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Abstract 
C++ is a large and complicated language. People get lost in details. However, to write good C++ you only 
need to understand a few fundamental techniques – the rest is indeed details. This paper presents a few 
fundamental examples and explains the principles behind them.  Among the issues touched upon are 
type safety, resource management, compile-time computation, error-handling, concurrency, and 
performance. The presentation relies on and introduces a few features from the recent ISO C++ 
standard, C++11, that simplify the discussion of C++ fundamentals and modern style. 

Introduction 
A programming language – any programming language – has a few fundamental constructs, techniques, 
and underlying models. Understand those and you have a good idea of what can be expressed in the 
language, and how. In addition, most languages – and especially older languages that are maintained 
with a concern for compatibility – provides a host of “incidental” features that can distract from 
understanding and complicate use. Here, I will briefly present most of the key concepts of C++. 
Naturally, my presentation will not be complete in either features offered or their details. That’s what 
textbooks and standards are for. So, with the caveat that there is always much more that could be said, 
here we go! 

C++ is defined by its ISO Standard [ISO11]. A detailed description can be found in [BS00], a tutorial for 
beginners in [BS08], and a list of language and library features added for C++11 in [BS-FAQ]. 

I assume that you know about traditional naming and lexical scoping so I don’t waste time on such 
topics. Similarly, I assume that you are at least superficially acquainted with C/C++ syntax and linkage 
conventions. 

Ideals 
The aim of C++ is to help in classical systems programming tasks. It supports the use of light-weight 
abstraction for resource-constrained and often mission-critical infrastructure applications. The aim is to 
allow a programmer to work at the highest feasible level of abstraction by providing 
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• A simple and direct mapping to hardware 
• Zero-overhead abstraction mechanisms 

The aim is to support a type-rich style of programming. In particular, C++ supports type-safe 
programming with a non-trivial set of types. 

By “light-weight abstraction,” I mean abstractions that do not impose space or time overheads in excess 
of what would be imposed by careful hand coding of a particular example of the abstraction. 

Naturally, not every application meets these ideals and C++ provides no mechanisms for enforcing 
ideals. In particular, a programmer can choose to write a low-level-C style and/or violate every rule of 
good programming. That is not my topic here. 

Memory and Objects 
C++ maps directly onto hardware. Its basic types (such as, char, int, and double) map directly into 
memory entities (such as, bytes and words), most arithmetic and logical operations provided by 
processors are available for those types. Pointers, arrays, and references directly reflect the addressing 
hardware. There is no “abstract”, “virtual” or mathematical model between the C++ programmer’s 
expressions and the machine’s facilities. Memory is seen as sequences of bytes. A typed object is given a 
location in memory (a sequence of bytes) and values are placed in such objects. Sequences of objects 
are dealt with as arrays, typically accessed through pointers holding machine addresses. Often, code 
manipulates sequence of objects defined by a pointer to the beginning of an array and a pointer to one-
beyond-the-end of an array: 

 

That is, the array a can be seen as a half-open sequence of elements [p:q). The flexibility of forming such 
addresses by the user and by code generators can be important. 

User-defined types are created by simple composition. Consider a simple type Point: 

class Point { int x; int y; /* … */ }; 

Point xy {1,2};   // named and scoped object 

Point* p = new Point{1,2}; // free store (dynamic, heap) object 

 

pointer p: 

array a:          

pointer q: 
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A Point is simply the concatenation of its data members, so the size of the Point xy is simply two times 
the size of an int. Named objects (of any built-in or user-defined type) are allocated statically or on the 
stack. Only if we explicitly allocate an (unnamed) Point on the free store (the heap), as done for the 
Point pointed to by p, do we incur memory overhead (and allocation overhead). Similarly, basic 
inheritance simply involves the concatenation of members of the base and derived classes: 

class X { int b; } 

class Y : public X { int d; }; 

 

Only when we add virtual functions (C++’s variant of run-time dispatch supplying run-time 
polymorphism), do we need to add supporting data structures, and those are just tables of functions: 

class Shape {    // a base class; an interface 
public: 
 virtual void draw() = 0; 
 virtual Point center() const = 0; 
 // … 
}; 
 
Class Circle : public Shape {  // a derived class 
 Point c; 
 double radius; 
public: 
 void draw() { /* draw the circle */ } 
 Point center() const { return c; } 
 // … 
}; 
 
Shape* p = new Circle{Point{1,2},3.4}; 
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What you see is what you get. For more details see [BS04]. In general, C++ implementations obey the 
zero-overhead principle: What you don’t use, you don’t pay for [BS94]. And further: What you do use, 
you couldn’t hand code any better. 

