Open Pattern Matching for C++

Yuriy Solodkyy

Gabriel Dos Reis

Bjarne Stroustrup

Texas A&M University
College Station, Texas, USA

{yuriys,gdr,bs}@cse.tamu.edu

Abstract

Pattern matching is an abstraction mechanism that can greatly sim-
plify source code. We present functional-style pattern matching for
C++ implemented as a library, called Mach7'. All the patterns are
user-definable, can be stored in variables, passed among functions,
and allow the use of class hierarchies. As an example, we imple-
ment common patterns used in functional languages.

Our approach to pattern matching is based on compile-time
composition of pattern objects through concepts. This is superior
(in terms of performance and expressiveness) to approaches based
on run-time composition of polymorphic pattern objects. In partic-
ular, our solution allows mapping functional code based on pattern
matching directly into C++ and produces code that is only a few
percent slower than hand-optimized C++ code.

The library uses an efficient type switch construct, further ex-
tending it to multiple scrutinees and general patterns. We compare
the performance of pattern matching to that of double dispatch and
open multi-methods in C++.

Categories and Subject Descriptors D.1.5 [Programming tech-
nigues]: Object-oriented Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design

Keywords Pattern Matching, C++

1. Introduction

Pattern matching is an abstraction mechanism popularized by
the functional programming community, most notably ML [12],
OCaml [21], and Haskell [15], and recently adopted by several
multi-paradigm and object-oriented programming languages such
as Scala [30], F# [7], and dialects of C++[22, 29]. The expressive
power of pattern matching has been cited as the number one reason
for choosing a functional language for a task [6, 25, 28].

This paper presents functional-style pattern matching for C++.
To allow experimentation and to be able to use production-quality
toolchains (in particular, compilers and optimizers), we imple-
mented our matching facilities as a C++ library.

I The library is available at http: //parasol.tamu.edu/mach7/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

GPCE 13, October 27-28, 2013, Indianapolis, Indiana, USA.

Copyright © 2013 ACM 978-1-4503-2373-4/13/10. .. $15.00.
http://dx.doi.org/10.1145/2517208.2517222

1.1 Summary

We present functional-style pattern matching for C++ built as an
ISO C++11 library. Our solution:

* is open to the introduction of new patterns into the library, while
not making any assumptions about existing ones.
is type safe: inappropriate applications of patterns to subjects
are compile-time errors.
Makes patterns first-class citizens in the language (§3.1).
is non-intrusive, so that it can be retroactively applied to exist-
ing types (§3.2).
provides a unified syntax for various encodings of extensible
hierarchical datatypes in C++.
provides an alternative interpretation of the controversial n+k
patterns (in line with that of constructor patterns), leaving the
choice of exact semantics to the user (§3.3).
supports a limited form of views (§3.4).
generalizes open type switch to multiple scrutinees and enables
patterns in case clauses (§3.5).
demonstrates that compile-time composition of patterns through
concepts is superior to run-time composition of patterns through
polymorphic interfaces in terms of performance, expressive-
ness, and static type checking (§4.1).
Our library sets a standard for the performance, extensibility,
brevity, clarity, and usefulness of any language solution for pat-
tern matching. It provides full functionality, so we can experiment
with the use of pattern matching in C++ and compare it to existing
alternatives. Our solution requires only current support of C++11
without any additional tool support.

2. Pattern Matching in C++

The object analyzed through pattern matching is commonly called
the scrutinee or subject, while its static type is commonly called
the subject type. Consider for example the following definition of
factorial in Mach7:

int factorial(int n) {
unsigned short m;
Match(n) {
Case(0) return 1;
Case(m) return m=factorial(m-1);
Case(-) throw std::invalid_argument(”factorial);
} EndMatch

}

The subject n is passed as an argument to the Match statement
and is then analyzed through Case clauses that list various pat-
terns. In the first-fir strategy typically adopted by functional lan-
guages, the matching proceeds in sequential order while the pat-
terns guarding their respective clauses are rejected. Eventually, the
statement guarded by the first accepted pattern is executed or the
control reaches the end of the Match statement.

The value 0 in the first case clause is an example of a value pat-
tern. It will match only when the subject n is 0. The variable m in
the second case clause is an example of a variable pattern. It will
bind to any value that can be represented by its type. The name _ in
the last case clause refers to the common instance of the wildcard
pattern. Value, variable, and wildcard patterns are typically referred
to as primitive patterns. The list of primitive patterns is often ex-
tended with a predicate pattern (e.g. as seen in Scheme [49]), which
allows the use of any unary predicate or nullary member-predicate
as a pattern: e.g. Case(even) ... (assuming bool even(int);) or
Case([](int m) { return m"m-1; }) ... for A-expressions.

The predicate pattern is a use of a predicate as a pattern and
should not be confused with a guard, which is a predicate attached
to a pattern that may make use of the variables bound in it. The
result of the guard’s evaluation will determine whether the case
clause and the body associated with it will be accepted or rejected.
Guards gives rise to guard patterns, which in Mach7 are expres-
sions of the form P|=F, where P is a pattern and F is its guard.

Pattern matching is closely related to algebraic data types.
In ML and Haskell, an Algebraic Data Type is a data type each
of whose values are picked from a disjoint sum of data types,
called variants. Each variant is a product type marked with a
unique symbolic constant called a constructor. Each construc-
tor provides a convenient way of creating a value of its vari-
ant type as well as discriminating among variants through pat-
tern matching. In particular, given an algebraic data type D =
Ci(Th1, oo, Timy) *|Cr (T, -, Thom,,) an expression of the form
Ci(z1, ..., Tm ;) in a non-pattern-matching context is called a value
constructor and refers to a value of type D created via the construc-
tor C; and its arguments 21, ..., Ty, . The same expression in the
pattern-matching context is called a constructor pattern and is used
to check whether the subject is of type D and was created with the
constructor C;. If so, it matches the actual values it was constructed
with against the nested patterns ;.

C++ does not directly support algebraic data types. However,
such types can be encoded in the language in a number of ways.
Common object-oriented encodings employ an abstract class to
represent the algebraic data type and derived classes to represent
variants. Consider for example the following representation of the
terms of the A-calculus in C++:

struct Term { virtual ~Term() {} };
struct Var : Term { std:: string name; };

struct Abs : Term { Var& var; Term& body; };
struct App : Term { Term& func; Term& arg; };

C++ allows a class to have several constructors, but it does not
allow overloading the meaning of construction for use in pat-
tern matching. This is why in Mach7 we have to be slightly
more explicit about constructor patterns, which take the form
C(T;)(Py, ..., Pm;), where T; is the name of the user-defined
type we are decomposing and P, ..., P, are patterns that will
be matched against members of T;. ‘C’ was chosen to abbreviate
“Constructor pattern” or “Case class” as its use resembles the use
of case classes in Scala [30]. For example, we can write a com-
plete (with the exception of bindings discussed in §3.2) recursive
implementation of testing for the equality of two lambda terms as:

bool operator==(const Term& left, const Term& right) {

var(const std:: string &) s; var(const Term&) z,y;

Match(left , right) {
Case(C(Var)(s) , C(Var)(+s)) return true;
Case(C(Abs)(x,y), C(Abs)(+z,+y)) return true;
Case(C{App)(z,y), C(App)(+z,+y)) return true;
Otherwise() return false ;

} EndMatch

}

This == is an example of a binary method: an operation that re-
quires both arguments to have the same type [3]. In each of the
case clauses, we check that both subjects are of the same dynamic
type using a constructor pattern. We then decompose both subjects
into components and compare them for equality with the help of a
variable pattern and an equivalence combinator (‘+’) applied to it.
The use of an equivalence combinator turns a binding use of a vari-
able pattern into a non-binding use of that variable’s current value
as a value pattern. We chose to overload unary + because in C++ it
turns an l-value into an r-value, which has a similar semantics here.

In general, a pattern combinator is an operation on patterns
to produce a new pattern. Other typical pattern combinators, sup-
ported by many languages, are conjunction, disjunction and nega-
tion combinators, which all have an intuitive Boolean interpreta-
tion. We add a few non-standard combinators to Mach?7 that reflect
the specifics of C++, e.g. the presence of pointers and references.

