
Possible Directions for C++0x

Bjarne Stroustrup
AT&T Labs – Research

http://www.research.att.com/~bs

Abstract
The ISO C++ standard comes up for renewal in 2003. By then, we need to

have a good idea where the language and standard library is going, and
some concrete proposals. So the committee has started a project to create
a standard libraries TR (chaired by Matt Austern) and established an
"evolution" working group (chaired by me) to chart a course for the
standard as a whole and to consider early proposals for new libraries and
language features.

This talk presents my views of general directions for C++0x and gives
examples of possible new language features and libraries. The brief
summary of my position is that we should be reluctant to add language
features and add only a few, but ambitious and opportunistic in our
pursuit of new standard libraries. I propose two overall goals: Make C++
a better language for systems programming and library building. And,
make C++ easier to teach and learn.

60 minutes

Overview

• Problems and general directions
• Minimal core language extensions
• Ambitious standard library extensions
• Religious quagmire: C/C++ compatibility

C++ ISO Standardization

• Membership
– About 22 nations (8 to 12 represented at each meeting)

• ANSI hosts the technical meetings
• Other nations have further technical meetings

– About 100 active members (50+ at each meeting)
• About 200 members in all
• Down ~50% from its height (1996), up again last year

• Process
– formal, slow, bureaucratic, and democratic
– “the worst way, except for all the rest”

Standardization – why bother?

• Directly affects millions
– Huge potential for improvement

• So much code is appallingly poor

• Defense against vendor lock-in
– Only a partial defense, of course

• There are still new techniques to get into use
– Require language or standard library support to

affect mainstream use

Why mess with a good thing?
• The ISO Standard is good

• but not perfect

• ISO rules require review
• Community demands consideration of new ideas

• We face increasingly difficult tasks
• We == programmers and system designers

• The world changes
• and poses new challenges

• We have learned a lot since 1996
• When the last of the ISO C++ features was proposed

• Stability is good
• but the computing world craves novelty
• Without challenges, the best people will depart for greener pastures

Problems
• How to be responsive to real needs

– Standardization attracts bureaucrats, formalists
• How to gain feedback, experience

– People are unwilling to try major things unless
• They can make money selling it,

but then it becomes proprietary and can’t become standard
• It is standard,

but then it’s too late to experiment with it

• Compatibility
– K&R C, C89, C99, ARM C++, C++98

• “all C++ programmers are also C programmers”
– Proprietary extensions

• Often different extensions reflect a common need

Standardization: Why bother?

• Some windmills just have to be fought!
– It’s simply the right thing to do

Overall goals

• Make C++ a better language for systems
programming and library building
– Rather than providing specialized facilities for a particular sub-community

(e.g. numeric computation or Windows application development)

• Make C++ easier to teach and learn
– Through increased uniformity, stronger guarantees, and facilities

supportive of novices (there will always be more novices than experts)

General Directions
• Minimize incompatibilities with C++98
• Many ideas cut across the language/library barrier

– Look for minimal language support allowing major library improvement
• Prefer library extension to language extension

– Make rules more general and uniform
– Support communities

• Language extensions
– Maintain or increase type safety
– Zero-overhead principle
– Increase expressiveness through general mechanisms

• Library extensions
– Increase facilities of system-independent platform
– Support distributed systems programming

Language Directions

• Minimize extensions
– Be careful, deliberate, conservative, skeptic

• Make rules more general and uniform
– Improve support for generic programming
– Improve general guarantees (increase uniformity)

• Look to support whole communities, e.g.
– improve support low-level embedded programming
– improve binding to “dynamic” systems?

• Can we support modern GUI/component/system interfaces without
major language changes or proprietary extensions?