Please note that not every language provides such simple mappings to hardware and obeys these simple 
rules. Consider the C++ layout of an array of objects of a user-defined type: 

class complex { double re, im; /* … */ }; 
complex a[ ] = { {1,2}, {3,4} }; 

 

The likely size is 4*sizeof(double) which is likely to be 8 words (assuming a 32-bit word). Compare this 
with a more typical layout from a “pure object-oriented language” where each user-defined object is 
allocated separately on the heap and accessed through a reference: 

 

The likely size is 3*sizeof(reference)+3*sizeof(heap_overhead)+4*sizeof(double). Assuming a reference 
to be one word and the heap overhead to be two words, we get a likely size of 19 words to compare to 
C++’s 8 words. This memory overhead comes with a run-time overhead from allocation and indirect 
access to elements. That indirect access to memory typically causes problems with cache utilization and 
limits ROMability. 
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Memory is turned into an object containing a value of some type by a constructor [BS94, TR12]. This 
operation is reversed by a destructor: after a destructor is run the object no longer exist and its former 
location is simply memory again. The meaning of constructors and destructors for built-in types and 
simple aggregates are language defined. For more complex types, the programmer can define 
constructors and destructors. 

 

Compile-time Computation 
Sometimes, we prefer a computation be done at compile-time. The reasons vary, for example: 

• Efficiency: To pre-calculate a value (often a size). For simple cases, that is done by an optimizer. 
Examples include object and array sizes and table values. 

• Type-safety: To compute a type at compile time.  
• Simplify concurrency: you can’t have a race condition on a constant. 

In C++11, we can do type-rich computation at compile time. Consider a simple distance calculation: 

constexpr double d = dist(NewYork,Boston); 
 

Here I assume that the city names are 2D grid points and that dist() computes the distance between 
them. The constexpr keyword is C++’s way of requesting compile-time evaluation. The code doing the 
calculation might look like this: 

struct City { double  x, y }; 
constexpr double csqrt(double) { /* calculate square root */ } 
constexpr double square(double d) { return d*d; } 
constexpr double dist(City c1, City c2) 

 { return csqrt(square(abs(c1.x-c2.x))+square(abs(c1.y-c2.y))); } 
  

I had to define my own csqrt() because the standard library sqrt() isn’t designed to work at compile 
time; constexpr is C++’s way of requiring that a function is executable at compile-time. If I wanted to, I 
could add unit checking [GDR10, BS12]: 

constexpr Distance d = dist_in_km(NewYork,Boston); 
 

Various forms of user-specified compile-time computation are essential in critical embedded systems 
applications, much low-level code, and many high-end numerical applications. 

Memory (bits) Memory (bits) 

Object 
(containing a value) 

constructor destructor 
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Error Handling 
Errors that cannot be handled locally are reported by throwing an exception. An exception is a value of 
some type, usually a user-defined type. Code that is interested in handling a type of exception provides 
a handler (catch-clause) for it. For example: 

void do_task(int i) 
{ 
 if (i==0) throw std::runtime_error{“zero argument to do_task”}; 
 If (i<0) throw Bad_arg{i}; 
 // do the task and return normally 
} 
 
void task_master(int i) 
{ 
 try { 
  do_task(i); 
  // … 
 } 
 catch (Bad_arg a) { 
  Cout << “do_task called with negative argument” << a.val << “\n”; 
 } 
} 
 

Code that cannot perform its required task throws an exception and that code that requests a task to be 
done provides a handler for the kinds of errors it is prepared to handle. If an exception that the 
requestor has not expressed interest in is thrown, the requestor itself fails.  

Exceptions can – and often do – carry information. A catch-clause is associated with a try-block. An 
exception propagated up the call stack until caught. An uncaught exception causes program 
termination. A thread can transfer a thrown exception (that it is not willing to handle) to another 
(calling) thread. 

For hard-real-time programming (and only for that), this exception-based error handling must be 
abandoned for a lower-level error-handling style. The reason is that it is hard to provide good real-time 
guarantees for exception propagation. 

