
Exception Safety: Concepts and Techniques

Bjarne Stroustrup

AT&T Labs – Research

Florham Park, NJ 07932, USA

http://www.research.att.com/˜bs

Abstract. This paper presents a set of concepts and design techniques that has
proven successful in implementing and using C++ libraries intended for applica-
tions that simultaneously require high reliability and high performance. The
notion of exception safety is based on the basic guarantee that maintains basic
invariants and avoids resource leaks and the strong guarantee that ensures that a
failed operation has no effect.

1 Introduction

This paper, based on Appendix E: Standard-Library Exception Safety of The C++ Pro-
gramming Language (Special Edition) [1], presents

(1) a few fundamental concepts useful for discussion of exception safety
(2) effective techniques for crafting exception-safe and efficient containers
(3) some general rules for exception-safe programming.

The discussion of exception safety focuses on the containers provided as part of the
ISO C++ standard library [2] [1]. Here, the standard library is used to provide exam-
ples of the kinds of concerns that must be addressed in demanding applications. The
techniques used to provide exception safety for the standard library can be applied to a
wide range of problems.

The discussion assumes an understanding of C++ and a basic understanding of
C++’s exception handling mechanisms. These mechanism, the fundamental ways of
using them, and the support they receive in the standard library are described in [1].
The reasoning behind the design of C++’s exception handling mechanisms and refer-
ences to previous work influencing that design can be found in [3].

2 Exception Safety

An operation on an object is said to be exception safe if that operation leaves the object
in a valid state when the operation is terminated by throwing an exception. This valid
state could be an error state requiring cleanup, but it must be well defined so that rea-
sonable error-handling code can be written for the object. For example, an exception
handler might destroy the object, repair the object, repeat a variant of the operation,
just carry on, etc.

In other words, the object will have an invariant, its constructors establish that
invariant, all further operations maintain that invariant, and its destructor does a final
cleanup. An operation should take care that the invariant is maintained before
throwing an exception, so that the object is in a valid state.

However, it is quite possible for that valid state to be one that doesn’t suit the applica-
tion. For example, a string may have been left as the empty string or a container may
have been left unsorted. Thus, ‘‘repair’’ means giving an object a value that is more
appropriate/desirable for the application than the one it was left with after an operation
failed. In the context of the standard library, the most interesting objects are contain-
ers.

Here, we consider under which conditions an operation on a standard-library con-
tainer can be considered exception safe. There can be only two conceptually really
simple strategies:

(1) ‘‘No guarantees:’’ If an exception is thrown, any container being manipulated
is possibly corrupted.

(2) ‘‘Strong guarantee:’’ If an exception is thrown, any container being manipu-
lated remains in the state in which it was before the standard-library operation
started.

Unfortunately, both answers are too simple for real use. Alternative (1) is unaccept-
able because it implies that after an exception is thrown from a container operation, the
container cannot be accessed; it can’t even be destroyed without fear of run-time
errors. Alternative (2) is unacceptable because it imposes the cost of roll-back seman-
tics on every individual standard-library operation.

To resolve this dilemma, the C++ standard library provides a set of exception-
safety guarantees that share the burden of producing correct programs between imple-
menters of the standard library and users of the standard library:

(3a) ‘‘Basic guarantee for all operations:’’ The basic invariants of the standard
library are maintained, and no resources, such as memory, are leaked.

(3b) ‘‘Strong guarantee for key operations:’’ In addition to providing the basic
guarantee, either the operation succeeds, or has no effects. This guarantee is
provided for key library operations, such as p pu us sh h_ _b ba ac ck k(), single-element
i in ns se er rt t() on a l li is st t, and u un ni in ni it ti ia al li iz ze ed d_ _c co op py y().

(3c) ‘‘Nothrow guarantee for some operations:’’ In addition to providing the basic
guarantee, some operations are guaranteed not to throw an exception This
guarantee is provided for a few simple operations, such as s sw wa ap p() and
p po op p_ _b ba ac ck k().

Both the basic guarantee and the strong guarantee are provided on the condition that
user-supplied operations (such as assignments and s sw wa ap p() functions) do not leave
container elements in invalid states, that user-supplied operations do not leak
resources, and that destructors do not throw exceptions.

