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Abstract 

 
This paper presents a way through the maze of proposals related to initialization, 
constructors, and related issues. The aim is to provide a synthesis of many proposals that 
can guide further work. It is not the aim to present every detail for final approval. 
 
The discussion is based on the earlier papers and on discussions in the evolutions group. 
 

1 What’s the problem? 
There is not one problem; there are several interrelated problems. Each individual 
problem can be solved relatively easily. The real problem is to provide a coherent 
solution to all (or most) of the problems. Here is a list of problems and suggested 
improvements we consider potentially related so that they must be considered together: 
 

• General use of initializer lists (Dos Reis & Stroustrup N1509, Gutson N1493, 
Meredith N1806, Meridith N1824, Glassborow N1701) 

• There are four different syntaxes for initializations (Glassborow N1584, 
Glassborow N1701)  

• C99 aggregate initialization (C99 standard) 
• Literal constructors (Stroustrup N1511)  
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• Forwarding constructors (Glassborow ???) 
• More general constant expressions (Dos Reis 1521) 
• Inherited constructors (Glassborow ???) 
• Type safe variable length argument lists (C++/CLI) 
• Default constructors (and other operations) (Glassborow N1582) 
• Overloading “new style” casts 
• Making T(v) construction rather than conversion (casting) 
• Rvalue constructors (Hinnant ???) 
 

In each case, the person and paper referred to is just one example of a discussion, 
suggestion, or proposal. In many cases there are already several suggested solutions. This 
is not even a complete list: initialization is one of the most fertile sources of ideas for 
minor improvements to C++. Quite likely, the potential impact on the programmer of 
sum of those suggestions is not minor. In addition to the listed sources, we are influenced 
by years of suggestions in email, newsgroups, etc. 
 
We go into some detail to illustrate the solutions we propose. However, please remember 
that the aim of this paper is not to present a complete and detailed solution of a specific 
problem or even to exhaustively explain the specific problems. Our primary aim is to 
present an overview that allows us to work out the details of a set of related problems 
without fear that the solution to one problem precludes the solution of another. 
 
The paper discusses the issues roughly in the order presented above. 
 

2 Four ways of providing an initializer 
Initialization of objects is an important aspect of C++ programming. Consequently, a 
variety of facilities for initialization are offered and the rules for initialization has become 
complex. Can we simplify them? Consider 
 

X t1 = v; // “assignment initialization” possibly copy construction 
X t2(v); // direct initialization 
X t3 = { v }; // initialize using initializer list 
X t4 = X(v); // make an X out of v and copy it to t4 

 
We can define X so that for some v, 0, 1, 2, 3, or 4 of these definitions compile. For 
example: 

 
int v = 7; 
typedef vector<int> X; 
X t1 = v; // error: vector’s constructor for int is explicit 
X t2(v); // ok 
X t3 = { v }; // error: vector<int> is not an aggregate  
X t4 = X(v); // ok 
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and 
 

int v = 7; 
typedef int X; 
X t1 = v; // ok 
X t2(v); // ok 
X t3 = { v }; // ok; see standard 8.5; equivalent to “int t3 = v;” 
X t4 = X(v); // ok 

 
and 
 

int v = 7; 
typedef  struct { int x; int y; } X; 
X t1 = v; // error 
X t2(v); // error 
X t3 = { v }; // ok: X is an aggregate  
X t4 = X(v); // error: we can’t cast an int to a struct 

 
and 
 

int v = 7; 
typedef  int* X; 
X t1 = v; // error 
X t2(v); // error 
X t3 = { v }; // error 
X t4 = X(v); // ok: unfortunately this converts an int to an int* (see §8) 

 

1.1 Can we eliminate the different forms of initialization? 
It would be nice if we didn’t need four different ways of writing an initialization. Francis 
Glassborow explains this in greater detail in N1701. Unfortunately, we loose something if 
we eliminate the distinctions. Consider: 
 

vector<int> v = 7;  // error: the constructor is explicit 
vector<int> v(7); // ok 

 
If the two versions were given the same meaning, either both would be correct (and we 
would be back in “the bad old days” where all constructors were used as implicit 
conversions) or both would fail (and every program using a vector or similar type would 
fail). We consider both alternatives unacceptable. 
 
The equivalent problem for argument passing demonstrates that we cannot simplify by 
eliminating copy initializations or explicit constructors: 
 
 void f(vector<int> v); 
 f(7); // error: the constructor is explicit 
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 vector<int> v = { 1,2,3,4,5,6,7 }; 
 f(v); // copy  
 
Also: 
 

class X { /* … */ X(int); private: X(const X&); }; // no copy allowed 
X x0 = X(1); // error (copy) 
X x1 = 1; // error (copy) 
X x2(1); // ok (no copy) 

 
To have a single rule here would require us to choose between breaking a lot of code 
(disallow all three cases) and requiring that copy not be considered (allow all three 
cases). We suspect we could live with the latter choice, but it would be a change making 
the language more permissive. 
 
