∗5) Design and implement a library for writing event-driven simulations. Hint: <task.h>.
However, that is an old program, and you can do better. There should be a class task. An
object of class task should be able to save its state and to have that state restored (you might
define task::save() and task::restore()) so that it can operate as a coroutine. Specific tasks can
be defined as objects of classes derived from class task. The program to be executed by a
task might be specified as a virtual function. It should be possible to pass arguments to a new
task as arguments to its constructor(s). There should be a scheduler implementing a concept
of virtual time. Provide a function task::delay(long) that ‘‘consumes’’ virtual time. Whether
the scheduler is part of class task or separate will be one of the major design decisions. The
tasks will need to communicate. Design a class queue for that. Devise a way for a task to
wait for input from several queues. Handle run-time errors in a uniform way. How would
you debug programs written using such a library?

[12] (∗2) Define interfaces for Warrior, Monster, and Object (that is a thing you can pick up, drop,
use, etc.) classes for an adventure-style game.

[13] (∗1.5) Why is there both a Point and a Dot class in §X.21[2]? Under which circumstances
would it be a good idea to augment the Shape classes with concrete versions of key classes
such as Line?

[14] (∗3) Outline a different implementation strategy for the Ival_box example (§21.2) based on
the idea that every class seen by an application is an interface containing a single pointer to
the implementation. Thus, each "interface class" will be a handle to an "implementation

Section X.21 Derived Classes 2019

class," and there will be an interface hierarchy and an implementation hierarchy. Write code
fragments that are detailed enough to illustrate possible problems with type conversion. Con-
sider ease of use, ease of programming, ease of reusing implementations and interfaces when
adding a new concept to the hierarchy, ease of making changes to interfaces and implementa-
tions, and need for recompilation after change in the implementation.

[15] (∗2) Write a version of the clone() operation from §20.3.6 that can place its cloned object in
an Arena (see §11.2.4) passed as an argument. Implement a simple Arena as a class derived
from Arena.

X.22 Class Hierarchies
[16] (∗3.5) Implement a version of a Reversi/Othello board game. Each player can be either a

human or the computer. Focus on getting the program correct and (then) getting the com-
puter player ‘‘smart’’ enough to be worth playing against.

[17] (∗3) Improve the user interface of the game from §X.22[16].
[18] (∗3) Define a graphical object class with a plausible set of operations to serve as a common

base class for a library of graphical objects; look at a graphics library to see what operations
were supplied there. Define a database object class with a plausible set of operations to serve
as a common base class for objects stored as sequences of fields in a database; look at a data-
base library to see what operations were supplied there. Define a graphical database object
with and without the use of multiple inheritance and discuss the relative merits of the two
solutions.

[19] (∗2.5) Draw a plausible memory layout for a Radio as defined in §21.3.4. Explain how a vir-
tual function call could be implemented.

[20] (∗2.5) Draw a plausible memory layout for a Radio as defined in §22.2.2. Explain how a vir-
tual function call could be implemented.

[21] (∗2) Assume that the type-checking rules for arguments were relaxed in a way similar to the
relaxation for return types so that a function taking a Derived∗ could override a function tak-
ing a Base∗. Then write a program that would corrupt an object of class Derived without
using a cast. Describe a safe relaxation of the overriding rules for argument types.

X.23 Run-Time Type Information
[1] (∗1) Write a template ptr_cast that works like dynamic_cast, except that it throws bad_cast

rather than returning 0.
[2] (∗2) Write a program that illustrates the sequence of constructor calls at the state of an object

relative to RTTI during construction. Similarly illustrate destruction.
[3] (∗3) Consider how dynamic_cast might be implemented. Define and implement a dcast tem-

plate that behaves like dynamic_cast but relies on functions and data you define only. Make
sure that you can add new classes to the system without having to change the definitions of
dcast or previously-written classes.

[4] (∗3) What information would you like to hav e associated with a class to be accessible at run
time? Implement and association scheme as outlined in §22.5.1 as an

2020 Exercises Appendix X

unordered_map<type_index,My_info∗> (§35.5.4). First make a simple version where My_info

just holds a string associated with the class (e.g., a comment about its purpose). Second,
implement a version that does what you want (e.g. holds a table of member function names
and pointers to member functions).

X.24 Templates
[1] (∗2) Fix the errors in the definition of List from §23.3.2 and write out C++ code equivalent to

what the compiler must generate for the definition of List and the function f(). Run a small
test case using your hand-generated code and the code generated by the compiler from the
template version. If possible on your system given your knowledge, compare the generated
code.