Violating a standard library requirement, such as having a destructor exit by throw-
ing an exception, is logically equivalent to violating a fundamental language rule, such
a dereferencing a null pointer. The practical effects are also equivalent and often disas-
trous.

In addition to achieving pure exception safety, both the basic guarantee and the
strong guarantee ensure the absence of resource leaks. That is, a standard library oper-
ation that throws an exception not only leaves its operands in well-defined states but
also ensures that every resource that it acquired is (eventually) released. For example,
at the point where an exception is thrown, all memory allocated must be either

deallocated or owned by some object, which in turn must ensure that the memory is
properly deallocated. Remember that memory isn’t the only kind of resource that can
leak. Files, locks, network connections, and threads are examples of system resources
that a function may have to release or hand over to an object before throwing an excep-
tion.

Note that the C++ language rules for partial construction and destruction ensure that
exceptions thrown while constructing sub-objects and members will be handled cor-
rectly without special attention from standard-library code. This rule is an essential
underpinning for all techniques dealing with exceptions.

3 Exception-Safe Implementation Techniques

The C++ standard library provides examples of problems that occur in many other con-
texts and of solutions that apply widely. The basic tools available for writing
exception-safe code are

(1) the try-block, and
(2) the support for the ‘‘resource acquisition is initialization’’ technique.

The key idea behind the ‘‘resource acquisition is initialization’’ technique/pattern
(sometimes abbreviated to RAII) is that ownership of a resource is given to a scoped
object. Typically, that object acquires (opens, allocates, etc.) the resource in its con-
structor. That way, the objects destructor can release the resource at the end of its life
independently of whether that destruction is caused by normal exit from its scope or
from an exception. For details, see Sect. 14.4 of [1]. Also, the use of v ve ec ct to or r_ _b ba as se e
from Sect 3.2 of this paper is an example of ‘‘resource acquisition is initialization.’’

The general principles to follow are to
(1) don’t destroy a piece of information before we can store its replacement
(2) always leave objects in valid states when throwing or re-throwing an exception
(3) avoid resource leaks.

That way, we can always back out of an error situation. The practical difficulty in fol-
lowing these principles is that innocent-looking operations (such as <, =, and s so or rt t())
might throw exceptions. Knowing what to look for in an application takes experience.

When you are writing a library, the ideal is to aim at the strong exception-safety
guarantee and always to provide the basic guarantee. When writing a specific pro-
gram, there may be less concern for exception safety. For example, if I write a simple
data analysis program for my own use, I’m usually quite willing to have the program
terminate in the unlikely event of virtual memory exhaustion. However, correctness
and exception safety are closely related.

The techniques for providing basic exception safety, such as defining and checking
invariants, are similar to the techniques that are useful to get a program small and cor-
rect. It follows that the overhead of providing basic exception safety (the basic guaran-
tee) – or even the strong guarantee – can be minimal or even insignificant.

Here, I will consider an implementation of the standard container v ve ec ct to or r to see
what it takes to achieve that ideal and where we might prefer to settle for more condi-
tional safety.

3.1 A Simple Vector

A typical implementation of v ve ec ct to or r will consist of a handle holding pointers to the first
element, one-past-the-last element, and one-past-the-last allocated space (or the equiv-
alent information represented as a pointer plus offsets):

f fi ir rs st t
s sp pa ac ce e
l la as st t . .

elements
.

..

.
extra space

v ve ec ct to or r:

Here is a declaration of v ve ec ct to or r simplified to present only what is needed to discuss
exception safety and avoidance of resource leaks:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of elements, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space
A A a al ll lo oc c; / / allocator

e ex xp pl li ic ci it t v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l = T T() , c co on ns st t A A& = A A()) ;
v ve ec ct to or r(c co on ns st t v ve ec ct to or r& a a) ; / / copy constructor
v ve ec ct to or r& o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) ; / / copy assignment
˜v ve ec ct to or r() ; / / destructor

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n s sp pa ac ce e-v v; }
s si iz ze e_ _t ty yp pe e c ca ap pa ac ci it ty y() c co on ns st t { r re et tu ur rn n l la as st t-v v; }

v vo oi id d p pu us sh h_ _b ba ac ck k(c co on ns st t T T&) ;

/ / ...
};

Consider first a naive implementation of a constructor:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / warning: naive implementation
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a)

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements
s sp pa ac ce e = l la as st t = v v+n n;
f fo or r (T T* p p=v v; p p!=l la as st t; ++p p) a a.c co on ns st tr ru uc ct t(p p,v va al l) ; / / construct copy of val in *p

}

There are three sources of exceptions here:
(1) a al ll lo oc ca at te e() throws an exception indicating that no memory is available;
(2) the allocator’s copy constructor throws an exception;
(3) the copy constructor for the element type T T throws an exception because it can’t

copy v va al l.
In all cases, no object is created. However, unless we are careful, resources can leak.