Consider finally the most explicit form of initialization: 
 

vector<int> v = vector<int>(7); // copy? 
X e3 = X(1);     // copy? 

 
We cannot recommend that style for systematic use because it implies serious 
inefficiency unless compilers are guaranteed to eliminate the copy. It would also break 
reasonable expectations unless the access to the copy constructor was checked (to make 
the initialization of e3 fail). If we special-cased this form of initialization (to make the 
examples legal and efficient), we would end up with a semantics that differed from that 
of argument and return value initialization. For example: 
 

template<class T> void f(X v); 
f(vector<int>(7));  // copy? Yes, we must copy 
f(X(1));   // copy? Yes, we must copy and copy of X is disallowed 

 
We conclude that we must live with different meanings for different initialization 
syntaxes. That implies that we can try to make the syntax and semantics more general and 
regular, but we cannot reach the ideal of a single simple rule. 
 

3 Initializer lists 
There seems to be a very widespread wish for wider use of initializer lists as a form of 
user-defined-type literal. The pressure for that comes not only from “native C++” wish 
for improvement but also from familiarity with similar facilities in languages such as 
C99, Java, and C#. Our aim is to allow initializer lists for every initialization. What you 
loose by consistently using initializer lists are the possibilities of ambiguities inherent in 
= assignment. 
 
Consider a few plausible examples: 
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X v = {1, 2, 3.14};   // as initializer 
const X& r1 = {1, 2, 3.14};  // as initializer 
X& r2 = {1, 2, 3.14};   // as lvalue initializer 
 
void f1(X); f1({1, 2, 3.14});  // as argument 
void f2(const X&); f2({1, 2, 3.14}); // as argument 
void f3(X&); f3({1, 2, 3.14}); // as lvalue argument 
 
X g() { return {1, 2, 3.14}; }  // as return value 
 
class D : public X { 
 X m; 
 D() : X({1, 2, 3.14}),  // base initializer 

m({1, 2, 3.14}) { } // member initializer 
}; 
X* p = new X({1, 2, 3.14}); // make an X on free store X 

// initialize it with {1,2,3.14} 
 
void g(X); 
void g(Y); 
g({1, 2, 3.14}); // (how) do we resolve overloading? 

 
We must consider the cases where X is a scalar type, a class, a class without a 
constructor, a union, and an array. As a first idea, let’s assume that all of the cases should 
be valid and see what that would imply and what would be needed to make it so. 
 
Note that this provides a way of initializing arrays. We don’t consider that particularly 
important, but there are occasional requests for a way of doing that. 
 

1.2 The basic rule for initializer lists 
The most general rule of the use of initializer lists is: 
 

• Look for a sequence constructor and use it if we find a best one; if not 
• Look for a constructor and use  it if we find a best one; if not 
• Look to see if we can do traditional aggregate or built-in type initialization; if not 
• It’s an error 
•  

We propose a slightly more restrictive rule “never use aggregate initialization if a 
constructor is declared”. Without a restriction, we would not be able to enforce invariants 
by defining constructors. Consequently, we consider a restriction necessary and get this 
modified basic rule:  
 

• If a constructor is declared 
o Look for a sequence construct and use it if we find a best one; if not 
o Look for a constructor and use  it if we find a best one; if not 
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o It’s an error 
• If no constructor is declared 

o look to see if we can do traditional aggregate or built-in type initialization; 
if not 

o It’s an error 
o  

This can (and should) be integrated into the overload resolution rules. 
 

1.3 Sequence constructors 
A sequence constructor is defined like this: 
 

class C { 
 C{}(const int* first, const int* last); // construct from a sequence of ints 
 // … 
}; 

 
The {} is syntax indicating that the constructor is a sequence constructor. A sequence 
constructor is called for an array of values indicated by a pointer to the first element and a 
pointer to the one-beyond-the last element. So a C can be initialized by an initializer lists 
that can be seen as an array of ints. Note that a sequence constructor is syntactically 
distinct from other constructors. Note also that the arguments to a sequence constructor 
are a pair of pointers to const. A sequence constructor cannot modify its input sequence. 
 
So let’s consider the examples above when X is std::vector<double>. That’s easily 
done: vector has no sequence constructor, so we try {1, 2, 3.14} as a set of arguments to 
other constructors, that is, we try vector(1,2,3.14). That fails, so all of the examples fail 
to compile when X is std::vector. 
 
Let’s try adding a sequence constructor to vector: 
 

template<class E> class vector { 
public: 
 vector{}(const E* first, const E* last); // construct from a sequence of Es 
 // … as before … 
}; 

 
Now, some (but not all) of the examples work when X is vector<double>. In each case, 
{1, 2, 3.14} is interpreted as a temporary constructed like this: 
 

double temp[] = {1, 2, 3.14 } ; 
vector<double> tempv(temp,temp+sizeof(temp)/sizeof(double));  

 
That is, the compiler constructs an array containing the initializers converted to the 
desired type, initialized a temporary vector using the sequence constructor, and uses the 
resulting vector as the initializer instead of the initializer list. This implies that every use 
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of {1, 2, 3.14} in a place that requires an rvalue succeeds and the places that require an 
lvalue fails. 
 

