
When we think about programming, it’s C++ that first comes to mind. That’s because of
the immense popularity and broad applicability of the general-purpose programming

language that debuted back in 1983. Since then, it has influenced many modern
languages, including C#, D and even Java. But what makes C++ important in the world

of generation-next computers and devices like smartphones and embedded hardware?
Jagmeet Singh of OSFY tries to get the answer to this question in a conversation

with none other than the creator of C++, Bjarne Stroustrup. Edited excerpts...

and my colleagues. However, the
range of projects, the demands and the
hardware at Bell Labs were very wide,
so the language had to be very flexible
to cope with all of that.

Q What were the prime
challenges you faced when

building C++?
There were many challenges because
I was building a tool for practical use,
rather than as an academic project
for publication. A tool has to be good
enough for everything its users need;
just being the best in the world for
one or two things is not sufficient
for success.

The very first challenge that I
faced was the language’s design. The
question that arose was what features
do my colleagues and I need in order to
simplify our code. Implementing those
features so that they were affordable
to use in real-world development and
execution environments was also quite
hard, initially.

Once the language was ready,
its installation and portability on a
variety of hardware and operating
systems was quite tough. Similarly,
educating people on how to use the
new techniques and language features
was also a big challenge.

It was not all that easy because for
the first years I was the only person
working on ‘C with Classes’. My
colleagues were most supportive, but
there was no official C++ project with a
budget; basically, the help I offered to a
range of Bell Labs projects allowed me
to develop C++.

Q Why was there a need for
C++ when C already existed

in the computing world?
I built C++ on C because I did not
want to build from scratch. That
would not have resulted in a useful
tool within a reasonable time frame.
However, C could not, and still cannot,
manage complexity as well as C++.
The C language, and how it is used,

Q What prompted you to
develop C++?

I needed a language that could be
used to manipulate hardware directly
and use all the available hardware
resources well. I also needed a
language that allowed me to handle
complexity. Though C could be used
in manipulating hardware and Simula
could handle complexity, there wasn’t a
language that could do both. Therefore,
I started to build one, by adding
Simula’s class ideas to C.

Q For whom did you build the
initial C++ model?

I wanted that language for myself, to
help build a distributed system based
on UNIX. Before I even finished my
language, my friends and colleagues
at Bell Labs started to use it for their
projects, often simulation projects
because the very first library I built
for ‘C with Classes’ (as I called my
language) was a co-routine library.

I built C++ primarily for myself

“ I built C++
primarily for myself and

my colleagues

For U & Me Interview

18  |  May 2017  |  OPEN SOURCE For You  |  www.OpenSourceForU.com

 Bjarne Stroustrup,
creator of C++

Currently, there are
about 4.5 million
users of C++, and

that number is
growing by about
100,000 a year.

has evolved over the years -- often
under the influence of C++. When
I started with ‘C with Classes’, the
use of sets of functions as opaque
interfaces (which today is C’s most
effective abstraction mechanism) was
not common. It has been conjectured
that this developed partly in response
to the classes and virtual functions of
C++. K&R C did not offer function
prototypes, //, const, inline and more;
those came from my work with
C++. Even GCC (GNU Compiler
Collection) that was first released in
1987 is a C++ program now.

Q How has C++ evolved in the
programming space?

For the first 10 years or so, the user
population of C++ doubled every 7.5
months. Currently, there are about 4.5
million users of C++, and that number is
growing by about 100,000 a year.

Moreover, C++ is used all over
the world, and heavily in finance,
banking, games, front offices, telecom,
electronics, marketing, manufacturing
and retail. From my own experience, I
can add embedded systems, scientific

computation and graphics to the
list of use cases.

Q Is it the open source practice
that led to the early success

for programming languages such
as C and C++?
No. The early success of C and C++
predates the emergence of open source.
However, AT&T did the next best thing
and allowed the use of C and C++
compilers and libraries for a very low
price. For non-profit organisations,

For U & MeInterview

www.OpenSourceForU.com  |  OPEN SOURCE For You  |  may 2017  |  19

C++ cost US$ 75, which was the price
of the magnetic tape on which it was
shipped (source and binary); organised
distribution over the Internet was still in
the future, back then. Soon, AT&T gave
the specifications of C and C++ to the
ISO so everyone could use them, and I
personally helped other organisations
with getting C++ compilers written.

Nowadays, there are, of course,
open source and proprietary C++
implementations. To ensure the wide
reach of my work, I deliberately (with
the agreement of AT&T) refrained from
patenting anything related to C++.

Q Do you see any programming
languages today that can

replace C++? Or can we call it
irreplaceable?
I do not see a current language that could
replace C++ across its range of uses.
Its combination of hardware access and
zero-overhead abstraction is still unique.
However, nothing lasts forever.

Eventually, a current language will
acquire sufficient facilities or a new
language will come along. C++ has
certainly been at the top of the game
for almost 30 years. That is not bad,
especially given that C++ never had a
powerful owner or a marketing budget.

Q What are the major features
that make C++ an easier

option compared to C?
C++ offers you a better type system,
classes with constructors and
destructors, overloading, native support
for object-oriented programming,
support for generic programming as
well as compile-time programming.

