
Directions for C++0x

Bjarne Stroustrup
AT&T Labs – Research

http://www.research.att.com/~bs



Prerequisites for goals

• Exciting enough to attract good people to the committee
• Ambitious enough to serve users well
• Compatible enough to make transition simple
• Specific enough to clearly state aim



If we do nothing about direction
• C++ will fossilize
• C++ will become de facto proprietary
• C++ will be dominated by bindings to external “standards”
• The committee will become a small club

– Will focus on minute details of increasing irrelevance to programmers
• Changes will be made without direction

• Some say that this has already happened, but 1997-2001 
was a deliberate period of calm to enhance stability
– Now is the time to start discussing and planning



Prerequisites imply

• Focus on a few major topics
• Minor changes should be done to increase language and 

standard library uniformity and consistency
– No major new language features are needed

• Changes should focused on support for programming 
styles and for application areas
– Not language technicalities



Overall goals

• Make C++ a better language for systems 
programming and library building
– Rather than providing specialized facilities for a particular sub-community 

(e.g. numeric computation or Windows application development)

• Make C++ easier to teach and learn



My view of directions
• Extend standard primarily through major standard library additions

– Provide support for distributed programming
– Improve support for platform-independent systems programming

• Remove inconsistencies and errors from core language
– Don’t add major extensions
– Remove embarrassments

• Offer a merger of C and C++ standards
– We need a small joint C/C++ group to agree on rules for a merger

• Don’t compromise C++ as a systems programming language
– 0-overhead principle

• Minimize incompatibilities with C++98
– Complete compatibility infeasible
– Be as careful as the C committee was



Standard library ideas
(suggested concrete examples)

• Simple elements of standard platform
– set of resource handles supporting “resource acquisition is initialization”
– directories, TCP/IP, advanced I/O (async, multiplexed, memory mapped)…

• Distributed computing
– XTI (eXtended Type Information)
– Threads
– Remote invocation (incl. Async)
– Remote instantiation, name server interface

• Make the standard library central to bindings to other systems
– CORBA, SQL, …

• Add a few “general utility” facilities
– Hash_map
– Pattern matching



Core language ideas 
(suggested concrete examples)

• Increase consistency
– identical lookup for functions and function objects

• Improve support for generic programming
– template typedefs, typeof()

• Remove embarrassments
– Frequent questions, frequent novice errors

• a vector and a string that are range checked by default
• Prohibit default copying of objects with destructors
• Give a class with virtual functions a virtual destructor by default

– vector<list<int>>