Discussion: In the EWG there were strong support for the idea of the sequence 
constructor, but also serious disagreement about the syntax needed to express it. 
There was a strong preference for syntax to make the “special” nature of a 
sequence constructor explicit. This could be done by a special syntax (as 
suggested here) or a special (compiler recognized) argument type. For example: 
 

class X { 
 // … 
 X(Sequence<int>); // construct from a initializer list of ints 
 // … 
}; 

 
We prefer the X{}(…) design, because “syntax” seems to be the majority view 
and even more because it fits with the design of literal constructors (see §5). 
 
There is a choice between representing a sequence as the STL-style (first,last) or 
a (first,length) view. We don’t think there is a fundamental reason to prefer the 
one over the other; after all, given one we can express the other: (first,last-first) 
and (first,first+length). We chose the former to emphasize the standard library 
and because many classes will have an ordinary constructor for STL sequences in 
addition to the sequence constructor. There might be an argument for the 
(first,length) view because we can specialize a template on an integer constant, 
but we see no realistic use for that. 

 
 

1.4 Initializer lists and ordinary constructors 
When a class has both a sequence constructor and an “ordinary” constructor, a question 
can arise about which to choose. The resolution outlined in §3.2 is that the sequence 
constructor is chosen if the initializer list can be considered as an array of elements of the 
type required by the sequence constructor (possibly after conversions of elements). If not, 
we try the elements of the list as arguments to the “ordinary” constructors. The former 
(“use the sequence constructor”) matches the traditional use of initializer lists for arrays. 
The latter (“use an ordinary constructor”) mirrors the traditional use of initializer lists for 
structs (initializing constructor arguments rather than struct members). Consider a few 
examples: 
 

vector<double> v1({1,2}); // v1 has two elements (values: double(1),double(2)) 
    // use sequence constructor 
vector<double> v2({1}); // v2 has one element (value: double(1)) 
    // use sequence constructor 
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Since we can convert 1 and 2 to the doubles required by vector<double>’s sequence 
constructor, the sequence constructor is used for v1 and v2. If we don’t want that, we 
must use another form of initialization: 

 
vector<double> v11(1,2); // v11 has one element (value: double(1)) 
    // use ordinary constructor 
vector<double> v22(1); // v22 has one element (value: double(), i.e. 0.0) 
    // use ordinary constructor 
 

If the type of the elements in the initializer list doesn’t match what the sequence 
constructor requires, we use an ordinary constructor: 

 
vector<double> v3({1,2,My_alloc}); // use ordinary constructor 
      // can’t convert My_alloc to double  
vector<double> v4({v2.begin(),v2.end()}); // copy v2 into v4 

// can’t convert vector<double>::iterator to double 
 
Discussion: Should the initialization of v3 and v4 simply be errors? That is, should we 
reject the use of initializer list when there is no sequence constructor? For aggregates, 
initializer lists serve two purposes: 

• Initialize homogeneous sequences (i.e. arrays) 
• Initialize heterogeneous sequences (i.e. structs) 

To provide a general initializer mechanism, we must preserve this dual use. To support 
user-defined types as well as built-in types and to provide a uniform syntax for 
initialization, we must somehow ensure that initializer lists can be used for both 
sequences (to initialize containers) and “ordinary objects”. We can have that support 
disjoint: “if you have a sequence constructor, you can’t use initializer lists for other 
constructors, but if you don’t have a sequence constructor you can” or we can have it 
with “sequence constructor has priority” as suggested above. If we choose the “either/or” 
rule, we will not be able to use {} initialization uniformly; another initialization syntax 
will have to be used for classes with sequence constructors; importantly, we would not be 
able to use { } initialization for standard library containers. This would seriously weaken 
any effort to teach people to uniformly use a single initialization syntax (the {} notation). 
Furthermore, we would not be able to add a sequence constructor to a class that is already 
in use because that would break any {} initialization already used. 
 

1.5 Initializer lists, aggregates, and built-in types 
So what happens if a type has no constructors? We have three cases to consider: an array, 
a class without constructors, and non-composite built-in type (such as an int). First 
consider a type without constructors: 
 

struct S { int a; double v; }; 
S s = { 1, 2.7 }; 
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This has of course always worked and it still does. It meaning is unchanged: initialize the 
members of s in declaration order with the elements from the initializer list in order, etc.  
 