Containers 
How do you store a lot of data? We place it in user-defined containers, such as vectors, lists, and maps.  
The archetypical C++ container is the vector. Here is a simple first Vector: 

template<typename T>  // T is the element type 
class Vector { 
public:  
 Vector();   // default constructor; make empty vector 
 Vector(int  n);   // constructor: initialize to n elements of default type 
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 Vector(initializer_list<T>) ; // constructor: initialize with a list of elements 
 ~Vector();   // destructor: deallocate elements 
 int size() ;   // number of elements 
 T& operator[](int i);  // access the ith element 
 void push_back(const T& x); // add x as a new element at the end of the vector 
 T* begin();   // fist element 
 T* end();   // one-beyond-last element 
private:  
 int sz;    // number of elements 

T* elem;   // pointer to sz elements of type T 
}; 
 

T* means “pointer to T” and T& means “reference to T.” Given that declaration, we can allocate and 
manipulate elements of an arbitrary type, T: 

void f(Vector<string>& vs) 
{ 
 Vector<int> sizes; 
 for (auto  x : vs)  // loop through all elements of vs 

sizes.push_back(x.size()); 
 if (0<vs.size()) 

vs[0] = “Whatever!”; 
 // …  
} 
 

The range-for loop uses Vector’s begin() and end() members to determine its range. We might call f() 
like this: 

int main() 
{ 
 f({“Wheeler”,  “Wilkes”,  “Radcliffe”,  “Appleton”, “Rutherford”}); 
 Vector<string> places(10); // 10 empty strings 

places[2] = ”Cambridge”; 
places[4] = “Princeton”; 
// … 

 f(places); 
} 
 

The declaration of Vector separates the class into two parts, the public interface and the private 
implementation (so far, just a representation). The implementation of the Vector consists of the 
definitions of the member functions. In particular, the constructors and the destructor manage a 
Vector’s resource, its elements: 

template<typename T> 
Vector<T>::Vector(int n) // make a vector with n elements of default value 

:sz{n}, 
 elem{allocate<T>(sz)} // allocate space for sz elements of type T 
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{ 
 If (sz<0) throw std::runtime_error{“negative Vector size”};  
 std::uninitialized_fill(elem,elem+sz,T{}); // initialize to default 
} 
 

The standard technique is to throw an exception if a constructor cannot establish its invariant. Here the 
invariant is that elem points to sz elements of type T allocated on the free store by allocate<T>(sz), a 
simplified version of the standard allocator mechanism. The std:: is used to indicate facilities provided 
by the ISO C++ standard library (so we don’t have to do it ourselves). A constructor handling {} lists is 
defined as taking an argument of the standard-library type initializer_list: 

template<typename T> 
Vector<T>::Vector(std::initializer_list<T> lst) // make a vector with element from the list 

:sz{lst.size()}, 
 elem{allocate<T>(sz)} 

{ 
std::uninitialized_copy(lst.begin(), lst.end(), elem); 

} 
 

The destructor releases resources acquired: 

template<typename T> 
Vector<T>::~Vector() 
{ 
 destroy<T>(elem,n); // invoke member destructors; then deallocate elem[] 
} 
 

The destroy function is a simplification of the deallocation part of the standard allocator mechanism. 

This Vector is pretty basic, but is illustrates several fundamental C++ techniques and their supporting 
language features. Containers and resource management are not built into the language or into a run-
time support system. Instead, only the minimal facilities for dealing with objects and fixed-sized 
sequences of objects in memory are “built-in.” Everything else is “user-defined” and often provided by 
libraries written in C++. The standard library vector, map, set, and list are examples of containers built 
using the techniques presented here: 

• classes for separating interfaces from implementations, 
• constructors for establishing invariants, including acquiring resources, 
• destructors for releasing resources, 
• templates for parameterizing types and algorithms with types 
• mapping of source language features to user-defined code specifying their meaning, e.g. [] for 

subscripting, the for-loop, new/delete for construction/destruction on the free store, and the {} 
lists. 

• use of half-open sequences, e.g. [begin():end()), to define for-loops and general algorithms. 
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• Use of standard-library facilities to simplify specification and implementation 

Importantly, this abstraction from “memory” to “containers of objects” carries no overheads beyond the 
code necessarily executed for memory management, initialization, and error checking. 

Note that 

• There is no data stored in a Vector object beyond the two named members 
• There is no requirement that the element type should be part of a hierarchy. The only 

requirements on a template argument are imposed by its use; this is “duck typing.” 
• The operations on a Vector are not required to be dynamically resolved (virtual). Simple 

operations, such as size() and [], are typically inlined. 

In other words, these language features and techniques (“abstraction mechanisms”) are light weight, 
aimed for use in demanding systems programming and infrastructure implementation tasks. I could, of 
course, have built a few key abstractions, such as vector and string, into the language. The reason not to 
do that is to allow the programmer to define a much larger and varied set of abstractions without losing 
the flexibility and efficiency needed for the most demanding systems programming tasks. 