The equality operator on A-terms demonstrates both nesting of
patterns and relational matching. The variable pattern was nested
within an equivalence pattern, which in turn was nested inside
a constructor pattern. The matching was also relational because
we could relate the state of two subjects. Both aspects are even
better demonstrated in the following well-known functional so-
lution to balancing red-black trees with pattern matching due to
Chris Okasaki [32, §3.3] implemented in Mach7:

class T{enum color{black,red} col; T* left; K key; Tx right;};
Tx balance(T::color clr, Tx left, const K& key, Tx right) {
const T::color B = T::black, R = T::red;
var(T*) a, b, ¢, d; var(K&) z, y, z; T::color col;
Match(clr, left, key, right) {
Case(B, C(T)(R, C({T)}(R, a, z, b), y, ¢), 2z, d) ...
Case(B, C(T)(R, a, =z, C(T)}(R, b, y, ¢)), z, d) ...
Case(B, a, z, C(T)(R, C(T)(R, b, y, ¢), z, d)) ...
Case(B, a, z, C(T)(R, b, y, C(T)(R, ¢, z, d))) ...
Case(col, a, z, b) return new T{col, a, z, b};
} EndMatch

}

The ... in the first four case clauses above stands for
return new T{R, new T{B,a,z,b}, y, new T{B,c,z,d}}:.

To demonstrate the openness of the library, we implemented
numerous specialized patterns that often appear in practice and
are even built into some languages. For example, the following
combination of regular-expression and one-of patterns can be used
to recognize a toll-free phone number.

rex("([0-9]+)—([0-9]+)—([0-9]+) " ,any({800,888,877}),n,m)

The regular-expression pattern takes a C++11 regular expression
and an arbitrary number of sub-patterns. It uses matching groups to
match against the sub-patterns. A one-of pattern takes an initializer
list with a set of values and checks that the subject matches at least
one of them. The variables n and m are integers, and the values
of the last two parts of the pattern will be assigned to them. The
parsing is generic and will work with any data type that can be read
from an input stream; this is a common idiom in C++. Should we
also need the exact area code, we can mix in a variable pattern using
the conjunction combinator: a && any(...).

3. Implementation

The traditional object-oriented approach to implementing first-
class patterns is based on run-time compositions through inter-
faces. This “patterns as objects” approach has been explored in
several different languages [11, 14, 34, 47]. Implementations differ
in where bindings are stored and what is returned as a result, but in
its most basic form it consists of the pattern interface with a virtual

function match that accepts a subject and returns whether it was
accepted or rejected. This approach is open to new patterns and
pattern combinators, but a mismatch in the type of the subject and
the type accepted by the pattern can only be detected at run-time.
Furthermore, it implies significant run-time overhead (§4.1).

3.1 Patterns as Expression Templates

Patterns in Mach?7 are also represented as objects; however, they are
composed at compile time, based on C++ concepts. Concept is the
C++ community’s long-established term for a set of requirements
for template parameters. Concepts were not included in C++11,
but techniques for emulating them with enable_if [18] have been in
use for a while. enable_if provides the ability to include or exclude
certain class or function declarations from the compiler’s consid-
eration based on conditions defined by arbitrary metafunctions.
To avoid the verbosity of enable_if, in this work we use the no-
tation for template constraints — a simpler version of concepts [42].
The Mach7 implementation emulates these constraints.

There are two main constraints on which the entire library is
built: PATTERN and LAZYEXPRESSION.

template (typename P) constexpr bool PaTTERN() {
return CopYABLE(P) // P must also be CoPYABLE
&& is_pattern(P)::value // this is a semantic constraint
&& requires (typename S, P p, S's) {// syntactic reqgs:
bool = { p(s) }; // usable as a predicate on S
AcceptedType(P,S); // has this type function
oo}
The PATTERN constraint is the analog of the pattern interface from
the patterns as objects solution. Objects of any class P satisfying
this constraint are patterns and can be composed with any other
patterns in the library as well as be used in the Match statement.

Patterns can be passed as arguments of a function, so they must
be CopyaBLE. Implementation of pattern combinators requires the
library to overload certain operators on all the types satisfying the
PATTERN constraint. To avoid overloading these operators for types
that satisfy the requirements accidentally, the PATTERN constraint is
a semantic constraint, which means that classes claiming to satisfy
it have to state that explicitly by specializing the is_pattern{P)
trait. The constraint also introduces some syntactic requirements,
described by the requires clause. In particular, because patterns
are predicates on their subject type, they require presence of an
application operator that checks whether a pattern matches a given
subject. Unlike the patterns as objects approach, the PATTERN
constraint does not impose any restrictions on the subject type S.
Patterns like the wildcard pattern will leave the S type completely
unrestricted, while other patterns may require it to satisfy certain
constraints, model a given concept, inherit from a certain type, etc.
The application operator will typically return a value of type bool
indicating whether the pattern is accepted on a given subject or
rejected.

Most of the patterns are applicable only to subjects of a given
expected type or types convertible to it. This is the case, for ex-
ample, with value and variable patterns, where the expected type
is the type of the underlying value, as well as with the construc-
tor pattern, where the expected type is the type being decomposed.
Some patterns, however, do not have a single expected type and
may work with subjects of many unrelated types. A wildcard pat-
tern, for example, can accept values of any type without involv-
ing a conversion. To account for this, the PATTERN constraint re-
quires the presence of a type alias Accepted Type, which given a
pattern of type P and a subject of type S returns an expected type
AcceptedType(P,S) that will accept subjects of type S with no or
a minimum of conversions. By default, the alias is defined in terms
of a nested type function accepted_type_for, as follows:

template(typename P, typename S)
using AcceptedType = P::accepted_type_for(S)::type;

The wildcard pattern defines accepted_type_for to be an identity
function, while variable and value patterns define it to be their
underlying type. The constructor pattern’s accepted type is the type
it decomposes, which is typically different from the subject type.
Mach7 employs an efficient type switch [41] under the hood to
convert subject type to accepted type.

Guards, n+k patterns, the equivalence combinator, and po-
tentially some new user-defined patterns depend on capturing
the structure (term) of lazily-evaluated expressions. All such
expressions are objects of some type E that must satisfy the
LAzZYEXPRESSION constraint:

template (typename E) constexpr bool LazyExpression() {
return CopvaBrLe(E) // E must also be CopyABLE
&& is_expression(E)::value // this is semantic constraint
&& requires (E e) { // syntactic requirements:
ResultType(E); // associated result_type
ResultType(E) == { eval(e) };// eval(E)— result_type
ResultType(E) { e }; // conversion to result_type
rood
template(typename E) using ResultType = E::result_type;

The constraint is, again, semantic, and the classes claiming to
satisfy it must assert it through the is_expression(E) trait. The
template alias ResultType(E) is defined to return the expres-
sion’s associated type result_type, which defines the type of the
result of a lazily-evaluated expression. Any class satisfying the
LAzYEXPRESSION constraint must also provide an implementation
of the function eval that evaluates the result of the expression. Con-
version to the result_type should call eval on the object in order
to allow the use of lazily-evaluated expressions in the contexts
where their eagerly-evaluated value is expected, e.g. a non-pattern-
matching context of the right-hand side of the Case clause.

Our implementation of the variable pattern var(T) satisfies the
PATTERN and LAzZYEXPRESSION constraints as follows:

template (Recurar T) struct var {
template (typename)
struct accepted_type_for { typedef T type; };
bool operator()(const T& t) const // exact match
{ m_value = t; return true; }
template (REGULAR S)
bool operator()(const S& s) const // with conversion
{ m_value = s; return m_value ==s; }
typedef T result_type; // type when used in expression
friend const result_type& eval(const var& v) // eager eval
{ return v.m_value; }
operator result_type() const { return eval(*this); }
mutable T m_value; // value bound during matching
b
template(RecuLAr T)struct is_pattern{var(T)):true_type{};
template(REGULAR T)struct is_expression(var(T)):true_type{};

For semantic or efficiency reasons a pattern may have several over-
loads of the application operator. In the example, the first alter-
native is used when no conversion is required; thus, the variable
pattern is guaranteed to be accepted. The second may involve
a (possibly-narrowing) conversion, which is why we check that
the values compare as equal after assignment. Similarly, for type
checking reasons, accepted_type_for may (and typically will) pro-
vide several partial or full specializations to limit the set of accept-
able subjects. For example, the address combinator can only be ap-
plied to subjects of pointer types, so its implementation will report
a compile-time error when applied to any non-pointer type.