[2] (∗3) Write a singly-linked list class template that accepts elements of any type derived from a
class Link that holds the information necessary to link elements. This is called an intrusive
list. Using this list, write a singly-linked list that accepts elements of any type (a non-intru-
sive list). Compare the performance of the two list classes and discuss the tradeoffs between
them.

[3] (∗2.5) Write intrusive and non-intrusive doubly-linked lists. What operations should be pro-
vided in addition to the ones you found necessary to supply for a singly-linked list?

[4] (∗2) Complete the String template from §23.2 based on the String class from §19.3.
[5] (∗2) Define a sor t() that takes its comparison criterion as a template argument. Define a class

Record with two data members count and price. Sort a vector<Record> on each data member.
[6] (∗2) Implement a qsor t() template.
[7] (∗2) Write a program that reads (key,value) pairs and prints out the sum of the values corre-

sponding to each distinct key. Specify what is required for a type to be a key and a value.
[8] (∗2.5) Implement a simple Map class based on the Assoc class from §19.2.1. Make sure Map

works correctly using both C-style strings and strings as keys. Make sure Map works cor-
rectly for types with and without default constructors. Provide a way of iterating over the
elements of a Map.

[9] (∗3) Compare the performance of the word count program from §19.2.1 against a program
not using an associative array. Use the same style of I/O in both cases.

[10] (∗3) Re-implement Map from §X.24[8] using a more suitable data structure (e.g., a red-black
tree or a Splay tree).

[11] (∗2.5) Use Map to implement a topological sort function. Topological sort is described in
[Knuth,1968] vol. 1 (second edition), pg 262.

[12] (∗1.5) Make the sum program from §X.24[7] work correctly for names containing spaces; for
example, ‘‘thumb tack.’’

[13] (∗2) Write readline() templates for different kinds of lines. For example (item,count,price).
[14] (∗1.5) Construct an example that demonstrates at least three differences between a function

template and a macro (not counting the differences in definition syntax).
[15] (∗2) Devise a scheme that ensures that the compiler tests general constraints on the template

arguments for every template for which an object is constructed. It is not sufficient just to
test constraints of the form ‘‘the argument T must be a class derived from My_base.’’

Section X.25 Generic Programming 2021

X.25 Generic Programming
[1] (∗3) Write a function that writes an array of C-stryle strings to stdout . Write a function that

writes a list<string> to cout. Lift this algorithm so that it can write any sequence or any ele-
ment type using any I/O system.

X.26 Specialization
[1] ???

X.27 Instantiation
[1] ???

X.28 Templates and Hierarchies
[1] ???

X.29 Metaprogramming
[1] ???

X.30 A Matrix Design
[1] ???

X.31 Library Overview
[1] (∗1) How many standard-library header files are there? If you could have only ten, which ten

would you choose?
[2] (∗1) Which operator is missing from std::initializ er_list?

X.32 STL Containers
The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.
[1] (∗1.5) Create a vector<char> containing the letters of the alphabet in order. Print the elements

of that vector in order and in reverse order.
[2] (∗1.5) Create a vector<string> and read a list of names of fruits from cin into it. Sort the list

and print it.

2022 Exercises Appendix X

[3] (∗1.5) Using the vector from §X.32[2], write a loop to print the names of all fruits with the
initial letter a.

[4] (∗1) Using the vector from §X.32[2], write a loop to delete all fruits with the initial letter a.
[5] (∗1) Using the vector from §X.32[2], write a loop to delete all citrus fruits.
[6] (∗1.5) Using the vector from §X.32[2], write a loop to delete all fruits that you don’t like.
[7] (∗3) Design a Container with an interface consisiting of an abstract class as outlined in §3.2.2.

Derive a doubly-linked List, a singly-linked Slist, and a Vector, from it. The elements are of
some type Elem. Use these containers for a few simple tests. Write a critique of the interface
provided by Container from the point of view of a user. Don’t forget to discuss error han-
dling.

[8] (∗2.5) Define three independent classes: a doubly-linked List, a singly-linked Slist, and a
Vector. For simple traversals, define

class Itor {
public:

vir tual Elem∗ first();
vir tual Elem∗ next();
};

The members return a pointer to an element or the nullptr if there is none. Implement itera-
tors for List, Slist, and Vector as classes derived from Itor. Compare this design to the
abstract Container design in §X.32[7].

[9] (∗1) Make a version of §X.32[7] where the element type is a template argument.
[10] (∗2.5) Given an Itor class like the one in §X.32[8], consider how to provide iterators for for-

wards iteration, backwards iteration, iteration over a container that might change during an
iteration, and iteration over an immutable container. Org anize this set of iterators so that a
user can interchangeably use iterators that provide sufficient functionality for an algorithm.
Minimize replication of effort in the implementation of the containers. What other kinds of
iterators might a user need? List the strengths and weaknesses of your approach.