Arrays can also be initialized as ever. For example: 
 

int d[] = { 1, 2, 3, 5, 8 }; 
 
What happens if we use an initializer list for a non-aggregate? Consider: 
 
 int a = { 2 };  // ok: a==2 

// (as currently: there is a single value in the initializer list) 
 int b = { 2, 3 }; // error: two values in the initializer list 
 int c = {};  // ok: default initialization: c==int() 
 
In line with our ideal of allowing initializer lists just about everywhere – and following 
existing rules – we can initialize a non-aggregate with an initializer list with 0 or 1 
element.  The empty initializer list gives value initialization. The reason to extend the use 
of initializer lists in this direction is to get a uniform mechanism for initialization. In 
particular, we don’t have to worry about whether a type is implemented as a built-in or a 
user-defined type and we don’t have to depart from the direct initialization to avoid the 
unfortunate syntax clash between () initialization and function declaration. For example: 
 

X a = { v }; 
X b = { }; 

 
This works for every type X that can be initialized by a v and has a default constructor. 
The alternatives have well known problems: 
 

X a = v; // not direct initialization (e.g. consider a private copy constructor) 
X b;  // different syntax needed (with context sensitive semantics!) 
X c = X(); // different syntax, repeating the type name 
 
X a2(v); // use direct initialization 
X b2(); // oops! 

 
It appears that {} initialization is not just more general than the previous forms, but also 
less error prone. 
 
We do not propose that surplus initializers be allowed: 
 
 int a = { 1, 2 }; // error no second element 
 struct S { int a: }; 
 S s = { 1,2 };  // error no second element 
 
Allowing such constructs would simply open the way for unnecessary errors. 
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Discussion: Discussion:  The standard currently says (12.6.1/2) that when an 
object is initialized with a brace-enclosed initializer list, elements are initialized 
through “copy-initialization” semantics.  For uniformity and consistency of the 
initialization rules this should be changed to “direct-initialization” semantics.  We 
think that will not change the semantics of current well-formed programs. 

 

4 Initializer list technicalities 
As the saying goes “the devil is in the details”, so let’s consider a few technical details to 
try to make sure that we are not blindsided. 
 

1.6 Sequence constructors 
Can a class have more than one sequence constructor? Yes. A initializer list that would be 
a valid for two (or more) sequence constructors is ambiguous.  
Can a sequence constructor be a template? Yes. Note that a “yes” here implies that more 
than one sequence constructor is possible. 
 
Can a sequence constructor be invoked for a sequence that isn’t an initializer list? No. 
 

1.7 What really is an initializer list? 
The simplest model is an array of values placed in memory by the compiler. That would 
make an initializer list a modifiable lvalue. It would also require that every initializer list 
be placed in memory and that if an initializer list appears 10 times than 10 copies must be 
present. We therefore propose that all initializer lists be rvalues. That will enable two 
optimizations: 
 

• Identical initializer lists need at most be store once (though of course that 
optimization isn’t required).  

• An initializer list need not be stored at all. For example, z=complex{1,2} may 
simply generate two assignments to z. 

 
The second optimization would require a clever compiler or literal constructors (§5). 
 
Note that an initializer list that is to be read by a sequence constructor must be placed in 
an array. The element type is determined by the sequence constructor. Sometimes, it will 
be necessary to apply constructors to construct that array. 
 
Initializer lists that are used for aggregates and argument lists can be heterogeneous and 
need rarely be stored in memory. 
 
Must initializer lists contain only constants? No, variables are allowed (as in currect 
initializer lists); we just use a lot of literals because that’s the easiest in small examples. 
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Can we nest initializer lists? Yes (as in current initializer lists). For example: 
 

vector<vector<int>> v = { {1,2,3}, {4,5,6}, {7,8,9} }; // a 3 by 3 matrix 
 

1.8 Ambiguities and deduction 
An initializer list is simply a sequence of values. If it is considered to have a type, it is the 
list of its element types. For example, the type of {1,2.0} would be {int,double}. This 
implies that we can easily create examples that are – or at least appears to be – 
ambiguous. Consider:  
 

class X  { 
 X{}(const int*, const int*); // sequence constructor 
 // … 
}; 
 
class Y { 
 Y{}(const int*, const int*); // sequence constructor 
 // … 
}; 
 
class Z { 
 Z(int,int); // not a sequence constructor 
 // … 
}; 
 
void f(X); 
void f(Y); 
 
void g(Y); 
void g(Z); 
 
f({1,2,3}); // error: ambiguous (f(X) and f(Y)?) 
g({1,2,3}); // ok: g(Y) 
g({1,2}); // ok: g(Y)  (note: not g(Z)); 
g({1});  // ok 

 
The overload resolution rules are basically unchanged: try to mach all functions in scope 
and pick the best mach if there is a best match. What is new is a need to specify 
conversions used for a legal call using an initializer list so that it can be compared with 
other successful matches. 
 