Q Why do aspiring developers
need to learn C++ to

survive in the growing world of
computers?
I do not know if they need to learn
C++, but they should want to. It is one
of the most widely used languages and
among the most flexible. It is also one
of the languages that delivers the best
performance, is very popular and allows
you direct access to hardware resources.

Further, C++ is one of the few
languages that allow you to use a wide
range of fundamental programming
techniques. It also allows you to work in
most industries.

Q There are different compilers
available for C++. Which one

is the best, in your view, and why?
I do not have a favourite compiler for
C++. I use several. The major C++
compilers are all good. They have
good standard conformance, generate
good code and have good supporting
toolsets and fundamental libraries.
You can choose a C++ compiler based
on specific needs such as the ability
to use specific hardware or specific
programming techniques, specific
environments, portability or a certain
toolset like GDB or Visual Studio.

Q Unlike Python and Java,
C++ has not yet become the

perfect choice for embedded
engineers. Do you think the focus
should now also be on connected
devices?
Python and Java are not perfect
choices for embedded systems either.
C++ is critical when you need to
squeeze performance or energy
efficiency (say, enhancing battery
life) out of a gadget, but no one
language is the best for everything
and everybody. There is a lot of C++
embedded system code. It is worth
remembering that ‘embedded systems’
include a vast range of things -- from
coffee machines to jet plane flight
controls, from fuel injectors to stereo
amplifiers, and from lithium ion battery
controllers to self-driving cars. There
is a corresponding range of needs for
programming techniques and tools.

Q How important, do you
think, is readability in a

programming language?
Readability is essential. If you cannot
read the code, you cannot maintain it
and cannot discuss or argue about how
correct it is. Today’s C++ is so much
more readable than older C++ or C.

I am working on an ambitious
project to define what modern C++
code -- using C++11, C++14, C++17
and beyond —should look like. It is
called the Core Guidelines, and is an
open source project with editors from
Morgan Stanley, Microsoft, Red Hat
and Facebook.

We are aiming for completely
type-safe and resource-safe code,
without limitations on expressibility
or performance. Code conforming
to the Core Guidelines is far more
regular and readable than most current
code. Moreover, we are working on
tools for the automatic enforcement
of these guidelines.

Q Do you see any big
difference between

computer systems and
embedded devices that are
designed for the Internet of
Things (IoT) ecosystem?
There are differences such as
application binary interfaces (ABIs) and
security concerns, but the fundamental
programming needs and constraints are
the same, and I think they favour C++.

Q How do you plan the
revisions of C++ standards?

We just moved C++17 out of a national
vote. It will be the ISO C++ standard later
this year. C++20 will be the standard after
that in 2020. For C++20, we will code
for for concepts, modules and possibly
contracts and co-routines. It could be
an exciting major revision and change
the way we program, but all of this will
depend on the standards committee’s
willingness to accept change.

Concepts are shipping in GCC, while
modules are shipping in Microsoft and
co-routines are available in Microsoft
and Clang. More implementations are

Today’s C++ is
so much more

readable than older
C++ or C.

For U & Me Interview

20  |  May 2017  |  OPEN SOURCE For You  |  www.OpenSourceForU.com

in the works, so my dreams have some
concrete foundation.

It is extremely difficult for a group
of 200 to make plans and stick to them.
Some of us in the committee try, though.

Q What are all the scheduled
features in the C++17

standard that will advance
the present programming
experience?
Compared to C++11 and C++14,
C++17 does not offer anything that
will fundamentally change the way you
program. It does not change the way
you think about constructing a program.
Thus, by my usual definition, it is a
minor update. It does, however, offer a
little for everybody. Importantly, most
C++17 features are already shipping in
the major implementations; I suspect
these implementations will all be
feature-complete before 2017 is out.

What matters with the new features
is how they can be used to write better

code, by which I mean code that more
directly expresses its intent and runs
faster using fewer resources.

Q Spending hours on the code
is not an easy task for young

programmers. What valuable tips
can they get from you that will
help them work comfortably on
new projects?

The code is where ideas turn into
practical results. We cannot just write
papers or manuals. In fact, we must
produce code that actually works.

Before adding to a code base, you
have to understand some of it. You can
get a general understanding of some
code top-down, but to be able to make
a change (such as to fix a bug) you
need to understand the code inside-out,
particularly what affects this line of
code and in turn, what this line of code
affects? Anything that helps read the
code and navigate through it, helps.
Linear reading or trying to understand

everything just does not work. It is
not feasible for large code bases and
inefficient for small ones.

So, look for good code navigation
tools like IDEs and, of course, hope for
helpful colleagues who will spend time
introducing you to the code base and
its associated tools (debuggers, build
systems and test suites).

If you want to use C++, take care to
learn it well. In particular, learn to use
modern C++ well. Do not just repeat the
errors of the past. You can write so much
better C++11 than you could write in the
styles of the 1990s.

Q Finally, where do you see the
programming world in the

near future?
Hopefully, it will be easier to read, write
and maintain code. I do not want to
write science fiction, so I will not go into
details. But I expect that C++ and I will
make a significant positive contribution
to that future.

For U & MeInterview

www.OpenSourceForU.com  |  OPEN SOURCE For You  |  may 2017  |  21