Copy and Move 
To complete a class, we have to consider if and how objects can be copied and moved around. As 
defined above, Vector cannot be copied: 

Vector capitals { “Helsinki”, “København”, “Riga”, ”Tallinn” }; 
Vector c2 = capitals; // error: no copy defined for Vector 
 

 By default, you can copy only objects with “simple representations.” When I defined a destructor for 
Vector, I implied that I did not consider the representation Vector simple: the elem pointer represents 
ownership. Let us define copy: 

template<typename T> 
Vector<T>::Vector(const Vector& v) // copy constructor 

 : sz{v.sz}, elem{allocate<T>(v.sz)}  
{ 
 std::uninitialized_copy(v.begin(),v.end(), elem); 
} 
 

This defines copy initialization. In addition, we can define assignment of one Vector by another: 

template<typename T> 
Vector<T> Vector<T>::operator=(Vector<T>& v) // copy assignment 
{ 
 Vector<T> tmp {v}; // copy v 
 destroy<T>(elem,sz); // delete old elements 

elem = tmp.elem;  // “steal” tmp’s representation 
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 sz = tmp.sz; 
 

tmp.elem = nullptr; 
tmp.sz = 0; 

 return *this; 
} 
 

I chose to have “copy” mean “copy all elements” because that is the intuitive meaning of assignment, 
fits best with classical mathematical notions, and is what the C++ standard provides for containers. By 
itself, that implies a logical or a performance problem. How do we get a Vector out of a function? 
Consider: 

Vector<int*> find_all(Vector<int>& v, int val) // find all occurrences of val in v 
{ 
 Vector<int*> res; 
 for (int& x : v) 

if (x==val) 
res.push_back(&x); // add the address of the element to res 

  return res; 
} 
 

The member function push_back() is one of the most useful standard-library container functions. It adds 
an element to the end of a container, increasing the container’s size by one. Here, I have omitted its 
definition here to avoid getting side tracked. The find_all algorithm can be use like this: 
 

void  test() 
{ 
 Vector<int> lst { 1,2,3,1,2,3,4,1,2,3,4,5 }; 
 for (int* p :  find_all(lst,3)) 
  cout << “address: “ << p << “, value: “ << *p << ‘\n’; 
 // … 
} 
 

This should work, and it does, but the cost involved in copying the elements out of find_all() can be 
significant. In particular, I might use something like find_all() to locate large numbers of elements in 
Vectors of millions of elements. This makes people search for alternatives to returning a container “by 
value,” such as passing a vector to be filled as an argument, returning a pointer to a result stored on the 
free store, or plugging in a garbage collector. These alternatives all have serious logical or performance 
problems. Fortunately, there is a much simpler and more general solution: Note that I didn’t want to 
copy anything; I just wanted to transfer (move) the result vector out of find_all(). We can define move 
operations in a way very similar to the way we define copy operations. Move operations “steal” the 
representation of an object, leaving behind an “empty” object: 

template<typename T> 
Vector<T>::Vector(Vector&& v)    // move constructor 

: sz{v.sz}, elem{v.elem}  // grab v’s elements 
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{ 
 v.elem = nullptr;  // make v empty 
 v.sz = 0; 
} 
 
template<typename T> 
Vector<T> Vector<T>::operator=(Vector<T>&& v) // move assignment 
{ 
 destroy<T>(elem); // delete old elements 
 elem = v.elem;  // grab v’s elements 
 sz = v.sz; 
 v.elem = nullptr; // make v empty 
 v.sz = 0; 
 return *this; 
} 
 

The && means “rvalue reference” and the effect is that only rvalues can be used as arguments to move 
operations. Rvalues are objects that will not be used again, such as a local variable used as the return 
value. 

By using the move constructor rather than the copy constructor to return the value from find_all(), that 
return is efficient even if the returned Vector happens to have a million elements. 

For this to work, we have to declare the copy and move operations in the definition of Vector: 

template<typename T> // T is the element type 
class Vector { 
public:  
 // … 
 Vector(const Vector&);   // copy constructor 
 Vector(Vector&&);   // move constructor 
 Vector& operator=(const Vector&); // copy assignment 
 Vector& operator=(Vector&&);  // move assignment 
 // … 
}; 
 

If a class provides both move and copy operations, move is preferred for rvalues and copy for lvalues 
[DWB63]. All the standard library containers, including vector and string, have both copy and move 
operations. This implies that for real program, all the moderately clever and complicated code in the last 
two sections have already been done for the programmer. What is left is the much simpler use of 
vector, etc. 

RAII 
Systems manipulate resources. We must manage many kinds of resources, such as files, sockets, locks, 
threads, and database transactions. A resource is anything that a program acquires from another part of 
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the system and must (explicitly or implicitly) release back to its owner after use. An unused and 
unreleased resource is called a leak. Memory is an important example of a resource. If resources are not 
properly released, the system’s performance will suffer and eventually a long-running system will fail for 
lack of usable memory. How do we prevent resource leaks? 