Discussion: We resolve the g({1,2}) call by preferring the sequence constructor in 
one class over an ordinary constructor in another class. The alternative would be 
to have the resolution depend on the number of elements in the initializer list. 
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How do we resolve ambiguity errors? By saying what we mean; in other words by stating 
our intended type of the initializer list: 

 
f(X{1,2,3}); // ok: f(X)  
g(Z{1,2}); // ok: g(Z) 

 
If we want to increase C99 compatibility we could also accept the more verbose version: 

 
f((X){1,2,3}); // ok: f(X)  
g((Z){1,2}); // ok: g(Z) 

 
This is not something we recommend, though, and there is a danger that it might become 
popular in C++ just as “the abomination” f(void). Also, there would be subtle 
incompatibilities between the C99 definition of such as construct and any consistent C++ 
view (see N1509). 
 

Discussion: We do not propose to allow an “unqualified initializer list” to be used 
as an initializer for a variable declared auto or a template argument. For example: 
 

auto x = {1, 2, 3.14};   // error 
template<class T> void ff(T); 
ff({1, 2, 3.14});   // error 
 

There is no strong reason not to allow this, but we don’t want to propose a feature 
until we have a practical use in mind. If we wanted to allow this, we could simply 
“remember” the type of the initializer list and use it when the auto variable or 
template argument is used. In this case, the type of x would be {int,int,double} 
which can be converted into a named type when necessary. For example: 
 
 

auto x = {1, 2, 3.14};  // remember x’ is a {int,int,double} 
vector<int> v = x;  // initialize v {1, 2, 3.14}; 
g(x);    // as above 

 
It’s comforting to know that the concepts extend nicely even if we have no use for 
the extension. 

 

1.9 Syntax 
So far, we have used initializer lists after = in definitions (as always) and as function 
arguments. The aim is to allow an initializer list wherever an expression is allowed. In 
addition, we might consider leaving out the = in a declaration: 
 

auto x1 = X{1,2}; 
X x2 = {1,2}; 
X x3{1,2}; 
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X x4({1,2}); 
X x5(1,2); 

 
These five declarations are equivalent (except for the name of the variables) and all 
variables get the same type (X) and value ({1,2}). Similarly, we can leave out the 
parentheses in an initializer after new: 
 

X* p1 = new X({1,2}); 
X* p2 = new X{1,2}; 

 
It is never ideal to have several ways of saying something, but if we can’t limit the 
syntactic diversity we can in this case at least reduce the semantics variation. We could 
eliminate these forms: 
 

X x3{1,2}; 
X* p2 = new X{1,2}; 

 
However, since X{1,2} must exist as an expression, the absence of these two syntactic 
forms would cause confusion, and they are the least verbose forms. Note that new X{1,2} 
must be interpreted as “an X allocated on the free store initialized by {1,2}” rather than 
“new applied to the expression X{1,2}” 
 
Note that if we add a sequence constructor to vector, each of these definitions will create 
a vector of one element with the value 7.0: 
 

vector<double> v1  = { 7 }; 
vector<double> v2 { 7 };  
vector<double> v3 ({ 7 });  
 
auto p1 = new vector<double>{ 7 }; 
auto p2 = new vector<double>({ 7 }); 

 
We don’t propose a syntax for saying “this is a sequence: don’t treat is as a constructor 
argument list”. We don’t see a need, because if you don’t know anything about a type, 
you shouldn’t try to tell it how to initialize itself. Similarly, we don’t propose a syntax for 
saying “this is an aggregate initializer, don’t use it for a class with constructors”. 
 

Discussion: we think that the most likely confusion and common error from the new 
syntax will be related to initializer lists with a single argument. Consider: 
 

vector<double> v2 { 7 };  
 
A naïve reader will have no way of knowing that this creates a vector of one double 
initialized to 7.0 and not a vector of seven doubles. Obviously, making the second 
interpretation the correct one would be even worse. Consider  
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vector<double> v1 { };  // a vector with no elements 
vector<double> v2 { 7 };  // a vector with one element 
vector<double> v3 { 7, 8 };  // a vector with two elements 
 

We feel that this must work as stated. This also eliminated the possibility of making 
the initialization of v2 ambiguous. Consequently, we consider the proposed design 
the best possible (at least of the ones we have seen so far). 

 

1.10 Assignment 
We have discussed initializer lists in the context of initialization. However, we could 
imagine them used elsewhere. For example: 
 

X v = {1,2}; 
v = {3,4}; 
v = v+{3,4}; 
v = {6,7}+v; 

 
When we consider operators as syntactic sugar for functions, we naturally consider the 
above equivalent to 
 

operator=(v,{3,4}); 
v = operator+(v,{3,4}); 
v = operator+({6,7},v); 

 
It is therefore natural to extend the use of initializer lists to expressions. We have not 
explored this in detail and suggest that is should be explored. At least the use of the right 
hand of an assignment should be allowed to be an initializer list. We see no obvious 
problems with this general use of initializer lists and suspect that people will expect it to 
work if the simpler uses work. 
 