When a al ll lo oc ca at te e() fails, the t th hr ro ow w will exit before any resources are acquired, so all
is well. When T T’s copy constructor fails, we have acquired some memory that must be

freed to avoid memory leaks. A more difficult problem is that the copy constructor for
T T might throw an exception after correctly constructing a few elements but before con-
structing them all. To handle this problem, we could keep track of which elements
have been constructed and destroy those (and only those) in case of an error:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / elaborate implementation
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a)

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements

i it te er ra at to or r p p;

t tr ry y {
i it te er ra at to or r e en nd d = v v+n n;
f fo or r (p p=v v; p p!=e en nd d; ++p p) a al ll lo oc c.c co on ns st tr ru uc ct t(p p,v va al l) ; / / construct element
l la as st t = s sp pa ac ce e = p p;

}
c ca at tc ch h (...) { / / destroy constructed elements, free memory, and re-throw:

f fo or r (i it te er ra at to or r q q = v v; q q!=p p; ++q q) a al ll lo oc c.d de es st tr ro oy y(q q) ;
a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,n n) ;
t th hr ro ow w;

}
}

The overhead here is the overhead of the try-block. In a good C++ implementation,
this overhead is negligible compared to the cost of allocating memory and initializing
elements. For implementations where entering a try-block incurs a cost, it may be
worthwhile to test i if f(n n) before the t tr ry y and handle the empty vector case separately.

The main part of this constructor is an exception-safe implementation of the stan-
dard library’s u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l():

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T>
v vo oi id d u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(F Fo or r b be eg g, F Fo or r e en nd d, c co on ns st t T T& x x)
{

F Fo or r p p;
t tr ry y {

f fo or r (p p=b be eg g; p p!=e en nd d; ++p p)
n ne ew w(s st ta at ti ic c_ _c ca as st t<v vo oi id d*>(&*p p)) T T(x x) ; / / construct copy of x in *p

}
c ca at tc ch h (...) { / / destroy constructed elements and rethrow:

f fo or r (F Fo or r q q = b be eg g; q q!=p p; ++q q) (&*q q)->˜T T() ;
t th hr ro ow w;

}
}

The curious construct &*p p takes care of iterators that are not pointers. In that case, we
need to take the address of the element obtained by dereference to get a pointer. The
explicit cast to v vo oi id d* ensures that the standard library placement function is used, and
not some user-defined o op pe er ra at to or r n ne ew w() for T T*s. This code is operating at a rather low
level where writing truly general code can be difficult.

Fortunately, we don’t have to reimplement u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), because the

standard library provides the desired strong guarantee for it. It is often essential for
initialization to either complete successfully, having initialized every element, or fail
leaving no constructed elements behind. Consequently, the standard-library algorithms
u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l_ _n n(), and u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() are guaran-
teed to have this strong exception-safety property.

Note that u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() does not protect against exceptions thrown by ele-
ment destructors or iterator operations. Doing so would be prohibitively expensive.

The u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() algorithm can be applied to many kinds of sequences.
Consequently, it takes a forward iterator and cannot guarantee to destroy elements in
the reverse order of their construction.

Using u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), we can write:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / messy implementation
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a)

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements
t tr ry y {

u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,v va al l) ; / / copy elements
s sp pa ac ce e = l la as st t = v v+n n;

}
c ca at tc ch h (...) {

a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,n n) ; / / free memory
t th hr ro ow w; / / re-throw

}
}

However, I wouldn’t call that pretty code. The next section will demonstrate how it
can be made much simpler.