[11] (∗1) Make a version of §X.32[8] where the element type is a template argument.
[12] (∗3) Design a ‘‘truly object-oriented’’ container holding Object∗s as elements A Container

(along the lines of §X.32[7]) is itself derived (directly or indirectly) from Object. Implement
a List, Slist, and Vector as outlined in §X.32[7] and test them as in §X.32[7].

[13] (∗2.5) Generate 10,000 uniformly distributed random numbers in the range 0 to 1,023 and
store them in
(a) an standard library vector<int>,
(b) a Vector<int> from §X.32[7],
(c) a Vector<int> from §X.32[8].
(d) a Vector from §X.32[12].
In each case, calculate the arithmetic mean of the elements of the vector (as if you didn’t
know it already). Time the resulting loops. Estimate, measure, and compare the memory
consumption for the three styles of vectors.

[14] (∗2) Write a template that implements a container with the same member functions and
member types as the standard vector for an existing (nonstandard, non-student-exercise) con-
tainer type. Do not modify the (pre)existing container type. How would you deal with

Section X.32 STL Containers 2023

functionality offered by the nonstandard vector but not by the standard vector?
[15] (∗1.5) What is seriously wrong with this function?:

void duplicate(vector<string& v) // not the way to do it
{

for (auto p = v.begin(); p!=v.end(); ++v)
v.inser t(p,∗p);

}

Outline the possible behavior of duplicate_elements() for a vector<string> with the three ele-
ments don't do this.

[16] (∗2.5) Understand the ‘‘Big-O’’ notation (§31.3). Do some measurements of operations on
standard containers to determine the constant factors involved.

[17] (∗2) Many phone numbers don’t fit into a long. Write a phone_number type and a class that
provides a set of useful operations on a container of phone_numbers.

[18] (∗2) Write a program that lists the distinct words in a file in alphabetical order. Make two
versions: one in which a word is simply a whitespace-separated sequence of characters and
one in which a word is a sequence of letters separated by any sequence of non-letters.

[19] (∗2.5) Implement a simple solitaire card game.
[20] (∗1.5) Implement a simple test of whether a word is a palindrome (that is, if its representation

is symmetric; examples are ada, otto, and tut). Implement a simple test of whether an integer
is a palindrome. Implement a simple test of whether a sentence is a palindrome. Generalize.

[21] (∗1.5) Define a queue using (only) two stacks.
[22] (∗1.5) Define a stack similar to stack (§31.3.6), except that it doesn’t copy its underlying con-

tainer and that it allows iteration over its elements.
[23] (∗3) Your computer will have support for concurrent activities through the concept of a

thread, task, or process. Figure out how that is done. The concurrency mechanism will have
a concept of locking to prevent two tasks accessing the same memory simultaneously. Use
the machine’s locking mechanism to implement a lock class.

[24] (∗2.5) Read a sequence of dates such as Dec85, Dec50, Jan76, etc., from input and then output
them so that later dates come first. The format of a date is a three-letter month followed by a
two-digit year. Assume that all the years are from the same century.

[25] (∗2.5) Generalize the input format for dates to allow dates such as Dec1985, 12/3/1990,
(Dec,30,1950), 3/6/2001, etc. Modify exercise §X.32[24] to cope with the new formats.

[26] (∗1.5) Use a bitset to print the binary values of some numbers, including 0, 1, −1, 18, −18, and
the largest positive int.

[27] (∗1.5) Use bitset to represent which students in a class were present on a given day. Read the
bitsets for a series of 12 days and determine who was present every day. Determine which
students were present at least 8 days.

[28] (∗2) Implement and test a doubly-linked list so that an empty list takes up only the space for
a Link∗.

[29] (∗1.5) Write a List of pointers that deletes the objects pointed to when it itself is destroyed or
if the element is removed from the List.

[30] (∗1.5) Given a stack object, print its elements in order (without changing the value of the
stack).

2024 Exercises Appendix X

[31] (∗2.5) Implement and test a list in the style of the standard list.
[32] (∗2) Sometimes, the space overhead of a list can be a problem. Write and test a singly-linked

list in the style of a standard container.
[33] (∗2.5) Implement a list that is like a standard list, except that it supports subscripting. Com-

pare the cost of subscripting for a variety of lists to the cost of subscripting a vector of the
same length.