To capture the structure of an expression, the library employs
a commonly-used technique called “expression templates” [45,
46]. In general, an expression template is an algebraic structure
(Z¢,{f1, f2,...}) defined over the set 3¢ = {7 | 7 = (} of all the
types 7 modeling a given concept {. The operations f; allow one to
compose new types modeling the concept ¢ out of existing types.
In this sense, the types of all lazy expressions in Mach?7 stem from
a set of a few (possibly-parameterized) basic types like var(T) and
value(T) (which both model LazyEXPRESSION) by applying type
functors like plus and minus to them. Every type in the resulting
family then has a function eval defined on it that returns a value
of the associated type result_type. Similarly, the types of all the
patterns stem from a set of a few (possibly-parameterized) patterns
like wildcard, var(T), value(T), C(T) etc. by applying to them pat-
tern combinators such as conjunction, disjunction, equivalence,
address etc. The user is allowed to extend both algebras with either
basic expressions and patterns or with functors and combinators.

The sets XrazyEzpression and X pattern have a non-empty
intersection, which slightly complicates matters. The basic types
var(T) and value(T) belong to both of those sets, and so do some
of the combinators, e.g. conjunction. Since we can only have
one overloaded operator&& for a given combination of argument
types, we have to state conditionally whether the requirements of
PATTERN, LAZYEXPRESSION, or both are satisfied in a given instan-
tiation of conjunction(71,T%), depending on what combination of
these concepts the argument types 77 and 75 model. Concepts, un-
like interfaces, allow modeling such behavior without multiplying
implementations or introducing dependencies.

3.2 Structural Decomposition

Mach7’s constructor patterns C(T)(P4,. .., P,) requires the library
to know which member of class T should be used as the subject
to Py, which should be matched against P», etc. In functional lan-
guages supporting algebraic data types, such decomposition is un-
ambiguous as each variant has only one constructor, which is thus
also used as a deconstructor [2, 13] to define the decomposition
of that type through pattern matching. In C++, a class may have
several constructors, so we must be explicit about a class’ decom-
position. We specify that by specializing the library template class
bindings. Here are the definitions that are required in order to be
able to decompose the lambda terms we introduced in §2:

template()class bindings(Var){ Members(Var::name);};

template()class bindings(Abs){ Members(Abs::var,Abs::body);};
template()class bindings(App){Members(App::func,App::arg); };

The variadic macro Members simply expands each of its argu-

ments into the following definition, demonstrated here on App::func:

static decltype(&App::func) memberl(){return &App::func;}

Each such function returns a pointer-to-member that should be
bound in position ¢. The library applies them to the subject in order
to obtain subjects for the sub-patterns Pi, ..., P,. Note that binding
definitions made this way are non-intrusive since the original class
definition is not touched. The binding definitions also respect en-
capsulation since only the public members of the target type will
be accessible from within a specialization of bindings. Members
do not have to be data members only, which can be inaccessible,
but any of the following three categories:

* a data member of the target type T'

* a nullary member function of the target type T'

* a unary external function taking the target type 1" by pointer,

reference, or value.

Unfortunately, C++ does not yet provide sufficient compile-time
introspection capabilities to let the library generate bindings im-
plicitly. These bindings, however, only need to be written once for

a given class hierarchy (e.g. by its designer) and can be reused ev-
erywhere. This is also true for parameterized classes (§3.4).

3.3 Algebraic Decomposition

Traditional approaches to generalizing n+k patterns treat match-
ing a pattern f(x,y) against a value r as solving an equation
f(z,y) = r [33]. This interpretation is well-defined when there
are zero or one solutions, but alternative interpretations are possi-
ble when there are multiple solutions. Instead of discussing which
interpretation is the most general or appropriate, we look at n+k
patterns as a notational decomposition of mathematical objects.
The elements of the notation are associated with sub-components
of the matched mathematical entity, which effectively lets us de-
compose it into parts. The structure of the expression tree used in
the notation is an analog of a constructor symbol in structural de-
composition, while its leaves are placeholders for parameters to
be matched against or inferred from the mathematical object in
question. In essence, algebraic decomposition is to mathematical
objects what structural decomposition is to algebraic data types.
While the analogy is somewhat ad-hoc, it resembles the situation
with operator overloading: you do not strictly need it, but it is so
convenient it is virtually impossible not to have it. We demonstrate
this alternative interpretation of the n+k patterns with examples.

* An expression n/m is often used to decompose a rational num-

ber into numerator and denominator.

* An expression of the form 3¢ + r can be used to obtain the
quotient and remainder of dividing by 3. When r is a constant,
it can also be used to check membership in a congruence class.
The Euler notation a + bi, with ¢ being the imaginary unit, is
used to decompose a complex number into real and imaginary
parts. Similarly, expressions r(cos¢ + ising) and re'® are used
to decompose it into polar form.

A 2D line can be decomposed with the slope-intercept form
mX + ¢, the linear equation form aX + bY = ¢, or the two-
points form (Y —yo)(z1 — z0) = (y1 — y0)(X — o).
An object representing a polynomial can be decomposed for a
specific degree: ao, a1 X' + ao, a2 X2 + a1 X' + ao, etc.
An element of a vector space can be decomposed along some
sub-spaces of interest. For example a 2D vector can be matched
against (0,0), aX, bY, or aX +bY to separate the general case
from cases when one or both components of the vector are 0.
The expressions ¢, X, and Y in those examples are not variables,
but rather are named constants of some dedicated type that allows
the expression to be generically decomposed into orthogonal parts.
The linear equation and two-point forms for decomposing lines
already include an equality sign, so it is hard to give them seman-
tics in an equational approach. In our library that equality sign is
not different from any other operator, like + or *, and is only used
to capture the structure of the expression, while the exact semantics
of matching against that expression is given by the user. This flexi-
bility allows us to generically encode many of the interesting cases
of the equational approach. The following example, written with
use of Mach?7, defines a function for fast computation of Fibonacci
numbers by using generalized n+k patterns:

int fib(int n) {

var(int) m;

Match(n) {
Case(any({1,2})) return 1;
Case(2%m) return sqr(fib(m+1)) — sqr(fib(m-1));
Case(2xm~+1) return sqr(fib(m+1)) + sqr(fib(m));

} EndMatch // sqr(x) = x#x

}

The Mach7 library already takes care of capturing the structure
of lazy expressions (i.e. terms). To implement the semantics of

their matching, the Mach7 user (i.e. the designer of a concrete
notation) writes a new function overload to define the semantics
of decomposing a value of a given type S against a term E:

template (LazyExpression E, typename S)
bool solve(const E&, const S&);

The first argument of the function takes an expression template rep-
resenting a term we are matching against, while the second argu-
ment represents the expected result. Note that even though the first
argument is passed in with the const qualifier, it may still modify
state in E. For example, when E is var(T), the application operator
for const-object that will eventually be called will update a mutable
member m_value. The following example defines a generic solver
for multiplication by a constant ¢ # 0 of an expression e = e; * c.

template (LazyExpressioN E, typename T)
requires FieLD(E::result_type)()

bool solve(const mult(E,value(T))&e,const E::result_type&r)
{ return solve(e.m_e1,r/eval(e.m_e2)); } // em ez is ¢

template (LazyExXpPressioN E, typename T)
requires INTEGRAL(E::result_type)()

bool solve(const mult(E,value(T))&e,const E::result_type&r){
T c = eval(eem_e2); // em_esis ¢
return r%c == 0 && solve(e.m_e1,r/c);

}

Intuitively, matching e; * ¢ against the value r in the equational
approach means solving e; * ¢ = 7, which means that we should try
matching the sub-expression e; against ~.