Note that the constructor re-throws a caught exception. The intent is to make
v ve ec ct to or r transparent to exceptions so that the user can determine the exact cause of a
problem. All standard-library containers have this property. Exception transparency is
often the best policy for templates and other ‘‘thin’’ layers of software. This is in con-
trast to major parts of a system (‘‘modules’’) that generally need to take responsibility
for all exceptions thrown. That is, the implementer of such a module must be able to
list every exception that the module can throw. Achieving this may involve grouping
exceptions, mapping exceptions from lower-level routines into the module’s own
exceptions, or exception specification.

3.2 Representing Memory Explicitly

Experience revealed that writing correct exception-safe code using explicit try-blocks
is more difficult than most people expect. In fact, it is unnecessarily difficult because
there is an alternative: The ‘‘resource acquisition is initialization’’ technique can be
used to reduce the amount of code written and to make the code more stylized. In this
case, the key resource required by the v ve ec ct to or r is memory to hold its elements. By pro-
viding an auxiliary class to represent the notion of memory used by a v ve ec ct to or r, we can
simplify the code and decrease the chance of accidentally forgetting to release it:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >
s st tr ru uc ct t v ve ec ct to or r_ _b ba as se e {

A A a al ll lo oc c; / / allocator
T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of elements, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

v ve ec ct to or r_ _b ba as se e(c co on ns st t A A& a a, t ty yp pe en na am me e A A: :s si iz ze e_ _t ty yp pe e n n)
: a al ll lo oc c(a a) , v v(a a.a al ll lo oc ca at te e(n n)) , s sp pa ac ce e(v v+n n) , l la as st t(v v+n n) { }

˜v ve ec ct to or r_ _b ba as se e() { a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; }
};

As long as v v and l la as st t are correct, v ve ec ct to or r_ _b ba as se e can be destroyed. Class v ve ec ct to or r_ _b ba as se e
deals with memory for a type T T, not objects of type T T. Consequently, a user of
v ve ec ct to or r_ _b ba as se e must destroy all constructed objects in a v ve ec ct to or r_ _b ba as se e before the
v ve ec ct to or r_ _b ba as se e itself is destroyed.

Naturally, v ve ec ct to or r_ _b ba as se e itself is written so that if an exception is thrown (by the
allocator’s copy constructor or a al ll lo oc ca at te e() function) no v ve ec ct to or r_ _b ba as se e object is created
and no memory is leaked.

We want to be able to s sw wa ap p() v ve ec ct to or r_ _b ba as se es. However, the default s sw wa ap p()
doesn’t suit our needs because it copies and destroys a temporary. Because
v ve ec ct to or r_ _b ba as se e is a special-purpose class that wasn’t given fool-proof copy semantics,
that destruction would lead to undesirable side effects. Consequently we provide a
specialization:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s sw wa ap p(v ve ec ct to or r_ _b ba as se e<T T>& a a, v ve ec ct to or r_ _b ba as se e<T T>& b b)
{

s sw wa ap p(a a.a a,b b.a a) ;
s sw wa ap p(a a.v v,b b.v v) ;
s sw wa ap p(a a.s sp pa ac ce e,b b.s sp pa ac ce e) ;
s sw wa ap p(a a.l la as st t,b b.l la as st t) ;

}

Given v ve ec ct to or r_ _b ba as se e, v ve ec ct to or r can be defined like this:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >
c cl la as ss s v ve ec ct to or r : p pr ri iv va at te e v ve ec ct to or r_ _b ba as se e<T T,A A> {

v vo oi id d d de es st tr ro oy y_ _e el le em me en nt ts s() { f fo or r (T T* p p = v v; p p!=s sp pa ac ce e; ++p p) p p->˜T T() ; }
p pu ub bl li ic c:

e ex xp pl li ic ci it t v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l = T T() , c co on ns st t A A& = A A()) ;
v ve ec ct to or r(c co on ns st t v ve ec ct to or r& a a) ; / / copy constructor
v ve ec ct to or r& o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) ; / / copy assignment
˜v ve ec ct to or r() { d de es st tr ro oy y_ _e el le em me en nt ts s() ; }

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n s sp pa ac ce e-v v; }
s si iz ze e_ _t ty yp pe e c ca ap pa ac ci it ty y() c co on ns st t { r re et tu ur rn n l la as st t-v v; }

v vo oi id d p pu us sh h_ _b ba ac ck k(c co on ns st t T T&) ;
/ / ...

};

The v ve ec ct to or r destructor explicitly invokes the T T destructor for every element. This
implies that if an element destructor throws an exception, the v ve ec ct to or r destruction fails.