Core language ideas

• Increase consistency
– identical lookup for functions and function objects
– decrease variation between implementations

• to increase portability
• Minimize “implementation dependent/undefined/…”

• Improve support for generic programming
– typedef templates
– maybe typeof()
– maybe better template overload resolution

• Remove embarrassments
– Frequent questions, frequent novice errors

Example: template typedef

• Typedef templates (mistakenly rejected early on)

template<class T1, class T2> class X { /* … */ };
template<class T> typedef X<T,int> Xi;
Xi<double> d; // equivalent to X<double,int> d;

template<class T, class U> class X { /* … */ };
typedef<class T> typedef <T,vector<T>> Xv;
Xv<int> v; // equivalent to X<int,vector<int>> v;

Example: typeof/auto

• Problem:
– Express result of operation dependent on template parameters

• Naïve solution:
template<class A, class B>
typeof(a*b) operator*(A a, B b) // problem: scope of a, b, and *
{

typeof(a*b) x = a*b; // problem: expression replicated
// …
return x;

}

// problem: typeof(X&) == typeof(X)?

Example: typeof/auto
• Solve half the problem

– (first implemented in 1982!)

template<class A, class B> typeof(a*b) operator*(A a, B b)
{

auto x = a*b; // avoid replication of expression/type
// …
return x;

}

• What about non-local uses?:
auto glob = x*y; // would dcl or typeof be a better keyword for this?

Example: typeof
• Solutions to scope problem:

template<class A, class B>
function operator*(A a, B b) -> typeof(a*b); // return type last

// big change: function keyword
// : and return are obvious alternatives for ->

template<class A, class B>
typeof(a*b) operator* (A a, B b) ; // “lookahead parsing”

// ugly/messy
template<class A, class B>
typeof(A*B) operator*(A a, B b); // use typenames

// not general
template<class A, class B>
typeof((*(A*)0)*(*(B*)0)) operator*(A a, B b); // hack

Example: Better overloading support?
char cvrt(char); // function

struct Cvrt {
int v;
cvrt(int vv) :v(vv) { }
int operator()(int vv) { return fct(v,vv); }

};
Cvrt cvrt(10); // function object

void f(int x, int* b, int* e)
{

int xx = cvrt(x); // function object
char c = cvrt(‘q’); // function
foreach(b,e, cvrt); // function object (but how do we know?)

}

Provide trivial solutions
to trivial beginners’ problems

• Tends to cut across the language/library barrier
– string to int and int to string (without stringstream)
– a vector and a string that are range checked by default
– Provide very simple graphics system?
– Provide very simple GUI functionality?

• Political quagmire

Remove embarrassments

• Scoped macros:
#scope A B C
//…
#endscope C D E

• “Natural” end of template testing
vector<complex<double>> vcd; // no space between >s

Example: Safelib
#include<safelib>
using namespace safelib;

int main()
{

string s;
cin >> s;
int n = extract<int>(s); // throws if no int to extract
char p[27];
cin >> p; // sorry: safelib::cin doesn’t support reading into arrays
vector<int> v(10);
int i = v[99]; // oops: throws out_of_range

}
catch (…) {

cerr << “oops!”;
}

Explicitly admit GC as a valid
implementation technique

• Don’t make the C++ semantics dependent on GC
– Define destructor semantics

• GC do not call destructor (“infinite memory model”)
• Provide “registration” mechanism? (hard: probably not a good idea)

• Encourage GC as an option on every implementation
• Don’t promote GC as a panacea

– Resource management

Library Directions

• Increase facilities of system-independent platform
– Opportunistic, ambitious

• Support distributed systems programming
– Basic concurrency
– Simple, clean, implementation-independent model

• Support a notion of optional library components
– Not every system can support every standard library facility
– “if we support X, it must meet these requirements”

Standard library ideas
• Elements of standard platform

– set of resource handles supporting “resource acquisition is initialization”
– directories, TCP/IP, advanced I/O (async, multiplex, memory map), …

• Make the standard library central to bindings to other systems
– CORBA, SQL, …

• Distributed computing
– XTI (eXtended Type Information)
– Threads
– Remote invocation (incl. Async)
– Remote instantiation, name server interface

• Add a few “general utility” facilities
– Hash_map
– Pattern matching
– Properties
– Constraints checking

Example: Constraints checking
template<class T> struct Comparable {

static void constraints(T a, T b) { a<b; a<=b; } // the constraint check
Comparable() { void (*p)(T,T) = constraints; } // trigger the constraint check