The first overload is only applicable when the result type of the
sub-expression models the FI1ELD concept. In this case, we can rely
on the presence of a unique inverse and simply call division without
any additional checks. The second overload uses integer division,
which does not guarantee the unique inverse, and thus we have
to verify that the result is divisible by the constant first. This last
overload combined with a similar solver for addition of integral
types is everything the library needs to support the fib example.

3.4 Views

Any type 1" may have an arbitrary number of bindings associated
with it, which are specified by varying the second parameter of
the bindings template: layout. The layout is a non-type template
parameter of integral type; the layout parameter has a default value
and is thus omitted most of the time. Our library’s support of
multiple bindings (through layouts) effectively enables a facility
similar to Wadler’s views[48]. Consider:

enum { cartesian = default_layout, polar }; // Layouts

template (class T) struct bindings(std::complex(T))
{ Members(std::real(T),std::imag(T)); };

template (class T) struct bindings(std::complex(T), polar)
{ Members(std::abs(T),std::arg(T)); };

template (class T) using Cart = view(std::complex(T));
template (class T) using Pole = view(std::complex(T),polar);

std::complex(double) c; double a,b,r,f;
Match(c)
Case(Cart(double))(a,b)) ... // default layout

Case(Pole(double))(r,f)) ... // view for polar layout
EndMatch

The C++ standard effectively forces the standard library to use
the Cartesian representation [17, §26.4-4], which is why we chose
the Cart layout as the default. We then define bindings for each
layout and introduce template aliases (an analog of typedefs for
parameterized classes) for each view. The Mach7 class view(T,l)

binds a target type with one of that type’s layouts. view(T,|) can be
used everywhere the original target type T was expected.

The important difference from Wadler’s solution is that our
views can only be used in a pattern-matching context, not as con-
structors or as arguments to functions.

3.5 Match Statement

In functional languages with built-in pattern matching, relational
matching on multiple subjects is usually reduced to nested match-
ing on a single subject by wrapping multiple arguments into a tu-
ple. In a library setting, we are able to provide a more efficient im-
plementation if we keep the arguments separated. This is why our
Match statement extends the efficient type switch for C++ [41] to
handle multiple subjects (both polymorphic and non-polymorphic)
(§3.5.1) and to accept patterns in case clauses (§3.5.2).

3.5.1 Multi-argument Type Switching

The core of our efficient type switch [41] is based on the fact that
virtual table pointers (vtbl-pointers) uniquely identify subobjects in
the object and are perfect for hashing. Open type switch maps these
vtbl-pointers to jump targets and necessary this-pointer offsets and
provides an amortized constant-time dispatch to the appropriate
case clause. Its efficiency relies on the optimal hash function H}
built for a set of vtbl-pointers V' seen by a type switch. It is chosen
by varying the parameters k& and ! to minimize the probability of
conflict. The parameter k& represents the logarithm of the size of
cache, while the parameter [is the number of low bits to ignore.

A Morton order (aka Z-order) is a function that maps multidi-
mensional data to one dimension while preserving the locality of
the data points [26]. A Morton number of an /NV-dimensional coor-
dinate point is obtained by interleaving the binary representations
of all coordinates. The original one-dimensional hash function H},
applied to arguments v € V' produced hash values in a tight range
[0..25[where k € [K, K + 1] for 257! < [V| < 2% The produced
values were close to each other, which improved the cache hit rate
due to increased locality of reference. The idea is thus to use Mor-
ton order on these hash values — not on the original vtbl-pointers
— in order to preserve locality of reference. To do this, we retain a
single parameter k reflecting the size of the cache, but we keep N
optimal offsets /; for each argument 4.

Consider a set VY = {(vi,...,o]), ..., (vL,...,v2)} of N-
dimensional tuples representing the set of vtbl-pointer combina-
tions coming through a given Match statement. As with the one-
dimensional case, we restrict the size 2% of the cache to be not
larger than twice the closest power of two greater or equal to
n = VN ie. k € [K,K + 1], where 257" < [VV| < 25,
For a given k and offsets l1,...,[x a hash value of a given
combination (v',...,v™) is defined as Hy,. 1y ((v',...,0")) =
u(2“,%, cees 2”%) mod 2%, where the function j returns the Morton
number (bit interleaving) of N numbers.

As in the one-dimensional case, we vary the parameters k,l1,...,In
in their finite and small domains to obtain an optimal hash function

H} iv 1 by minimizing the probability of conflict on values from

V™. Unlike the one-dimensional case, we do not try to find the
optimal parameters every time we reconfigure the cache. Instead,
we only try to improve the parameters to render fewer conflicts in
comparison to the number of conflicts rendered by the current con-
figuration. This does not prevent us from eventually converging to
the same optimal parameters, which we do over time, but is impor-
tant for holding constant the amortized complexity of the access.
‘We demonstrate in §4.3 that — similarly to the one-dimensional case
— such a hash function produces few collisions on real-world class
hierarchies, and yet it is simple enough to compute that it competes
well with alternatives that can cope with relational matching.

3.5.2 Support for Patterns

Given a statement Match(e1,...,en) applied to arbitrary expres-
sions e;, the library introduces several names into the scope of
the statement: e.g. the number of arguments NV, the subject types
subject_type; (defined as decltype(e;) modulo type qualifiers),
and the number of polymorphic arguments M. When M > 0 it
also introduces the necessary data structures to implement efficient
type switching [41]. Only the M arguments whose subject_type;
are polymorphic will be used for fast type switching.

For each case clause Case(pi,...,pn) the library ensures that
the number of arguments to the case clause N matches the number
of arguments to the Match statement, and that the type P; of every
expression p; passed as its argument models the PATTERN concept.
For each subject_type; it introduces target_type; — the result of
evaluating the type function AcceptedType(P;,subject_type;) —
into the scope of the case clause. This is the type the pattern expects
as an argument on a subject of type subject_type; (§3.1), which is
used by the type switching mechanism to properly cast the subject
if necessary. The library then introduces the names match; of type
target_type; & bound to properly casted subjects and available to
the user in the right-hand side of the case clause in the event of
a successful match. The qualifiers applied to the type of match;
reflect the qualifiers applied to the type of the subject e;. Finally,
the library generates code that sequentially applies each pattern to
properly-casted subjects, making the clause’s body conditional:

if (p1(match;) && ...&& py(matchy)) { /* body =/ }

When type switching is not involved, the generated code imple-
ments the naive backtracking strategy, which is known to be in-
efficient as it can produce redundant computations [5, §5]. More-
efficient algorithms for compiling pattern matching have been de-
veloped since [1, 21, 23, 24, 37]. Unfortunately, while these al-
gorithms cover most of the typical kinds of patterns, they are not
pattern-agnostic as they make assumptions about the semantics of
concrete patterns. A library-based approach to pattern matching is
agnostic of the semantics of any given user-defined pattern. The in-
teresting research question in this context would be: what language
support is required to be able to optimize open patterns?

The main advantage from using pattern matching in Mach7
comes from the fast type switching weaved into the Match state-
ment. It effectively skips case clauses that will definitely be rejected
because their target type is not one of the subject’s dynamic types.
Of course, this is only applicable to polymorphic arguments; for
non-polymorphic arguments, the matching is done naively with a
cascade of conditional statements.

4. Evaluation

We performed several independent studies of our pattern match-
ing solution to test its efficiency and impact on the compilation
process. In the first study, we compare various functions written
with pattern matching to functionally-equivalent manually-hand-
optimized code in order to estimate the overhead added by the
composition of patterns (§4.1). We demonstrate this overhead for
both our solution and the patterns as objects approach. In the sec-
ond study, we compare the impact on compilation times of both
approaches (§4.2). In the third study, we looked at how well our
extension of Match statement to N arguments using the Morton
order deals with large real-world class hierarchies (§4.3). In the
fourth study, we compare the performance of matching N poly-
morphic arguments against double, triple, and quadruple dispatch
via visitor design pattern as well as open multi-methods extension
to C++ (§4.4). In the last study, we rewrote the optimizer of an ex-
perimental language from Haskell into C++. We compare the ease
of use, readability, and maintainability of the original Haskell code
and its Mach7 equivalent (§4.5).