[34] (∗2) Implement a template function that merges two containers.
[35] (∗1.5) Given a C-style string, determine whether it is a palindrome. Determine whether an

initial sequence of at least three words in the string is a palindrome.
[36] (∗2) Read a sequence of (name ,value) pairs and produce a sorted list of

(name ,total,mean,median) 4-tuples. Print that list.
[37] (∗2.5) Determine the space overhead of each of the standard containers on your implementa-

tion.
[38] (∗3.5) Consider what would be a reasonable implementation strategy for a hash_map that

needed to use minimal space. Consider what would be a reasonable implementation strategy
for a hash_map that needed to use minimal lookup time. In each case, consider what opera-
tions you might omit so as to get closer to the ideal (no space overhead and no lookup over-
head, respectively). Hint: There is an enormous literature on hash tables.

[39] (∗2) Devise a strategy for dealing with overflow in hash_map (different values hashing to the
same hash value) that makes equal_rang e() trivial to implement.

[40] (∗2.5) Estimate the space overhead of a hash_map and then measure it. Compare the esti-
mate to the measurements. Compare the space overhead of your hash_map and your imple-
mentation’s map.

[41] (∗2.5) Profile your hash_map to see where the time is spent. Do the same for your imple-
mentation’s map and a widely-distributed hash_map.

[42] (∗2.5) Implement a hash_map based on a vector<map<K,V>∗> so that each map holds all keys
that have the same hash value.

[43] (∗3) Implement a hash_map using Splay trees (see D. Sleator and R. E. Tarjan: Self-Adjusting
Binary Search Trees, JACM, Vol. 32. 1985).

[44] (∗2) Given a data structure describing a string-like entity:

struct St {
int size;
char type_indicator;
char∗ buf; // point to size characters
St(const char∗ p); // allocate and fill buf

};

Create 1000 Sts and use them as keys for a hash_map. Devise a program to measure the per-
formance of the hash_map. Write a hash function (a hash<>; §31.4.3.4) specifically for St

keys.
[45] (∗2) Give at least four different ways of removing the erased elements from a hash_map.

You should use a standard library algorithm (§3.4.2, Chapter 32) to avoid an explicit loop.
[46] (∗3) Implement a hash_map that erases elements immediately.
[47] (∗2) Give an example of when it might be wise to ignore part of a key and write a hash func-

tion that computes its value based only on the part of a key considered relevant.

Section X.32 STL Containers 2025

[48] (∗3) Given some implementation of hash_map, implement hash_multimap, hash_set, and
hash_multiset.

[49] (∗2.5) Write a hash function intended to map uniformly distributed int values into hash values
intended for a table size of about 1024. Given that function, devise a set of 1024 key values,
all of which map to the same value.

X.33 STL Algorithms
The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.
[1] (∗2) Understand the Big-O notation. Give a realistic example in which an O(N∗N) algorithm

is faster than an O(N) algorithm for some N>10.
[2] (∗1) Write an algorithm match() that is like mismatch(), except that it returns iterators to the

first corresponding pair that matches the predicate.
[3] (∗1.5) Implement and test Print_name from §32.4.1.
[4] (∗1) Sort a list using only standard library algorithms.
[5] (∗2.5) Define a class Iseq so that Iseq(p,q) can be used for a pair of iterators (p, q) that repre-

sent a input sequence. Test is for built-in arrays, istreams, and vectors . Define a suitable set
of overloads for the nonmodifying standard algorithms (§32.4) for Iseqs. Discuss how best to
avoid ambiguities and an explosion in the number of template functions.

[6] (∗2) Define a clas Iseq to complement Iseq. The output sequence given as the argument to
Oseq should be replaced by the output produced by an algorithm using it. Define a suitable
set of overloads for at least three standard algorithms of your choice.

[7] (∗1.5) Produce a vector of squares of numbers 1 through 100. Print a table of squares. Take
the square root of the elements of that vector and print the resulting vector.

[8] (∗2) Write a set of functional objects that do bitwise logical operations on their operands.
Test these objects on vectors of char, int, and bitset<67>.

[9] (∗1) Write a binder3() that binds the second and third arguments of a three-argument function
to produce a unary predicate. Give an example where binder3() is a useful function.

[10] (∗1.5) Write a small program that that removes adjacent repeated words from from a file file.
Hint: The program should remove a that, a from, and a file from the previous statement.

[11] (∗2.5) Define a format for records of references to papers and books kept in a file. Write a
program that can write out records from the file identified by year of publication, name of
author, keyword in title, or name of publisher. The user should be able to request that the
output be sorted according to similar criteria.

[12] (∗2) Implement a move() algorithm in the style of copy() in such a way that the input and out-
put sequences can overlap. Be reasonably efficient when given random-access iterators as
arguments.