The constructor/destructor technique used for Vector generalizes to any scoped use of a resource and 
the move technique handles transfers of ownership between scopes. The key idea is that a resource is 
always owned by a local (scoped) object. Such a local object is sometimes called a resource handle (e.g. 
file handle), an owner, or simply an interface (e.g. a Vector is the interface to its elements). The handle’s 
constructor acquires the resource and the handle’s destructor releases it. Consider a standard-library 
lock used to ensure exclusive access to some shared data: 

std::mutex m; // a system resource 
int sh;  // shared data 
 
void f() 
{ 
 // … 
 std::unique_lock lck(m); // grab (acquire) the mutex 
 sh+=1;    // manipulate shared data 
}      // implicitly release the mutex 
 

This technique is usually called RAII (“Resource Acquisition Is Initialization”) and is widely used in 
modern C++. 

Looking at a simple example, it is tempting to think that a pair of lock()/unlock() functions would be as 
good or better than using an object of the manager type unique_lock. In practice, it is not so. A handler 
has a destructor, so you cannot forget the release operation. But how could anyone forget something as 
simple as and unlock()? Or forget an fclose(), a free(), or a delete? Well, people do, so resource leaks in 
undisciplined code are common (in any language). There are several reasons, including: 

• Often, a resource doesn’t look like a resource. For example, a File* is just a pointer to the 
compiler and a casual reader and nothing (except the manual) says that fclose() must be called 
to avoid the leak of a file handle. 

• Often, several resources need to be acquired and their patterns of acquisition and release vary. 
• Error handling typically requires that a resource is released only if acquired and that related 

resources are released in some specific order. 
• Complex control structures (especially when several functions are involved) obscure acquisition 

and release patterns. 

Consider a simple example: 

// unsafe, naïve use: 
void f(const char* p) 
{ 
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 FILE* f = fopen(p,"r"); // acquire 
 // use f 
 fclose(f);  // release 
} 
 

This seems innocent enough, but if the “use f” code contains a return statement, a C-style longjmp, or 
an exception throw, we never get to the fclose and we have a leak. This can easily happen if the “use f” 
code is long or complicated. People often try to compensate with code that catches exceptions: 
 

// naïve fix: 
void f(const char* p) 
{ 
 FILE* f = 0; 
 try { 
  f = fopen(p, "r"); 
  // use f 
 } 
 catch (…) {  // handle every exception 
  if (f) fclose(f); 
  throw; // re-throw; let a caller handle this exception 
 } 
 if (f) fclose(f); 
} 
 

It is easy to devise a prettier syntax (e.g., Java’s finally), but the fundamental problem is that this 
requires the programmer’s attention in each place a resource is used. We may open files in dozens of 
places in a program and in each place the programmer has to remember that fopen() acquires a file and 
remember to release it. Using return values to handle errors, rather than exceptions, doesn’t reduce the 
complexity. 

The solution is to explicitly represent the file handle as a resource: 

 class File_handle { // belongs in some support library 
  FILE* p; 
 public: 
  File_handle(const char* pp, const char* r) 
   { p = fopen(pp,r); if (p==0) throw File_error{pp,r}; } 
  File_handle(const string& s, const char* r) 
   { p = fopen(s.c_str(),r); if (p==0) throw File_error{pp,r}; } 
  ~File_handle() { fclose(p); } // destructor: close file 
  // copy and/or move operations 
  // access functions 
 }; 
 
Now we can simplify the original code to: 
 
 void f(string s) 
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 { 
  File_handle fh {s, "r"}; 
  // use fh 
 } 
 
The handle class, here File_handle, needs only be defined once and put in a library. For example, 
unique_lock, the handle for mutexes, is defined in the standard library. 

Using such handles, multiple resources are released in the reverse order of acquisition. That is almost 
always correct. Acquiring a few resources, but failing to acquire all that are needed is handled correctly 
without programmer intervention. That is crucial for errors in constructors of complex data structures, 
such as objects from a complex class hierarchy or elements of a container. 

Generally, a handle can be moved, but not copied, so move operations need to be provided. For 
example: 

class File_handle { // belongs in some support library 
  FILE* p; 
 public: 
  // … 
  File_handle(File_handle&& h) : p{h.p}  { h.p=nullptr; }  // move constructor 
  File_handle& operator=(File_handle&& h) { p=h.p;  h.p=nullptr; } // move assignment 
  // access functions 
 }; 
 
Given that, we can pass a File_handle around (cheaply). 