The studies involving performance comparisons have been per-
formed on a Sony VAIO® laptop with Intel® Core™i5 460M CPU
at 2.53 GHz, 6GB of RAM, and Windows 7 Professional. All the
code was compiled with G++ (versions 4.5.2, 4.6.1, and 4.7.2, all
run under MinGW with -O2 and producing 32-bit x86 binaries)
and Visual C++ (versions 10.0 and 11.0, both with profile-guided
optimizations).

To improve accuracy, timing was performed using the x86
RDTSC instruction. For every number reported we ran 101 exper-
iments timing 1,000,000 top-level calls each. (Depending on argu-
ments, there may have been a different number of recursive calls).
The first experiment served as a warm-up, and typically resulted in
an outlier with the largest time. Averaged over 1,000,000 calls, the
number of cycles per top-level call in each of the 101 experiments
was sorted and the median was chosen. We preferred the median to
the average to diminish the influence of other applications and OS
interrupts as well as to improve reproducibility of timings between
the application runs. In particular, in the diagnostic boot mode of
Windows 7, where the minimum of drivers and background appli-
cations are loaded, we got the same number of cycles per iteration
70-80 out of 101 times. Timings in non-diagnostic boots had some-
what larger absolute values, but the relative performance remained
unchanged and equally well-reproducible.

4.1 Pattern Matching Overhead

The overhead associated with pattern matching may come from:

* Naive (sequential and often duplicated) order of tests due to a
pure library solution.

* The compiler’s inability to inline the test expressed by the
pattern in a case clause’s left-hand side (e.g. due to lack of
[type] information or due to the complexity of the expression).

* The compiler’s inability to elide construction of pattern trees
when used in the right-hand side of a case clause.

To estimate the overhead introduced by the commonly-used pat-
terns as objects approach and our patterns as expression templates
approach (§3.1), we implemented several simple functions, both
with and without pattern matching. The handcrafted code we com-
pared against was hand-optimized by us to render the same results,
without changes to the underlying algorithm. Some functions were
implemented in several ways with different patterns in order to
show the impact on performance of different patterns and pattern
combinations. The overhead of both approaches on a range of re-
cent C++ compilers is shown in Figure 1.

Patterns as Expr. Templates Patterns as Objects

G++ Visual C++ G++ Visual C++
Test Patterns|4.5.214.6.14.7.2] 10.0] 11. 452 46.1 472 10. 11.
factorialy [I,v,- [[15%[13%[17%| 85%| 35%| 347%| 408%| 419%]2121%] 1788%
factorial; |1,v 0% 6% 0%| 83%| 21%|| 410%| 519%| 504% 2380% 1812%
factorialy |1,n+k T%| 9%| 6%| T8%| 18%|| 797%| 911%| 803%| 3554% 3057 %
fibonacci®|l,n+k |[17%| 2%| 2% 62%| 15%|| 340% 431%| 395%|2730%2597%)
gcdy v,n+K,+|| 21%]| 25%| 25%| 309%]| 179%] | 1503%]| 1333%| 1208%| 8876% 7810%
gcda Ln+k,_ || 5%]| 13% 19%]| 373%|303%| 962%| 1080%| 779%| 5332%| 4674%)
gcds 1v 1%| 0%| 1%| 38%| 15%|| 119% 102%| 108%| 1575%| 1319%)
lambdas™ |&,v,C,H|58%)| 54% 56% 29%| 34%|| 837% 780% 875% 259% 289%
[power In+k ||10%| 8% 13%| 50%| 6% | 291% 337%| 338%| 1950%) 1648%)

Figure 1. Pattern Matching Overhead

The experiments marked with * correspond to the functions in
§2 and §3.3. The rest of the functions, including all the implemen-
tations using the patterns as objects approach, are available on the
project’s web page. The patterns involved in each experiment are
abbreviated as following: 1 — value pattern; v — variable pattern; _ —
wildcard pattern; n+k — n+k (application) pattern; + — equivalence
combinator; & — address combinator; C — constructor pattern.

The overhead incurred by compile-time composition of patterns
in the patterns as expression templates approach is significantly

smaller than the overhead of run-time composition of patterns in
the patterns as objects approach. In some cases, shown in the table
in bold, the compiler was able to eliminate the overhead entirely. In
the case of the “lambdas” experiment, the advantage was due to the
underlying type switch, while in the other cases the generated code
utilized the instruction pipeline and the branch predictor better.

In each experiment, the handcrafted baseline implementation
was the same in both cases (compile-time and run-time compo-
sition) and reflected our idea of the fastest code without pattern
matching describing the same algorithm. For example, gcds was
implementing the fast Euclidian algorithm with remainders, while
gcd; and geds were implementing its slower version with subtrac-
tions. The baseline code was correspondingly implementing fast
Euclidian algorithm for geds and slow for gcd; and geds.

The comparison of the overhead incurred by both approaches
would be incomplete without the details of our implementation of
the patterns as objects solution. In particular, dealing with objects
in object-oriented languages often involves heap allocation, sub-
type tests, garbage collection, etc., which can all significantly affect
performance. To make this comparison applicable to a wider range
of object-oriented languages, we took the following precautions in
the patterns as objects implementations:

* All the objects involved were stack-allocated or statically allo-
cated. This measure was taken to avoid allocating objects on
the heap, which is known to be much slower. Many compilers
of object-oriented languages perform the same optimization.
Objects representing constant values as well — as patterns whose
state does not change during pattern matching (e.g. wildcard
and value patterns) — were all statically allocated.

Patterns that modify their own state were constructed only when
they were actually used, since a successful match by a previous
pattern may return early from the function.

Only the arguments that were actually pattern-matched were
boxed into the object class hierarchy; e.g. in the case of the
power function only the second argument was boxed.

Boxed arguments were statically typed with their most de-
rived type to avoid unnecessary type checks and conversions,
e.g. object_of(int)&, which is a class derived from object and
that represents a boxed integer, instead of just object&..

No objects were returned as a result of a function, as in truly
object-oriented approach that might require heap allocation.
n+k patterns that effectively require evaluating the result of
an expression were implemented with an additional virtual
function that simply checks whether a result is a given value.
This does not allow expressing all the n+k patterns of Mach?,
but was sufficient to express all those involved in the experi-
ments and allowed us to avoid heap-allocating the results.
When run-time type checks were unavoidable (e.g. inside the
implementation of pattern::match) we compared type IDs first,
and only when the comparison failed we invoked the much
slower dynamic_cast to optimize the common case.

With these precautions in place, the main overhead of the pat-
terns as objects solution was in the cost of a virtual function call
(pattern::match) and the cost of run-time type identification and
conversion on its argument (the subject). Both are specific to the
approach and not to our implementation, so similar overhead is
present in other object-oriented languages following this strategy.

4.2 Compilation Time Overhead

Several people expressed concerns about a possible significant in-
crease in compilation time due to the openness of our pattern-
matching solution. While this might be the case for some patterns
that require a lot of compile-time computations, it is not the case
with any of the common patterns we implemented. Our patterns
are simple top-down instantiations that rarely go beyond standard

overload resolution or the occasional enable_if condition. Further-
more, we compared the compilation time for each of the examples
discussed in §4.1 with a handcrafted version.