[13] (∗1.5) Produce all anagrams of the word food. That is, all four-letter combinations of the let-
ters f, o, o, and d. Do not generate duplicates. Generalize this program to take a word as
input and produce anagrams of that word.

2026 Exercises Appendix X

[14] (∗1.5) Write a program that produces anagrams of sentences; that is, a program that produces
all permutations of the words in the sentences (rather than permutations of the letters in the
words).

[15] (∗1.5) Implement find_if() (§32.4.4) and then implement find() using find_if(). Find a way of
doing this so that the two functions do not need different names.

[16] (∗2) Implement search() (§32.4.6). Provide an optimized version for random-access iterators.
[17] (∗2) Take a sort algorithm (such as sor t() from your standard library or the Shell sort from

§23.5) and insert code so that it prints out the sequence being sorted after each swap of ele-
ments.

[18] (∗2) There is no sor t() for bidirectional iterators. The conjecture is that copying to a vector
and then sorting is faster than sorting a sequence using bidirectional iterators. Implement a
general sort for bidirectional iterators and test the conjecture.

[19] (∗2.5) Imagine that you keep records for a group of sports fishermen. For each catch, keep a
record of species, length, weight, date of catch, name of fisherman, etc. Sort and print the
records according to a variety of criteria. Hint: inplace_merge().

[20] (∗2) Create lists of students taking Math, English, French, and Biology. Pick about 20 names
for each class out of a set of 40 names. List students who take both Math and English. List
students who take French but not Biology or Math. List students who do not take a science
course. List students who take French and Math but neither English nor Biology.

[21] (∗1.5) Write a remove() function that actually removes elements from a container.

X.34 STL Iterators
[1] Write an output iterator, Sink, that doesn’t actually write anywhere. When can Sink be use-

ful?
[2] (∗2) Implement reverse_iterator (§33.2.1).
[3] (∗1.5) Implement ostream_iterator (§38.5).
[4] (∗2) Implement istream_iterator (§38.5).
[5] (∗2.5) Design, implement, and test a run-time range-checked random-access iterator

Checked_iter.
[6] (∗2) Design and implement a handle class that can act as a proxy for a container by providing

a complete container interface to its users. Its implementation should consist of a pointer to a
container plus implementations of container operations that do range checking.

X.35 Memory and Resources
[1] (∗2.5) Complete and test a pool allocator for objects of type T:

Section X.35 Memory and Resources 2027

template<typename T>
class Pool_alloc {

T∗ allocate(siz e_t n); // allocate space for n objects of type T; do not initialize
void deallocate(T∗ p, size_t n); // deallocate space for n ojects of type T starting at p
// ...

};

Make sure that Pool_alloc provides all of the facilities of the standard library allocator (§34.4).
Compare the performance of std::allocator and Pool_alloc to see if there is any reason to use a
Pool_alloc on your system.

X.36 Utilities
[1] ???

X.37 String
The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.
[1] (∗2) Write a function that takes two strings and returns a string that is the concatenation of

the strings with a dot in the middle. For example, given file and write, the function returns
file .write. Do the same exercise with C-style strings using only C facilities such as malloc()

and strlen(). Compare the two functions. What are reasonable criteria for a comparison?
[2] (∗2) Make a list of differences between vector and basic_string. Which differences are

important?
[3] (∗2) The string facilities are not perfectly regular. For example, you can assign a char to a

string, but you cannot initialize a string with a char. Make a list of such irregularities. Which
could have been eliminated without complicating the use of strings? What other irregulari-
ties would this introduce?

[4] (∗1.5) Class basic_string has a lot of members. Which could be made nonmember functions
without loss of efficiency or notational convenience?

[5] (∗1.5) Write a version of back_inser ter() (§33.2.2) that works for basic_string.
[6] (∗2) Complete Basic_substring from §36.3.8 and integrate it with a String type that overloads

() to mean ‘‘substring of’’ and otherwise acts like string.
[7] (∗2.5) Write a find() function that finds the first match for a simple regular expression in a

string. Use ? to mean ‘‘any character,’’ ∗ to mean any number of characters not matching the
next part of the regular expression, and [abc] to mean any character from the set specified
between the square braces (here a, b, and c). Other characters match themselves. For exam-
ple, find(s,"name:") returns a pointer to the first occurrence of name: in s; find(s,"[nN]ame:")

returns a pointer to the first occurrence of name: or Name: in s; and find(s,"[nN]ame(∗)")

returns a pointer to the first occurence of Name or name followed by a (possibly empty)
parenthesized sequence of characters in s.

