Directions for C++0x

Bjarne Stroustrup

AT&T Labs — Research
http://www.research.att.com/~bs



Prerequisites for goals

Exciting enough to attract good people to the committee
Ambitious enough to serve users well

Compatible enough to make transition simple

Specific enough to clearly state aim



If we do nothing about direction

C++ will fossilize
C++ will become de facto proprietary
C++ will be dominated by bindings to external “standards”

The committee will become a small club
— Will focus on minute details of increasing irrelevance to programmers

Changes will be made without direction

Some say that this has already happened, but 1997-2001
was a deliberate period of calm to enhance stability

— Now Is the time to start discussing and planning



Prerequisites imply

e Focus on a few major topics

* Minor changes should be done to increase language and
standard library uniformity and consistency
— No major new language features are needed
« Changes should focused on support for programming
styles and for application areas
— Not language technicalities



Overall goals

 Make C++ a better language for systems
programming and library building

— Rather than providing specialized facilities for a particular sub-community
(e.g. numeric computation or Windows application development)

e Make C++ easier to teach and learn



My view of directions

Extend standard primarily through major standard library additions
— Provide support for distributed programming

— Improve support for platform-independent systems programming

Remove inconsistencies and errors from core language

— Don’t add major extensions

— Remove embarrassments

Offer a merger of C and C++ standards
— We need a small joint C/C++ group to agree on rules for a merger

Don’t compromise C++ as a systems programming language
— 0-overhead principle

Minimize incompatibilities with C++98

— Complete compatibility infeasible

— Be as careful as the C committee was



Standard library ideas

(suggested concrete examples)

Simple elements of standard platform
— set of resource handles supporting “resource acquisition is initialization”
— directories, TCP/IP, advanced 1/0O (async, multiplexed, memory mapped)...

Distributed computing

— XTI (eXtended Type Information)

— Threads

— Remote invocation (incl. Async)

— Remote instantiation, name server interface

Make the standard library central to bindings to other systems
— CORBA, SQL, ...

Add a few “general utility” facilities

— Hash_map

— Pattern matching



Core language Ideas

(suggested concrete examples)

 Increase consistency
— 1dentical lookup for functions and function objects

* Improve support for generic programming
— template typedefs, typeof()

e Remove embarrassments

— Frequent questions, frequent novice errors
 avector and a string that are range checked by default
 Prohibit default copying of objects with destructors
 Give a class with virtual functions a virtual destructor by default

— vector<list<int>>