IPatterns as Expr. Templates[Patterns as Objects

G++ Visual C++ G++ Visual C++
[Test [Patterns|| 4.7.2) 10.0) 11. 4.7.2 10. 11.
factorialy [I,v,- 1.65%]| 1.65%) 2.95%|| 7.10%10.00 %] 10.68 %
factorialy [1,v 2.46%| 1.60%)| 10.92%|| 7.14% 0.00%| 1.37%

factoriala [1,n+k 2.87%| 3.15% 3.01%|| 8.93% 4.05%| 3.83%
fibonacci*|l,n+k 3.66%]| 1.60%| 2.95%|[11.31%| 4.03%| 1.37%]
lged v,n+k,+|| 4.07%|4.68%| 0.91%|| 9.94% 2.05%| 8.05%
lecds 1,n+k,- || 1.21%]|1.53% 0.92%|| 8.19% 2.05%| 2.58%
lecds 1,v 2.03%|3.15%)| 7.86%| 5.29%| 2.05%| 0.08%|
llambdas™ |&,v,C,H| 18.91%| 7.25%| 4.27%|| 4.57%| 3.82%| 0.00%|
power 1,n+k 2.00%| 6.40%] 3.92% | 8.14%| 0.13%| 4.02%|

Table 1. Compilation Time Overhead

As can be seen in Table 1, the difference in compilation times
was small: on average, 3.99% slower for open patterns and 4.84%
slower for patterns as objects, with patterns compiling faster in a
few cases (indicated in bold). The difference will be less in real-
world projects with a larger amount of non-pattern-matching code.

4.3 Multi-argument Hashing

To check the efficiency of hashing in the multi-argument Match
statement (§3.5) we used the same class hierarchy benchmark we
used to test the efficiency of hashing in type switch [41, §4.4].
The benchmark consists of 13 libraries describing 15,246 classes.
Not all the class hierarchies originated from C++, but all were
written by humans and represent their respective problem domains.

While the Match statement works with both polymorphic and
non-polymorphic arguments, only the polymorphic arguments are
taken into consideration for efficient type switching and thus ef-
ficient hashing. It also generally only makes sense to apply type
switching to non-leaf nodes of the class hierarchy. 71% of the
classes in the entire benchmark suite were leaf classes. For each
of the remaining 4,369 non-leaf classes we created 4 functions,
performing case analysis on derived classes with 1, 2, 3 and 4 argu-
ments, respectively. Each of the functions was executed with differ-
ent combinations of possible derived types, including, in the case
of repeated multiple inheritance, different sub-objects within the
same type. There were 63,963 different subobjects when the class
hierarchies used repeated multiple inheritance and 38,856 different
subobjects with virtual multiple inheritance.

As with type switching, for each of the 4,369 functions (per
same number of arguments) we measured the number of conflicts
m in cache: the number of entries mapped to the same location
in cache by the optimal hash function. We then computed the
percentage of functions that achieved a given number of conflicts,
shown in Figure 2.

N/m| [0] [1] ---10]--- 100]:-- 1000]--- 10000]>10000
2| 1]88.37%10.78% 0.85% 0.00%| 0.00% 0.00% 0.00%
5| 2([76.42%| 5.51%(10.60% 4.89%| 2.22% 0.37% 0.00%
51 3 [[65.18%| 0.00%|15.04%]| 8.92%| 5.83% 5.03% 0.00%
| 4 |164.95% 0.00%] 0.14%[14.81%| 7.57%| 12.54% 0.00%
| T[[89.72%| 9.04%| 1.24% 0.00%| 0.00%| 0.00%| 0.00%
£|2([80.55% 4.20%| 8.46% 4.59%| 1.67% 0.53%| 0.00%
13 (71.26%| 0.37%|12.03%| 7.32%| 4.87% 4.16%| 0.00%

4 ([71.55%| 0.00%| 0.23%|11.83%| 6.49% 9.90%| 0.00%

Figure 2. Percentage of N-argument Match statements with given
number of conflicts (m) in cache

We grouped the results in ranges of exponentially-increasing
size because we noticed that the number of conflicts per Match
statement for multiple arguments was not as tightly distributed

around 0 as it was for a single argument. However, the main ob-
servation still holds: in most of the cases, we could achieve hashing
without conflicts, as can be seen in the first column (marked [0]).
The numbers are slightly better when virtual inheritance is used
because the overall number of possible subobjects is smaller.

4.4 Comparison of Alternatives for Relational Matching

Relational matching on classes depends on the efficient discovery
of the sought-after combinations of dynamic types of the subjects.
This can be performed in a number of different ways including, for
example, the techniques used to implement multiple dispatch. We
compare the efficiency of type switching on multiple arguments
in comparison to other relational matching alternatives based on
double, triple and quadruple dispatch [16], as well as our own
implementation of open multi-methods for C++ [36].

The need for multiple dispatch rarely happens in practice, di-
minishing with the number of arguments involved in dispatch.
Muschevici et al [27] studied a large corpus of applications in 6
languages and estimate that single dispatch amounts to about 30%
of all the functions, while multiple dispatch is only used in 3%
of functions. In application to type switching, this indicates that
we can expect case analysis on the dynamic type of a single ar-
gument much more often than on dynamic types of two or more
arguments. However, this does not mean that pattern matching in
general reflects the same trend, as additional arguments are often
introduced into the Match statement to check some relational prop-
erties. These additional arguments are typically non-polymorphic
and thus do not participate in type switching, which is why in this
experiment we only deal with polymorphic arguments.

Figure 3 contains 4 bar groups corresponding to the number of
arguments used for multiple dispatch. Each group contains 3 wide
bars representing the number of CPU cycles per iteration it took the
N-Dispatch, Open Type Switch and Open Multi-methods solutions
to perform the same task. Each of the 3 wide bars is subsequently
split into 5 narrow sub-bars representing performance achieved by
G++4.5.2,4.6.1,4.7.2 and Visual C++ 10 and 11, in that order.

300

I I
‘ B N-Dispatch ® Open Type Switch B Open Multi-methods
250 i

200

150

Cycles per Iteration

100

50

| 1] |

0 -

2 3
Number of Arguments

Figure 3. N-argument Match statement vs. visitor design pattern
and open multi-methods

Open multi-methods give the best performance because the dis-
patch is implemented with an N-dimensional array lookup, requir-
ing only 4N + 1 memory references before an indirect call. N-
dispatch runs the slowest, requiring 2N virtual function calls (ac-
cept/visit per each dimension). Open type switch falls between the
two, thanks to its efficient hashing combined with a jump table.

In terms of memory, given a class hierarchy of n classes (ac-
tually n subobjects in the subobject graph) and multiple dispatch
on N arguments, all 3 solutions require memory proportional to
(0] (nN) More specifically, if § is the number of bytes used by a
pointer, then each of the approaches will use:

* Open Multi-methods: § (nN +Nn+N)

* N-Dispatch: § (nN i n)

* Open Type Switch: § ((2N +3)n™ + N +7)
bytes of memory. In all 3 cases, the memory counted represents the
non-reusable memory specific to the implementation of a single
function dispatched through N polymorphic arguments. Note that
n is a variable here since new classes may be loaded at run-time
through dynamic linking in all 3 solutions, while /V is a constant,
representing the number of arguments to dispatch on.

The memory used by each approach is allocated at different
stages. The memory used by the virtual tables involved in the N-
dispatch solution as well as the dispatch tables used by open multi-
methods will be allocated at compile/link time and will be reflected
in the size of the final executable. Open multi-methods might re-
quire additional allocations and/or recomputation at load time to
account for dynamic linking. In both cases, the memory allocated
covers all possible combinations of n classes in N argument posi-
tions. In the case of open type switch, the memory is only allocated
at run-time and grows proportionally to the number of actual argu-
ment combinations seen by the type switch (§3.5.1). Only in the
worst case, when all possible combinations have been seen by the
type switch, does it reach the size described by the above formula.
This is an important distinction, as in many applications many pos-
sible combinations will never be seen: for example, in a compiler
the entities representing expressions and types might all be derived
from a common base class, but they will rarely appear in the same
type switch together.