2028 Exercises Appendix X

[8] (∗2.5) What operations do you find missing from the simple regular expression function from
§X.37[7]? Specify and add them. Compare the expressiveness of your regular expression
matcher to that of a widely distributed one. Compare the performance of your regular
expression matcher to that of a widely distributed one.

[9] (∗2.5) Use a regular expression library to implement pattern-matching operations on a String

class that has an associated Substring class.
[10] (∗2.5) Consider writing an ‘‘ideal’’ class for general text processing. Call it Te xt. What facil-

ities should it have? What implementation constraints and overheads are imposed by your
set of ‘‘ideal’’ facilities?

[11] (∗1.5) Define a set of overloaded versions for isalpha(), isdigit(), etc., so that these functions
work correctly for char, unsigned char, and signed char.

[12] (∗2.5) Write a String class optimized for strings having no more than eight characters. Com-
pare its performance to that of the String from §19.3 and your implementation’s version of
the standard library string.

[13] (∗2) Measure the performance of copying of strings. Does your implementation’s implemen-
tation of string adequately optimize copying?

[14] (∗2.5) Imagine that reading medium-long strings (most are 5 to 25 characters long) from cin

is the bottleneck in your system. Write an input function that reads such strings as fast as
you can think of. You can choose the interface to that function to optimize for speed rather
than for convenience. Compare the result to your implementation’s >> for strings.

[15] (∗1.5) Write a function itos(int) that returns a string representing its int argument.

X.38 Regular Expressions
[1] (∗2) Write a program that finds dates in a file. Write out each line containing a data pre-

ceeded by its line number using the format: number: line. Start with a simple format, such as
12/24/2024, and then add patterns to recognize more formats.

[2] (∗2) Modify §X.38[1] to take a pattern as input and write lines that match that pattern. You
might call this program ‘‘grep.’’

[3] (∗2) Rewrite the program from §X.38[1] to produce an output file that is identical to the input
file exept that all date are printed in the ISO standard format, such as 2024/12/24.

[4] (∗2) Modify §X.38[3] to validate dates. Write out an error for each line that has a date that is
not valid after a set of criteria of your choice.

[5] (∗1.5) Describe a pattern that cannot be expressed as a regular expression.

X.39 I/O Streams
[1] (∗1.5) Read a file of floating-point numbers, make complex numbers out of pairs of numbers

read, and write out the complex numbers.
[2] (∗1.5) Define a type Name_and_address. Define << and >> for it. Copy a stream of

Name_and_address objects.
[3] (∗2.5) Copy a stream of Name_and_address objects in which you have inserted as many

errors as you can think of (e.g., format errors and premature end of string). Handle these

Section X.39 I/O Streams 2029

errors in a way that ensures that the copy function reads most of the correctly formatted
Name_and_addresses, even when the input is completely messed up.

[4] (∗2.5) Redefine the I/O format of Name_and_address to make it more robust in the presence
of format errors.

[5] (∗2.5) Design some functions for requesting and reading information of various types. Ideas:
integer, floating-point number, file name, mail address, date, personal information, etc. Try
to make them foolproof.

[6] (∗1.5) Write a program that prints (a) all lowercase letters, (b) all letters, (c) all letters and
digits, (d) all characters that may appear in a C++ identifier on your system, (e) all punctua-
tion characters, (f) the integer value of all control characters, (g) all whitespace characters,
(h) the integer value of all whitespace characters, and finally (i) all printing characters.

[7] (∗2) Read a sequence of lines of text into a fixed-sized character buffer. Remove all white-
space characters and replace each alphanumeric character with the next character in the
alphabet (replace z by a and 9 by 0). Write out the resulting line.

[8] (∗3) Write a ‘‘miniature’’ stream I/O system that provides classes istream, ostream, ifstream,
ofstream providing functions such as operator<<() and operator>>() for integers and operations
such as open() and close() for files.

[9] (∗4) Implement the C standard I/O library (<stdio.h>) using the C++ standard I/O library
(<iostream>).

[10] (∗4) Implement the C++ standard I/O library (<iostream>) using the C standard I/O library
(<stdio.h>).

[11] (∗4) Implement the C and C++ libraries so that they can be used simultaneously.
[12] (∗2) Implement a class for which [] is overloaded to implement random reading of characters

from a file.
[13] (∗3) Repeat §X.39[12] but make [] useful for both reading and writing. Hint: Make [] return

an object of a ‘‘descriptor type’’ for which assignment means ‘‘assign through descriptor to
file’’ and implicit conversion to char ‘‘means read from file through descriptor.’’