Whether we should allow lists on the right hand side of an assignment is a separate issue. 
For example: 
 

{a,b} = x; 
 
We make no proposal or recommendation about this. It is a separate question. 
 

5 Literal constructors 
A literal constructor is a constructor that allows the compiler to determine the value of an 
object. That is, the constructor basically reduces to a constant expression, possibly 
involving addresses of statically allocated entities. For example: 
 

class complex { 
 double re, im; 
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public: 
 complex"" (double r, double i) :re(r), im(i) { } 
 // … 
}; 

 
In the way we used the empty sequence notation, {}, to indicate “sequence constructor”, 
we use the empty string notation, "", to indicate “literal constructor”. A single quote (" 
or ') would cause lexical problems and that an “empty character” '' could cause parsing 
problems and could be mistaken for a double quote (by humans). 
 
Assume for a moment that complex have no other constructors. Then we get: 
 

complex z  = { 1, 2 }; // ok 
int i = 1; 
complex z2 = { i, 2 }; // error:  i is not a constant expression 

 
But naturally, most classes that have literal constructors will also have “ordinary” 
constructors. For example: 
 

class complex { 
 double re, im; 
public: 
 complex""(double r, double i) :re(r), im(i) { } // handle constants 
 complex(double r, double i) :re(r), im(i) { } // handle all 
 // … 
}; 

 
To handle this smoothly, we need a new overloading rule: If all arguments of a 
constructor invocation are constant expressions, prefer a literal constructor to an 
“ordinary” constructor with the identical parameter types. For example: 
 

complex z { 1, 2 }; // ok: call the literal constructor 
int i = 1; 
complex z2{ i, 2 }; // ok: call the ordinary constructor 

 
The assumption is that making a constructor literal will help compilers identify static 
initialization and ROMable objects. This would be especially so for templates that would 
ordinarily not be evaluated until much later. For example: 
 
 const complex<double> z{1,2}; 
 
Only if it was known that complex had a constructor that was so simple that it reduced to 
a constant expression would a compiler attempt to optimize that by compile-time 
initialization. 
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Discussion: But what If I really want to invoke the literal constructor and want an 
error if it can’t be used? One way would often be not to have ordinary and literal 
constructors with similar signatures. However, there is an argument that a user – 
not just the class designer – should have a way of saying “I want a literal 
constructor and nothing else!” Here’s how: 
 

complex z  = ""{ 1, 2 }; // ok: call the literal constructor 
int i = 1; 
complex z2 = ""{ i, 2 }; // error: can’t call the literal constructor 

 
As in the declaration of the literal constructor, we use the empty string to indicate 
that we want a literal. We are not at all sure that the ""{  …  } construct is 
necessary, so we just mention it in passing without proposing it. If you see a need 
for it, please demonstrate its utility. 
 
Discussion: does the idea of literal constructors have sufficient value? The aim is 
to allow constructors in constant expressions and through that make simple class 
objects ROMable.  

 

1.11 Destructors 
Can an object constructed by a literal constructor be destroyed? Yes. The constructed 
object is “perfectly normal”. In particular, use of a literal constructor does not imply that 
an object is constant. If you want a constant, use const. If you don’t want a destructor 
called, don’t define a destructor. The optimization opportunities for literal constructors 
are only significant for very simple classes. 
 

6 Forwarding and literals 
As we get more kinds of constructors the chance that two constructors do something very 
similar increases significantly. Examples and a literal and a non-literal constructor for 
initializing by constants and by variables and a sequence constructor that does something 
very similar to a template for initialization by an STL sequence. 
 

class complex { 
 double re, im; 
public: 
 complex""(double r, double i) :re(r), im(i) { } // handle constants 
 complex(double r, double i) :re(r), im(i) { } // handle all 
 // … 
}; 
 

Saying exactly the same thing twice is sloppy and a maintenance hazard. This particular 
example is not too bad in practice (the initialization is minimal and trivial), but in general 
we need something better. The proposal for forwarding constructors (Glassborow ???) 
comes to our rescue: 
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class complex { 
 double re, im; 
public: 
 complex""(double r, double i) :complex(r,i)  { } // handle constants 
 complex(double r, double i) :re(r), im(i) { } // handle all 
 // … 
}; 

 
So the literal constructor says “initialize in the usual way, but only for constant 
expressions”. If the “ordinary” constructor uses non-constant expressions in its 
implementation the forwarding fails. Note that this requires generalization of the notion 
of constant expressions to allow certain inline functions (Dos Reis ???). 
 

Discussion: We have the notion of a literal constructor and of a forwarding 
constructor. However, neither forwarding nor the notion literals are restricted to 
constructors. How do we, in general, forward from one function to another and 
how do we specify that a function should be callable in a constant expression? 
 