Memory is not the only resource, so a simply adding a garbage collector is not a solution, at least not a 
complete solution. 

Class Hierarchies 
C++ allows for the definition and use of class hierarchies. The scheme is fairly conventional, but general. 
It allows for multiple inheritance both of interface classes (abstract classes) and of classes with 
implementation. The layout of objects is minimal and obvious. The mechanism for virtual function calls 
is minimal, obvious, and runs in constant time. The resulting compactness, speed, and predictability are 
essential for many real-time uses. The (classical) Circle-and-Shape example from “Memory and Objects” 
is fairly typical. A class can be derived from another (as Circle was from Shape). The resulting class is 
called a derived class and – if publicly derived – is a subtype of the other class, called its base. 

The protection model is that 

• public members and bases of a class can be accessed by all 
• protected members and bases of a class can be accessed only by members of a derived class 
• private members and bases of a class can be accessed only by members of that class 
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To avoid confusion and maintenance problems, I recommend using protected only for functions and 
bases. 

Abstract classes, like Shape, provide the most stable interfaces because they reveal very little about 
implementation details (such as object sizes), which are supplied in derived classes, such as Circle. 

C++ does not provide a universal base class. I consider such a class an unnecessary implementation-
oriented artifact that imposes avoidable space and time overheads. Also, a universal “Object” base 
encourages underspecified (overly general) interfaces that let errors that could be detected at compile 
time through to run time. Typically, C++ uses parameterization where another language might use a 
common base class and require implicit or explicit type conversion to determine the exact derived class. 

Algorithms 
A function template that implements an algorithm for a variety of types is conventionally called an 
algorithm. The C++ standard library provides many algorithms, such as sort and find. For example: 

void f(vector<int>& v, list<string>& lst) 
{ 
 std::sort(v.begin(),v.end()); 
 auto p = std::find(lst.begin(),lst.end(),”Aarhus”); // find “Aarhus” in lst 
 if (p!=lst.end()) { // found: *p==“Aarhus” 
  // … 
 } 
 else {   // not found *p!=“Aarhus” 
  // … 
 } 
 // … 
} 
 

Standard-library algorithms, such as sort and find, take half-open sequences of elements, presented as a 
pair of iterators, as arguments. An iterator is something that points to an element of a sequence. To get 
to the next element of a sequence, we use ++ and to access the element pointed to, we use *. 

Note that I did not actually name the type of p. Instead, I said auto, which gives a variable the type of its 
initializer. This is often a useful shorthand and can be a significant help in generic programming. Here, it 
saved me from typing list<string>::iterator. Interestingly, this is the oldest feature of C++11: I 
implemented auto in 1983, but had to take it out for reasons of C compatibility. 

We could implement find like this: 

template<typename Iter, typename Value> 
Iter find(Iter first, Iter last, Value val) 
{ 
 while (first!=last && *first!=val) ++first; 
 return first; 



Stroustrup Late Draft ETAPS 2012 Keynote 

With corrections from the presentation Page 16 
 

} 
 

That is, find compares val to each element in the sequence until it finds one that is equal. If you like the 
terse C-style syntax, you’ll find the body of find beautiful. If not, you should still appreciate that find 
works for a wide variety of data structures and a wide variety of element types with no overhead 
compared to hand-crafted code for a specific container and value pair. Returning the end of the 
sequence to indicate “not found” is a standard-library convention. 

Algorithms are typically rendered much more useful by parameterizing them with operations. For 
example, find would be much more useful if instead of simply finding an element of a given value, it 
found an element that met some user-supplied criterion. The “find” that does that is called find_if. For 
example: 

void g(vector< string>& vs) 
{ 
 auto p = std::find_if(vs.begin(),vs.end(),Less_than{”Griffin”}); 
 if (p!=vs.end()) { // found: *p<”Griffin” 
  // … 
 } 
 else {   // not found *p>=”Griffin” 
  // … 
 } 
 // … 
} 

 

Less_than is a function object, that is a type for which an object can be called like a function. We can 
define find_if like this 

template<typename Iter, typename Value> 
Iter find_if(Iter first, Iter last, Predicate p) 
{ 
 while (first!=last && !p(*first)) ++first; 
 return first; 
} 

 

That is, find_if calls the predicate for each element in the sequence. In our example, p(*first) means 
Less_than{”Griffin”}(*first) which in turn means *first<”Griffin”, assuming that Less_than has an 
obvious definition, such as: 

struct Less_than { 
 String s; 
 Less_than(const string& ss) :s{ss} {} // store the value to be compared against 
 bool operator(const string& v) const { return v<s; } // do the comparison 
}; 
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The general function-object notation can be verbose, but we can let the language write the function 
object for us by using the lambda notation: 

auto p = std::find_if(vs.begin(),vs.end(),[](const string& v) { return v<”Griffin”; } ); 
 

Function objects (incl. lambdas) are very efficient and general because they are easily inlined and can 
carry information. In particular, simple function objects tend to significantly outperform indirect calls to 
simple functions. They are the basic parameterization mechanism of the standard library. 