[14] (∗2) Repeat §X.39[13] but let [] index objects of arbitrary types, not just characters.
[15] (∗3.5) Implement versions of istream and ostream that read and write numbers in their binary

form rather than converting them into a character representation. Discuss the advantages and
disadvantages of this approach compared to the character-based approach.

[16] (∗3.5) Design and implement a pattern-matching input operation. Use printf-style format
strings to specify a pattern. It should be possible to try out several patterns against some
input to find the actual format. One might derive a pattern-matching input class from istream.

[17] (∗4) Invent (and implement) a much better kind of pattern for pattern matching. Be specific
about what is better about it.

[18] (∗2) Define an output manipulator based that takes two arguments – a base and an int value –
and outputs the integer in the representation specified by the base. For example, based(2,9)

should print 1001.
[19] (∗2) Write manipulators that turn character echoing on and off.
[20] (∗2) Implement Bound_form from §38.4.5.3 for the usual set of built-in types.
[21] (∗2) Re-implement Bound_form from §38.4.5.3 so that an output operation never overflows

its width(). It should be possible for a programmer to ensure that output is never quietly trun-
cated beyond its specified precision.

2030 Exercises Appendix X

[22] (∗3) Implement an encr ypt(k) manipulator that ensures that output on its ostream is encrypted
using the key k. Provide a similar decr ypt(k) manipulator for an istream. Provide the means
for turning the encryption off for a stream so that further I/O is cleartext.

[23] (∗2) Trace a character’s route through your system from the keyboard to the screen for a sim-
ple:

char c;
cin >> c;
cout << c << endl;

[24] (∗2.5) There is a standard way of reading, writing, and representing dates under control of a
locale. Find it in the documentation of your implementation and write a small program that
reads and writes dates using this mechanism. Hint: struct tm.

[25] (∗2.5) Define an ostream called ostrstream that can be attached to an array of characters (a C-
style string) in a way similar to the way ostringstream is attached to a string. Howev er, do not
copy the array into or out of the ostrstream. The ostrstream should simply provide a way of
writing to its array argument. It might be used for in-memory formatting like this:

char buf[message_siz e];
ostrstream ost(buf,message_siz e);
do_something(arguments,ost); // output to buf through ost
cout << buf; // ost adds terminating 0

An operation such as do_something() can write to the stream ost, pass ost on to its suboperations,
etc., using the standard output operations. There is no need to check for overflow because ost

knows its size and will go into fail() state when it is full. Finally, a display() operation can write
the message to a ‘‘real’’ output stream. This technique can be most useful for coping with cases
in which the final display operation involves writing to something more complicated than a tradi-
tional line-oriented output device. For example, the text from ost could be placed in a fixed-
sized area somewhere on a screen. Similarly, define class istrstream as an input string stream
reading from a zero-terminated string of characters. Interpret the terminating zero character as
end-of-file. These strstreams were part of the original streams library and can often be found in
<strstream.h>.

X.40 Locales
[1] (∗2.5) Define a Season_io (§39.3.2) for a language other than American English.
[2] (∗2) Define a Season_io (§39.3.2) class that takes a set of name strings as a constructor argu-

ment so that Season names for different locales can be represented as objects of this class.
[3] (∗3) Write a collate<char>::compare() that gives dictionary order. Preferably, do this for a lan-

guage, such as German or French, that has more letters in its alphabet than English does.
[4] (∗2) Write a program that reads and writes bools as numbers, as English words, and as words

in another language of your choice.
[5] (∗2.5) Define a Time type for representing time of day. Define a Date_and_time type by using

Time and a Date type. Discuss the pros and cons of this approach compared to the Date from
(§39.4.4). Implement locale-sensitive I/O for Time and Date_and_time.

Section X.40 Locales 2031

[6] (∗2.5) Design and implement a postal code (zip code) facet. Implement it for at least two
countries with dissimilar conventions for writing addresses. For example: NJ 07932 and
CB21QA .

[7] (∗2.5) Design and implement a phone number facet. Implement it for at least two countries
with dissimilar conventions for writing phone numbers. For example, (973) 360−8000 and
1223 343000.

[8] (∗2.5) Experiment to find out what input and output formats your implementation uses for
date information.

[9] (∗2.5) Define a get_time() that ‘‘guesses’’ about the meaning of ambiguous dates, such as
12/5/1995, but still rejects all or almost all mistakes. Be precise about what ‘‘guesses’’ are
accepted, and discuss the likelihood of a mistake.

[10] (∗2) Make a list of the locales supported on your system.
[11] (∗2.5) Figure out where named locales are stored on your system. If you have access to the

part of the system where locales are stored, make a new named locale. Be very careful not to
break existing locales.