Generalizing the syntax used for forwarding constructors is not attractive: 
 

int f(int a, int b) { /* … */ } 
int f(int a) : f(a,0)  { ??? } 

 
How would we specify the return value? What would be the notational advantage 
over “plain old function calls”? We plan to return to the general issue of 
forwarding, but not in the context of forwarding constructors. 

 

7 Defaults 
By default you can do many things with a class (or objects of a class): 
 

• Construct a default value 
• Copy an object by a constructor 
• Copy an object by an assignment 
• Take the address of an object 
• Use an object in a comma expression 
• Derive from a class (and inherit a whole bunch of members) 
• Allocate an object on free store (using new) 

 
That is there is a number of “default features” with a default semantics that you can 
choose to change through the definition of functions (or sometimes wish you could): 
 

• sometimes, a default is not suitable, so we want to suppress its use 
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• sometimes, we want to specify our own version of one of these operations 
(writing the appropriate function) 

• sometimes, we want to be explicit about using the default. 
 
The last reason comes from myths that have arisen about the suitability of the default 
copy operations. Sometimes, they are indeed unsuitable (typically when a class has a 
destructor), but when they are suitable, a user cannot define them better than the 
compiler. 
 

Discussion: Is this the full set of default behaviors that we’d like to control? 
 
 The design questions are 
 

• “How can you suppress defaults when they are not needed or not suitable?” (“give 
me the usual except the following: …”) 

• “How can you explicitly say that you want some or all of the defaults?” (“give me 
nothing except the following: …”) 

 
There have been suggestions for additional “default semantics” or facilities, such as 
“make all functions virtual”, “implicitly define == and !=”, “implicitly define += based 
on + and =” “allow x.f() to be called as f(x)”, etc. We don’t propose any such extensions, 
but the possibility raises the design question of how to express such “additional defaults: 
 

• “How can you request additional ‘defaults’”? (“Given me the usual plus the 
following: …”) 

 
Consequently, we propose a mechanism for stating a list of defaults, for subtracting from 
the set of defaults, and for adding to the list of defaults. 
 
First, we need a way of referring to each of the default operations. We could use function 
signatures, but that’s verbose and indirect. Here is the suggestion for “names” for the 
implicit operations: 
 

• Derivation : (so its absence is what is referred to as final in Java) 
• Copy  = (by constructor and by assignment) 
• Address of & (only explicit use) 
• Comma , (only explicit use) 
• Construction () (default construction) 
• Free store new (construct on free store) 

 
The obvious weakness (which could be resolved by some more “magic” syntax) is that 
we cannot restore the default meaning of copy by copy constructor without also getting 
the default copy by assignment (and vice versa). We suspect that’s actually a good thing 
because cases where we want the one copy operation default and not the other are hard to 
imagine. We can express that the listed defaults (and only the listed defaults) are 
available for a class using a “default { list of defaults }” syntax. Here are some examples: 
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class X { 

default { = () } // default copy and default construction 
//  but no inheritance, & or , 

// … 
}; 

 
class Y { 

default { : } // inheritance 
// but no copying, default construction, &, or , 

// … 
}; 

 
class Z { 

default { : = () & , new } // explicitly give me “all the usual” 
// … 

}; 
 

class AE { 
default { } // give me no defaults 
// … 

}; 
 

 
We expect these cases to be among the most common. 
 

Discussion: Obviously we use default to avoid introducing a new keyword. It 
would be tempting to leave out the { } after the default, but then we’d need a 
terminator. It is tempting to use a default: (note the colon) but then we’d need a 
terminator and a different notation for derivation. 
 
Why have we placed the specification of defaults within the class rather than 
modifying outside with the class keyword and the class name? Because most of 
the defaults have to do with the definition of operations and such operations are 
defined “inside” the class. 
 
Discussion: space is unusual as a separator in C++, but we can’t use comma as it 
is one of the default operators. 
 

The default { … } notation serves people who want an explicit statement that a default 
should be used. It is, however, verbose and somewhat brittle for people who just want to 
suppress a single default (without having to remember the full set of defaults). We can 
serve such users by a version of default that simply says “suppress the mentioned 
defaults. The syntax is based on the notion that we are subtracting from the set of 
defaults. For example: 
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class XX { 
default -{ : } // no inheritance (“finally”) 
  // all the other defaults are available 
// … 

}; 
 

class YY { 
default -{ = } // no copy 
  // all the other defaults are available 
// … 

}; 
 

class ZZ { 
default -{} // suppress no default 

// i.e., explicitly give me “all the usual” 
// … 

}; 
 
That notation for “give me all the usual defaults” is convoluted, but then there is an even 
simpler way of getting all the usual defaults: just say nothing. 
 

1.12 Access 
Can we make the default operations protected or private? Yes, but we don’t propose to 
use this notation for that: if you want, say, a private default constructor, just declare one. 
 

1.13 Should we mess with the defaults? 
Since 1984 or so, people have suggested that copying should be prohibited under certain 
circumstances (e.g. for classes with pointers or classes with destructors). Similarly, 
people have suggested that a class with a virtual function should automatically have a 
virtual destructor. We are sympathetic, but note that these are separate issues.  
 