There is also a significant difference in the ease of use of these
solutions. N-dispatch is the most restrictive solution as it is intru-
sive (and thus cannot be applied retroactively), hinders extensibil-
ity (by limiting the set of distinguishable cases), and is surprisingly
hard to teach students. While analyzing Java idioms used to emu-
late multiple dispatch in practice, Muschevici et al [27, Figure 13]
noted that there are significantly more uses of cascading instanceof
in the real code than the uses of double dispatch, which they also
attribute to the obscurity of the second idiom. Both N-dispatch
and open multi-methods also introduce control inversion in which
the case analysis is effectively structured in the form of callbacks.
Open multi-methods are also subject to ambiguities, which have
to be resolved at compile time and in some cases might require
the addition of numerous overriders. Neither problem occurs with
open type switch, where the case analysis is performed directly and
ambiguities are avoided by the use of first-fit semantics.

4.5 Rewriting Haskell Code in C++

For this experiment, we took existing code written in Haskell and
asked its author to rewrite it in C++ with Mach7. The code in
question is a simple peephole optimizer for an experimental GPU
language called Versity. We assisted the author along the way to see
which patterns he used and what kind of mistakes he made.

Somewhat surprisingly to us, we found that the pattern-matching
clauses generally became shorter, but their right-hand side became
longer. The shortening of case clauses was perhaps specific to this
application and mainly stemmed from the fact that Haskell does not
support equivalence patterns or an equivalence combinator and had
to use guards to relate different arguments. This was particularly
cumbersome when the optimizer was looking at several arguments
of several instructions in the stream, e.g.:

peep2(x1:x2:xs) =
case (x1,x2) of
((InstMove a b),(InstMove ¢ d)) | (a==d)&&(b==c) — ...

compared to the functionally-equivalent Mach?7 code:

Match(*x1,%x2) {

Case(C(InstMove)(a,b), C(InstMove)(+b,+a)) ...

Haskell also requires the programmer to use a wildcard pattern in
every unused position of a constructor pattern (e.g. InstBin _ _ _ _),
while Mach7 allows the omission of all the trailing wildcards
(e.g. C(InstBin)()). The use of named patterns avoided many re-
peated expressions and improved performance and readability:

auto either = val(src) || val(dst);
Match(inst) {

Case(C(InstMove)(_, either)) ...
Case(C{InstUn) (-, _, either)) ...
Case(C(InstBin) (-, _, _, either)) ...

} EndMatch

Mach7 suffered a disadvantage in the code after the pattern match-
ing, as we had to both explicitly manage memory when inserting,
removing, or replacing instructions in the stream and explicitly
manage the stream itself. Eventually we could hide some of this
boilerplate behind smart pointers and other standard library classes.

4.6 Limitations

While our patterns can be saved in variables and passed to func-
tions, they are not true first-class citizens as one cannot create a
run-time data structure of patterns (e.g. a composition of patterns
based on user input). This is similar to how polymorphic (template)
functions are not considered first-class citizens in C++. This can po-
tentially be solved by mixing in the patterns as objects approach,
however the performance overhead we saw in §4.1 is too costly to
be adopted.

5. Related Work

Language support for pattern matching was first introduced for
string manipulation in COMIT [50], which subsequently inspired
similar primitives in SNOBOL [10]. SNOBOL4 had string pat-
terns as first-class data types, providing operations for concatena-
tion and alternation. The first reference to modern pattern-matching
constructs as seen in functional languages is usually attributed
to Burstall’s work on structural induction [4]. Pattern matching
was further developed by the functional programming commu-
nity, most notably ML [12] and Haskell [15]. In the context of
object-oriented programming, pattern matching was first explored
in Pizza [31] and Scala [9, 30]. The idea of first-class patterns dates
back at least to Tullsen’s proposal to add them to Haskell [44]. The
calculus of such patterns has been studied in detail by Jay [19, 20].

There are two main approaches to compiling pattern-matching
code: the first is based on backtracking automata and was intro-
duced by Augustsson [1], and the second is based on decision trees
and was first described by Cardelli [5]. The backtracking approach
usually generates smaller code [21], whereas the decision tree ap-
proach produces faster code by ensuring that each primitive test is
only performed once [24].

There have been several attempts to bring pattern matching into
various languages by way of a library. They differ in which abstrac-
tions of the host language were used to encode the patterns and the
match statement. MatchO was one of the first such attempts for
Java [47]. The approach follows the patterns as objects strategy.
Functional C# was a similar approach, bringing pattern matching
to C# as a library [34]. The approach uses lambda expressions and
chaining of method calls to create a structure that is then evalu-
ated at run time for the first successful match. In the functional
community, Rhiger explored the introduction of first-class pattern
matching into Haskell as a library [38]. He uses functions to en-
code patterns and pattern combinators, which allows him to detect
pattern misapplication errors at compile time through the Haskell
type system. Racket has a powerful macro system that allows it

to express open pattern matching in the language entirely as a li-
brary [43]. The solution is remarkable in that unlike most of the
library approaches to open pattern matching, it does not rely on
naive backtracking and, in fact, encodes the optimized algorithm
based on backtracking automata [1, 21]. Grace is another program-
ming language that provides a library solution to pattern matching
through objects [14]. Similar to other control structures in the lan-
guage, Grace encodes the match statement with partial functions
and lambda expressions, while patterns are encoded as objects.

Multiple language extensions have been developed to provide
pattern matching into a host language in a form of a compiler, pre-
processor or tool. Prop brought pattern matching and term rewrit-
ing into C++ [22]. It did not offer first-class patterns, but sup-
ported most of the functional-style patterns and provided an opti-
mizing compiler for both pattern matching and garbage-collected
term rewriting. App was another pattern-matching extension to
C++ [29] that mainly concentrated on providing syntax for defin-
ing algebraic data types and pattern matching on them. Tom is a
pattern-matching compiler that brings a common pattern-matching
and term-rewriting syntax into Java, C, and Eiffel. Thanks to its
distinct syntax, it is transparent to the semantics of the host lan-
guage and can be implemented as a preprocessor to many other
languages. Tom neither supports first-class patterns, nor is open
to new patterns. Matchete is a language extension to Java that
brings together different flavors of pattern matching: functional-
style patterns, Perl-style regular expressions, XPath expressions,
Erlang’s bit-level patterns, etc. [13]. The extension does not try to
make patterns first-class citizens, but instead concentrates on im-
plementing existing best practices and their tight integration into
Java. OOMatch is another Java extension; it brings pattern match-
ing and multiple dispatch close together [39]. The approach gener-
alizes multiple dispatch by offering to use patterns as multi-method
arguments and then orders overriders based on the specificity of
their arguments. Similar to other such systems, the approach only
deals with a limited set of built-in patterns.

Thorn is a dynamically-typed scripting language that provides
first-class patterns [2]. The language defines a handful of atomic
patterns and pattern combinators to compose them, and, similarly to
Newspeak and Grace, uses the duality between partial functions
and patterns to support user-defined patterns.

When a class hierarchy is fixed, we can design a pattern lan-
guage that involves semantic notions represented by the hierarchy.
Pirkelbauer devised a pattern language for Pivot [8] capable of rep-
resenting various entities in a C++ program using syntax very close
to C++ itself. The patterns were translated by a tool into a set of
visitors implementing the pattern-matching semantics [35].

6. Conclusions and Future Work

The Mach7 library provides functional-style pattern-matching fa-
cilities for C++. The solution is open to new patterns, with the tra-
ditional patterns implemented as an example. It is non-intrusive,
so it can be applied retroactively. The library provides efficient
and expressive matching on multiple subjects and compares well
to multiple dispatch alternatives in terms of both time and space.
We also offer an alternative interpretation of the n+k patterns and
show how some traditional generalizations of these patterns can be
implemented in our library. Mach?7 pattern matching code performs
reasonably compared to open multi-methods and visitors, demon-
strating the effectiveness of the library-based approach.

The work presented here continues our research on pattern
matching for C++ [41]. Due to page limit, we had to omit many
interesting details that provide a better insight into our solution. We
refer the reader to the first author’s PhD thesis [40] for an in-depth
discussion of open type switching, open pattern matching and open
multi-methods in the context of C++.

In the future, we would like to implement an actual language ex-
tension that will be capable of working with open patterns. Given
such an extension and its implementation, we would like to look
into how code for such patterns can be optimized without hardcod-
ing the knowledge of the semantics of the patterns into the com-
piler. We would also like to experiment with other kinds of pat-
terns (including those defined by the user), look at the interaction
of patterns with both the standard library and other facilities in the
language, and make views less ad-hoc.