If the sequence notation gets too cumbersome, we can define algorithms over containers. For example: 

namespace MySTL { 
 template<class C> 

void sort(C& c) { std::sort(c.begin(),c.end(); } 
// … 

 } 
 

Given that, I can write sort(v) for a container v, rather than sort(v.begin(),v.end()). Notation matters 
more than we usually like to believe. 

Templates are the language-technical basis for generic programming in C++. Similarly, class hierarchies 
are the language technical basis for Object-oriented programming in C++. These two programming styles 
(“paradigms”, if you must) are not meant to be disjoint. Rather, they are meant to be used in 
combination. For example, vector<Shape*> is a container of a run-time polymorphic type. Any use will 
necessarily involve both generic and object-oriented techniques. For example, consider the classical 
“draw all shapes example”: 

template<typename Cont> 
void draw_all(Cont& c) 
{ 
 for_each(c.begin(),c.end(), [](Shape* p) { p->draw(); } 
} 
 

Much of the distinction between object-oriented programming and generic programming is an illusion 
based on a focus on language features and incomplete support for a synthesis of techniques. 

Type functions 
Templates, as used to parameterize vector with its element type in “Containers,” can be seen as 
generators. A function template generates functions and a class template generates classes. Thus a 
template can be understood as a function from a set of arguments to a function or a type. For example, 
vector<T> is a function that produces a vector of Ts from the type T. The evaluation of such a type 
function is called template instantiation. Template instantiation is Turing complete [TLV03]. Template 
arguments are typically types or integers. 
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This view of templates as type functions gains great practical importance when applied to functions that 
associate properties to types. For example, elements in a container have a type. We would like to name 
that type for every data structure we consider a container, independently of whether its designer 
planned for that. For starters, we can define a struct that defines a name value_type for every container 
that has a member type called value_type: 

template<typename Cont> 
struct container_traits { 
 using value_type = typename Cont::value_type; 
 // … 
} 
  
template<typename T> 
using Value_type = typename container_traits<T>::value_type; 
 

For example, Value_type<std::vector<int>> is int. That’s not interesting in itself, but given that, we can 
define Value_type for types that do not have a member called value_type. For example, for any pointer, 
T*, the value type is T: 

template<typename T> 
struct container_traits<T*> { 
 using value_type = T; 
 // … 
} 
 

Technically, this is a specialization of container_traits for pointers. Specialization is the language-
technical basis for template metaprogramming [TLV95]. Now, Value_type<int*> is int. We have 
provided a type function Value_type that provides the type of a contained element for every data 
structure we consider a container. As a user, the implementation details are immaterial, and we can just 
write 

 Value_type<X> a; 

Traits are widely used in the implementation of the standard library.  

There is an obvious weakness in my description of container_traits: I said “a type that I consider a 
container” rather than precisely specifying the requirements for being a container. In other words, the 
arguments to a template are unconstrained and only their instantiations are type checked. This is “Duck 
tying” (“if it walks like a duck and quacks like a duck, it’s a duck”) and leads to late (link-time) type 
checking and appallingly poor error messages.  

Designing a system of requirements (called a concept in C++) is still a research topic. A concept design 
for C++0x [DG06] failed to meet the needs of C++’s large and diverse user community and concepts is an 
area of active research [GDR06], [SM08], [SS11], [SS12]. The demands of compile-time efficiency (within 
a few percent of unconstrained templates), run-time efficiency (no slower than templates with 
unconstrained arguments), ease of use by non-experts, no verbosity, ability to handle type conversion, 
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ability to interoperate with unconstrained templates, and ease of conversion of pre-concept C++ 
programs makes this a challenging task. 

Concurrency 
C++ must support the forms of concurrency offered by the hardware and operating system on which it 
runs. Something else may make it a better platform for specific applications, but not supporting “the 
system’s” notion of concurrency would disqualify C++ as a systems programming language. 
Consequently, ISO standard C++ supports a conventional threads-and-locks model of concurrency. I 
consider threads-and-locks an unfortunate low-level view, but higher level concurrency models can be 
efficiently built as libraries on top of what the standard offers. C++ provides support for lock-free 
programming for cases where you have to get really close to the hardware [AW12]. 