We think that the right thing to do would be for the presence of a destructor to imply that 
default copy is suppressed (without any other effects). Suppressing copy if a pointer is 
present would cause problems with some PODs. 
 
Making a destructor implicitly virtual if a class has a virtual function is attractive to avoid 
a common, but well-known error. However, it implies “magic” addition of functionality 
and overhead and is rumored to break a lot of COM code. Thus, we don’t propose it. 
 

1.14 Should we add to the defaults? 
Given the mechanism of removing all defaults and then selectively adding, we can 
consider what else we might want to add. People have asked for a feature like Java or C# 
interfaces. We could provide something like: 
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class Z { 

default +{ virtual  =0 } // in addition to the usual defaults 
// make every function a pure virtual 

// … 
}; 

 
We don’t propose that, but note that what we have here is a general mechanism for 
adding class-wise semantic mechanisms. 
 

1.15 Inherited constructors 
One of the most frequently requested convenience features is “let me inherit the 
constructors from my base class. Except for a quirk of naming, we already have that! 
Consider: 
 

class Base { 
public: 
 Base(int); 
 Base(); 
 Base(double); 
 
 void f(int); 
 void f (); 
 void f (double); 
 
 // … 
}; 
 
class Derived : public Base { 
public: 
 using Base::f;  // lift Base’s f into Derived’s scope 
 void f(char);   // provide a new f 
 void f(int);  // prefer this f to Base::f(int); 
 
 using Base::Base;  // lift Base’s f into Derived’s scope 
 Derived(char);  // provide a new constructor 
 Derived(int);   // prefer this constructor to Base::Base(int); 
 
 // … 
}; 

 
Little more than a historical accident prevents using to work for a constructor as well as 
for an ordinary member function. Had a constructor been called “ctor” or “constructor” 
rather than being referred to by the name of their class, this would have worked. We 
propose this as the mechanism for inheriting constructors. 

 21 



Stroustrup & Dos Reis 9/22/2005 N1890=05-0150 

 
 

8 Casting 
When a user-defined type it involved, we can define the meaning of C-style casting (T)v 
and functional style construction T(v) through constructors and conversion operators. 
However, we cannot change the meaning of a new-style cast and T(v) is by definition an 
old-style cast so its default meaning implies really nasty casts (reinterpret casts) for some 
built-in type combinations. For example, int(p) will convert a pointer p to an int. This 
leads to two common suggestions: 
 

• Allow user-define static_cast, etc.  
• Default T(v) to mean static_cast<T>(v) rather than (T)v. 
 

The two suggestions are related because often the reason for wishing T(v) to mean 
static_cast<T>(v) is to be able to define it as a range-checked operation for some built-in 
type T. 
 
We have also heard the suggestion that T(v) should be “proper construction” and thus not 
allow narrowing conversions (e.g. char(123456)). However, the functional notation is 
used to be explicit about narrowing, so banning narrowing by default would be too 
radical.  
 
We don’t propose to allow overloading of the new-style casts. If you want a different 
cast, you can define one using the same notational pattern, such as lexical_cast<T>(v). 
The T(v) problem is worse, it basically defeats attempts to make casting safer and more 
visible. It also, takes the ideal syntax for the least desirable semantics. We conjecture that 
is not widely used for “nasty casts” (in correct code). To make any progress this 
conjecture must be tested through code analysis. Assuming that a change is possible, we 
propose the following: 
 

• By default, T(v) is defined as static_cast<T>(v) 
• The meaning of T(v) can be defined by a definition T operator(V) even if both T 

and V are built-in types. 
 
These proposals are independent. Either would be useful without the other. The second 
proposal would break no existing code, but it would violate the dictum “a user-defined 
operator requires a user defined type as operand”. The reason to accept that violation is 
that most of the built-in casting operations for T(v) are implementation defined or 
undefined anyway. 
 
Either or (preferably) both of these proposals would allow a systematic notation and 
prevent unintentional bad casts. 
 

Discussion: If overloading of static_cast, etc. were allowed, the meaning of (T)v and 
T(v) would have to be reconsidered because their meaning is defined in terms of the 
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new style casts. We could consider providing no default for T(v) where T is a built-in 
type. However, that would almost certainly break a lot of correct code: people use the 
T(v) notation for conversions among the integral types, e.g. int(d). 
 

9 Rvalue constructors 
Rvalue constructors (as defined in N???) do not appear to interfere with or be interfered 
by other proposals related to initialization. Had the rvalue semantic proposal simply 
affected constructors a syntax similar to the one proposed for sequence constructors and 
litaral constructors would have been more appropriate. For example: 
 

class X { 
 X={const X&); // move constructor 
 // … 
}; 

 
However, the rvalue proposal appears to dig too far into the type system for that. 
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