[12] (∗2) Compare the two Season_io implementations (§39.3.2 and §39.4.7.1).
[13] (∗2.5) Implement I/O of Roman numerals (such as XI and MDCLII).
[14] (∗2.5) Implement and test Cvt_to_upper (§39.4.6).
[15] (∗2.5) Use clock() to determine average cost of (1) a function call, (2) a virtual function call,

(3) reading a char, (4) reading a 1-digit int, (5) reading a 5-digit int, (6) reading a 5-digit dou-

ble, (7) a 1-character string, (8) a 5-character string,and (9) a 40-character string. (∗6.5)
Learn another natural language.

X.41 Numerics
[1] (∗1.5) Write a function that behaves like apply() from §40.5.3, except that it is a nonmember

function and accepts function objects.
[2] (∗1.5) Write a function that behaves like apply() from §40.5.3, except that it is a nonmember

function, accepts function objects, and modifies its valarray argument.
[3] (∗2) Complete Slice_iter (§40.5.4). Take special care when defining the destructor.
[4] (∗1.5) Rewrite the functions in §29.3.3 using accumulate().
[5] (∗2) Implement I/O operators << and >> for valarray. Implement a get_array() function that

creates a valarray of a size specified as part of the input itself.
[6] (∗2.5) Define and implement a three-dimensional matrix with suitable operations.
[7] (∗2.5) Define and implement an n−dimensional matrix with suitable operations.
[8] (∗2.5) Implement a valarray-like class and implement + and ∗ for it. Compare its performance

to the performance of your C++ implementation’s valarray. Hint: Include x=0.5(x+y)+z among
your test cases and try it with a variety of sizes for the vectors x, y, and z.

[9] (∗3) Implement a Fortran-style array For t_array where indices start from 1 rather than 0.
[10] (∗3) Implement Matrix using a valarray member as the representation of the elements (rather

than a pointer or a reference to a valarray).
[11] (∗2) Generalize the idea from the program in §40.7 into a function that, given a generator as

an argument, prints a simple graphical representation of its distribution that can be used as a

2032 Exercises Appendix X

crude visual check of the generator’s correctness.
[12] (∗1) If n is an int, what is the distribution of (double(rand())/RAND_MAX)∗n?
[13] (∗2.5) Plot points in a square output area. The coordinate pairs for the points should be gen-

erated by Urand(N), where N is the number of pixels on a side of the output area. What does
the output tell you about the distribution of numbers generated by Urand?

[14] (∗2) Implement a Normal distribution generator, Nrand.

X.42 Concurrency
[1] ???

X.43 Threads and Tasks
[1] ???

X.44 The C Standard Library
[1] ???

X.45 Compatibility
[1] (∗2.5) Take a C program and convert it to a C++ program; list the kinds of non-C++ con-

structs used and determine if they are valid ANSI C constructs. First convert the program to
strict ANSI C (adding prototypes, etc.), then to C++. Estimate the time it would take to con-
vert a 100,000 line C program to C++.

[2] (∗2) Without looking in the book, write down as many C++ keywords as you can.
[3] (∗2) Write a standards-conforming C++ program containing a sequence of at least ten differ-

ent consecutive keywords not separated by identifiers, operators, punctuation characters, etc.
[4] (∗2.5) Write a program to help convert C programs to C++ by renaming variables that are

C++ keywords, replacing calls of malloc() by uses of new, etc. Hint: don’t try to do a perfect
job.

[5] (∗2) Replace all uses of malloc() in a C-style C++ program (maybe a recently converted C
program) to uses of new.

[6] (∗2.5) Minimize the use of macros, global variables, uninitialized variables, and casts in a C-
style C++ program (maybe a recently converted C program).

[7] (∗3) Take a C++ program that is the result of a crude conversion from C and critique it as a
C++ program considering locality of information, abstraction, readability, extensibility, and
potential for reuse of parts. Make one significant change to the program based on that cri-
tique.

[8] (∗2) Take a small (say, 500 line) C++ program and convert it to C. Compare the original
with the result for size and probable maintainability.

Section X.45 Compatibility 2033

[9] (∗3) Write a small set of test programs to determine whether a C++ implementation has ‘‘the
latest’’ standard features. Checking for keywords is easy. For example, is constexpr recog-
nized? Are delegating constructors supported? Can you inherit constructors?

[10] (∗2.5) Take a C++ program that use <X.h> headers and convert it to using <X> and <cX> head-
ers. Minimize the use of using-directives.

2034 Exercises Appendix X