What the standard offers differs from earlier C and C++ thread implementations in being type safe. 
Consider a simple example of a function, f, and a function object, F, being run on separate threads: 

void f(vector<double>&); // function 
 
struct F {   // function object 
 vector<double>& v; 
 F(vector<double>& vv) :v{vv} { } 
 void operator()(); 
};  
 
void code(vector<double>& vec1, vector<double>& vec2) 
{ 
 std::thread t1 {f,vec1}; // f(vec1) 
 std::thread t2 {F{vec2}}; // F{vec2}()  
 t1.join(); 

t2.join();  
// use vec1 and vec2 

} 
 

For simplicity, I have assumed that f and F modify their arguments. Note how t1’s constructor takes the 
function to be called followed by its arguments. It will accept any function as long as its arguments type 
checks using what is called variadic templates [???]. However, here the simplicity of the interface is 
more important than the implementation technology. 

I consider that style of concurrency clumsy, with endless opportunity for confusion and avoidable 
overheads. However, It does not require regression to type-unsafe the C-style void** and macros 
common in older threads programming and is supported with a variety of synchronization mechanisms 
(e.g., mutexes, locks, condition variables). 

In addition, the standard library supports futures to enable a style of concurrency without explicit use of 
threads and locks. For example: 
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double comp(vector<double>& v)  // spawn many tasks 
{  
 auto sz = v.size(); 
 
 auto f0 = std::async(std::accumulate, v.begin(), v.begin()+sz/4, 0.0); 
 auto f1 = std::async(std::accumulate, v.begin()+sz/4, v.begin()+sz/2, 0.0); 
 auto f2 = std::async(std::accumulate, v.begin()+sz/2, v.begin()+sz*3/4, 0.0); 
 auto f3 = std::async(std::accumulate, v.begin()+sz*3/4, v.end(), 0.0); 
 
 return f0.get()+f1.get()+f2.get()+f3.get(); 
} 
 

Here, the “thread launcher” std::async launches threads as needed to evaluate std::accumulate. Each 
call of async returns a handle, called a future, from which the result can be obtained by a call of get(). If 
a task launched by async hasn’t completed by the call of get(), the calling thread waits. This 
programming model is much cleaner than the more general threads-and-locks model for the 
independent tasks for which it is intended. 

Type safety 
C++ is not guaranteed to be statically type safe. A language designed for general and performance 
critical systems programming with the ability to manipulate hardware cannot be.  It provides facilities 
for manipulating hardware at a low level that can easily be misused to break the type system. Examples 
are untagged unions, explicit type conversions (casts), arrays without (guaranteed) range checks, and 
the ability to deallocate a free store (heap) object while holding on to a pointer allowing for post-
allocation access. It would be nice to isolate the type violations in a few clearly delimited sections of 
code, but history precludes that. Don’t use these facilities outside the implementation of higher-level 
facilities (such as vector). The ISO C++ standard library contains a rich set of such abstractions (e.g., 
string, vector, map, set, and thread), so that you don’t have to define them yourself. 

Challenges 
Obviously, C++ is not perfect. For the future, we face several challenges: 

• How to make programmers prefer modern C++ styles over low-level (C-style) code, which is far 
more error-prone and harder to maintain, yet no more efficient. 

• How to make C++ a better language given the Draconian constraints of C and C++ compatibility. 
• How to improve and complete the techniques and models (incompletely and imperfectly) 

embodied in C++. 

In particular, I would like to: 

• Close more type loopholes (in particular, find a way to avoid misuses of delete) 
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• Simplify concurrent programming (in particular, provide some higher-level concurrency models 
as libraries) 

• Simplify generic programming (in particular, introduce simple and effective concepts) 
• Simplify programming using class hierarchies (in particular, eliminate use of the visitor pattern) 
• Provide better support for combinations of object-oriented and generic programming styles. 
• Make exceptions usable for hard-real-time projects (that will most likely be a tool rather than a 

language change) 
• Find a good way of using multiple address spaces (as needed for distributed computing); this 

would most likely involve defining a more general module mechanism that would also address 
dynamic linking, and more. 

• Provide many more domain-specific libraries 
• Develop a more precise and formal specification of C++ (e.g. see [GDR05], [GDR10], [TR12]) 

Inside C++ is a smaller, cleaner, and even more powerful language struggling to get out. And no, that 
language is not C, C#, D, Haskell, Java, ML, Lisp, Scala, Smalltalk, or whatever. Whatever that language is, 
it must be better than C++ at light-weight abstraction in even the most demanding infrastructure 
applications. 
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