Acknowledgments

We would like to thank Abe Skolnik, Peter Pirkelbauer, Andrew
Sutton and numerous anonymous reviewers whose valuable feed-
back greatly helped us to improve this work. We would also like
to thank Jason Wilkins for trying Mach7 for Versity’s optimizer.
This work was partially supported by NSF grants CCF-0702765,
CCF-1043084, and CCF-1150055.

References

[1] L. Augustsson. Compiling pattern matching. In Proc. of a conference
on Functional programming languages and computer architecture, pp
368-381, New York, USA, 1985. Springer-Verlag Inc.

[2] B. Bloom and M. J. Hirzel. Robust scripting via patterns. In Proc.
ACM DLS’12, pp 29-40, NY, USA.

[3] K. Bruce, L. Cardelli, G. Castagna, G. T. Leavens, and B. Pierce. On
binary methods. Theor. Pract. Object Syst., 1(3):221-242, 1995.

[4] R. M. Burstall. Proving properties of programs by structural induction.
Computer Journal, 1969.

[5] L. Cardelli. Compiling a functional language. In Proc. ACM LFP’84,
pp 208-217.

[6] P. Cuoq, J. Signoles, P. Baudin, R. Bonichon, G. Canet, L. Correnson,
B. Monate, V. Prevosto, and A. Puccetti. Experience report: Ocaml
for an industrial-strength static analysis framework. In Proc. ACM
ICFP’09, pp 281-286, New York, USA.

[71 S. Don, G. Neverov, and J. Margetson. Extensible pattern matching via
a lightweight language extension. In Proc. ACM ICFP’07, pp 29-40.

[8] G. Dos Reis and B. Stroustrup. A principled, complete, and efficient
representation of C++. In Joint ASCM’09 and MACIS 09, pp 407-421.

[9] B. Emir. Object-oriented pattern matching. PhD thesis, Lausanne,
2007.

[10] D. J. Farber, R. E. Griswold, and I. P. Polonsky. SNOBOL, a string
manipulation language. J. ACM, 11:21-30, January 1964.

[11] E. Geller, R. Hirschfeld, and G. Bracha. Pattern Matching for an
object-oriented and dynamically typed programming language. Tech-
nische Berichte, Universitidt Potsdam. Univ.-Verlag, 2010.

[12] M. Gordon, R. Milner, L. Morris, M. Newey, and C. Wadsworth. A
metalanguage for interactive proof in LCF. In Proc. ACM POPL’78,
pp 119-130, New York, USA.

[13] M. Hirzel, N. Nystrom, B. Bloom, and J. Vitek. Matchete: Paths
through the pattern matching jungle. In Proc. PADL’08, pp 150-166.

[14] M. Homer, J. Noble, K. B. Bruce, A. P. Black, and D. J. Pearce.
Patterns as objects in Grace. In Proc. ACM DLS’12, pp 17-28.

[15] P. Hudak, H. Committee, P. Wadler, and S. Jones. Report on the Pro-
gramming Language Haskell: A Non-strict, Purely Functional Lan-
guage : Version 1.0. ML Library. Haskell Committee, 1990.

[16] D. H. H. Ingalls. A simple technique for handling multiple polymor-
phism. In Proc. ACM OOPSLA’86, pp 347-349, New York, USA.

[17] International Organization for Standardization. ISO/IEC 14882:2011:
Programming languages: C++. Geneva, Switzerland, 2011.

[18] J. Jarvi, J. Willcock, H. Hinnant, and A. Lumsdaine. Function over-
loading based on arbitrary properties of types. C/C++ Users Journal,
21(6):25-32, June 2003.

[19] B. Jay. Pattern Calculus: Computing with Functions and Structures.
Springer Publishing Company, Incorporated, 1st edition, 2009.

[20] B. Jay and D. Kesner. First-class patterns. J. Funct. Program.,
19(2):191-225, Mar. 2009.

[21] F. Le Fessant and L. Maranget. Optimizing pattern matching. In Proc.
ACM ICFP’01, pp 26-37, New York, USA.

[22] A. Leung. Prop: A C++ based pattern matching language. Technical
report, Courant Institute, New York University, 1996.

[23] L. Maranget. Compiling lazy pattern matching. In Proc. ACM LFP’92,
pp 21-31, New York, USA.

[24] L. Maranget. Compiling pattern matching to good decision trees. In
Proc. ACM ML’08, pp 35-46, New York, USA.

[25] Y. Minsky and S. Weeks. Caml trading – experiences
with functional programming on wall street. J. Funct. Program.,
18(4):553-564, July 2008.

[26] G. M. Morton. A computer-oriented geodetic data base and a new
technique in file sequencing. Technical report, IBM, Ottawa, Canada,
1966.

[27] R. Muschevici, A. Potanin, E. Tempero, and J. Noble. Multiple
dispatch in practice. In Proc. ACM OOPSLA’08, pp 563-582.

[28] R. Nanavati. Experience report: a pure shirt fits. In Proc. ACM
ICFP’08, pp 347-352, New York, USA.

[29] G. Nelan. An algebraic typing & pattern matching preprocessor for
C++, 2000. http://www.primenet.com/ georgen/app.html.

[30] M. Odersky, V. Cremet, I. Dragos, G. Dubochet, B. Emir, S. Mcdirmid,
S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, L. Spoon, and
M. Zenger. An overview of the Scala programming language (2nd
edition). Technical report, EPTF, 2006.

[31] M. Odersky and P. Wadler. Pizza into Java: Translating theory into
practice. In In Proc. ACM POPL’97, pp 146-159.

[32] C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1999.

[33] N. Oosterhof. Application patterns in functional languages, 2005.

[34] E. Pentangelo. Functional C#. http://functionalcsharp.
codeplex.com/, 2011.

[35] P. Pirkelbauer. Programming Language Evolution and Source Code
Rejuvenation. PhD thesis, Texas A&M University, December 2010.

[36] P. Pirkelbauer, Y. Solodkyy, and B. Stroustrup. Open multi-methods
for C++. In Proc. ACM GPCE’07, pp 123—134, New York, USA.

[37] L. Puel and A. Suarez. Compiling pattern matching by term decom-
position. J. Symb. Comput., 15(1):1-26, Jan. 1993.

[38] M. Rhiger. Type-safe pattern combinators. J. Funct. Program.,
19(2):145-156, Mar. 2009.

[39] A. Richard. OOMatch: pattern matching as dispatch in Java. Master’s
thesis, University of Waterloo, October 2007.

[40] Y. Solodkyy. Simplifying the Analysis of C++ Programs. PhD thesis,
Texas A&M University, August 2013.

[41] Y. Solodkyy, G. Dos Reis, and B. Stroustrup. Open and efficient type
switch for C++. In Proc. ACM OOPSLA’12, pp 963-982. ACM.

[42] A. Sutton, B. Stroustrup, and G. Dos Reis. Concepts lite: Con-
straining templates with predicates. Technical Report WG21/N3580,
JTC1/SC22/WG21 C++ Standards Committee, 2013.

[43] S. Tobin-Hochstadt. Extensible pattern matching in an extensible
language. September 2010.

[44] M. Tullsen. First class patterns. In Proc. PADL’00, pp 1-15.

[45] D. Vandevoorde and N. Josuttis. C++ templates: the complete guide.
Addison-Wesley, 2003.

[46] T. Veldhuizen. Expression templates. C++ Report, 7:26-31, 1995.

[47] J. Visser. Matching objects without language extension. Journal of
Object Technology, 5.

[48] P. Wadler. Views: a way for pattern matching to cohabit with data
abstraction. In Proc. ACM POPL’87, pp 307-313, New York, USA.

[49] A. Wright and B. Duba. Pattern matching for Scheme. 1995.

[50] V. H. Yngve. A programming language for mechanical translation.
Mechanical Translation, 5:25-41, July 1958.