};

template<class T> struct Assignable { /* … */ };

template<class T> class Range
: private Comparable<T>, private Assignable<T> {
// …

};

Range<int> r1(1,5,10); // ok
Range< complex<double> > r2(1,5,10); // constraint error: no < or <=

Example: XTI/XPR/D++

• Problems to be addressed
– Programming distributed systems

• Marshalling/unmarshalling
• Multitude of IDL “standards”
• Poor C++ bindings

– Serialization
– XML generation
– Program manipulation

• Possible solutions: my XTI talk

Example: XTI/XPR/D++

• “as similar as possible to non-distributed programming, but no
more similar”
– Asynchronous calls, multicasts, etc.

// use local object:

X x;

A a;

std::string s("abc");

// …

x.f(a, s);

// use remote object :

proxy<X> x;

x.connect("my_host");

A a;

std::string s("abc");

// …

x.f(a, s);

Relationship with platform services

• XTI can
– be common interface to common services

• Minimizing a program’s platform dependencies
– extend platform services to cover Standard C++

• Platforms often support “common language facilities” only
– support platform-specific facilities through optional extensions to XTI

• potential for thin layer common interfaces to non-universal services
• Hard to do

XTI

Platform A
Platform X

How do we get libraries to include?

• The committee is not a good forum for design
– Wait and hope?
– Everybody go off and write their own?

• Boost.org
– Look for existing library to co-opt/adopt?
– Committee requests for proposals?

• Obvious potential problems
– Lack of experience for new libraries
– Lack of compatibility for old libraries
– Proprietary aspects of libraries

C/C++ compatibility

• There is no C/C++ language
– There is a C/C++ community

• C and C++ are diverging
– For not very good reasons (IMO)

• Some consider C/C++ diversion “a good thing”

• “We” should make an effort to minimize incompatibilities
– Or C++0x and C0x will end up not being able to share

• data structures, interfaces, and headers
• Tools, implementations, libraries

– There will be a holy mess of C/C++ dialects
• with associated “rwars”

Simula BCPL

K&R C

Classic C

C89

C99

C with Classes

ARM C++

C++98

1980

1998

1989

1967

1978

Sharing C89/C++ headers
• Relatively easy:

– Avoid C++ features
class X { /* ... */ }; // not C

– Be slightly careful about C89 features
struct S { int class; /* ... */ }; // not C++

– Sometimes simple “mediation code” is needed
// C interface:
extern int f(struct X* p, int i);

// C++ implementation of C interface:
extern "C" int f(X* p, int i) { return p->f(i); }

C99 interface features
not found in C99 or C89

void f1(int[const]); // equivalent to f(int *const);
void f2(char p[static 8]); // p is supposed to point to at least 8 chars
void f3(double *restrict);
void f4(char p[*]); // p is a VLA

inline void f5(int i) { /* ... */ } // may or may not be C++ also

void f6(_Bool);
void f7(_Complex);

#define M(a …) something

C89

C++98 C99

C89 only can call undeclared function

C++ only templates

C99 only variable length arrays

C89 and C++ can use restrict as an identifier

C89 and C99 Algol-style definitions

C++ and C99 // comments

C89, C++, and C99 structs

My nightmare

C89

C++98 C99

C++0x C0x

And remember the proprietary dialects

C/C++ compatibility

• My ideal: one language
– A common language would benefit community

• C/C++ isn’t a language – the notion does harm
• The is a large C/C++ community

• Politically very difficult
– Both sides must give up something
– “Establishments” seem to hate change

• Technically non-trivial
– Obvious potential problems

• Type-safety
• C arrays

Directions
• General

– Make C++ a better language for systems programming and library building
– Make C++ easier to teach and learn
– Minimize incompatibilities with C++98

• Language
– Minimize extensions

• Prefer standard library extensions to language extensions
– Make rules more general and uniform
– Maintain or increase type safety
– Zero-overhead principle

• Library
– Increase facilities of system-independent platform

• Opportunistic, ambitious
– Support distributed systems programming
– Support a notion of “optional library component”