This can be a disaster if it happens during stack unwinding caused by an exception and
t te er rm mi in na at te e() is called. In the case of normal destruction, throwing an exception from a
destructor typically leads to resource leaks and unpredictable behavior of code relying
on reasonable behavior of objects. There is no really good way to protect against
exceptions thrown from destructors, so the library makes no guarantees if an element
destructor throws.

Now the constructor can be simply defined:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a)

:v ve ec ct to or r_ _b ba as se e<T T,A A>(a a,n n) / / allocate space for n elements
{

u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,v va al l) ; / / copy elements
}

The copy constructor differs by using u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() instead of
u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l():

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(c co on ns st t v ve ec ct to or r<T T,A A>& a a)

:v ve ec ct to or r_ _b ba as se e<T T,A A>(a a.a al ll lo oc c,a a.s si iz ze e())
{

u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n() ,a a.e en nd d() ,v v) ;
}

Note that this style of constructor relies on the fundamental language rule that when an
exception is thrown from a constructor, sub-objects (such as bases) that have already
been completely constructed will be properly destroyed. The u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l()
algorithm and its cousins provide the equivalent guarantee for partially constructed
sequences.

3.3 Assignment

As usual, assignment differs from construction in that an old value must be taken care
of. Consider a straightforward implementation:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / offers the strong guarantee
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a)
{

v ve ec ct to or r_ _b ba as se e<T T,A A> b b(a al ll lo oc c,a a.s si iz ze e()) ; / / get memory
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n() ,a a.e en nd d() ,b b.v v) ; / / copy elements
d de es st tr ro oy y_ _e el le em me en nt ts s() ; / / destroy old elements
a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; / / free old memory
v ve ec ct to or r_ _b ba as se e: :o op pe er ra at to or r=(b b) ; / / install new representation
b b.v v = 0 0; / / prevent deallocation
r re et tu ur rn n *t th hi is s;

}

This assignment is nice and exception safe. However, it repeats a lot of code from
constructors and destructors. Also, the ‘‘installation’’ of the new v ve ec ct to or r_ _b ba as se e is a bit
obscure. To avoid this, we can write:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / offers the strong guarantee
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a)
{

v ve ec ct to or r t te em mp p(a a) ; / / copy a
s sw wa ap p< v ve ec ct to or r_ _b ba as se e<T T,A A> >(*t th hi is s,t te em mp p) ; / / swap representations
r re et tu ur rn n *t th hi is s;

}

The old elements are destroyed by t te em mp p’s destructor, and the memory used to hold
them is deallocated by t te em mp p’s v ve ec ct to or r_ _b ba as se e’s destructor.

The performance of the two versions ought to be equivalent. Essentially, they are
just two different ways of specifying the same set of operations. However, the second
implementation is shorter and doesn’t replicate code from related v ve ec ct to or r functions, so
writing the assignment that way ought to be less error prone and lead to simpler main-
tenance.

Note the absence of the traditional test for self-assignment:

i if f (t th hi is s == &a a) r re et tu ur rn n *t th hi is s;

These assignment implementations work by first constructing a copy and then swap-
ping representations. This obviously handles self-assignment correctly. I decided that
the efficiency gained from the test in the rare case of self-assignment was more than
offset by its cost in the common case where a different v ve ec ct to or r is assigned.

In either case, two potentially significant optimizations are missing:
(1) If the capacity of the vector assigned to is large enough to hold the assigned

vector, we don’t need to allocate new memory.
(2) An element assignment may be more efficient than an element destruction fol-

lowed by an element construction.
Implementing these optimizations, we get:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / optimized, basic guarantee
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a)
{

i if f (c ca ap pa ac ci it ty y() < a a.s si iz ze e()) { / / allocate new vector representation:
v ve ec ct to or r t te em mp p(a a) ; / / copy a
s sw wa ap p< v ve ec ct to or r_ _b ba as se e<T T,A A> >(*t th hi is s,t te em mp p) ; / / swap representations
r re et tu ur rn n *t th hi is s;

}

i if f (t th hi is s == &a a) r re et tu ur rn n *t th hi is s; / / protect against self assignment

/ / assign to old elements:
s si iz ze e_ _t ty yp pe e s sz z = s si iz ze e() ;
s si iz ze e_ _t ty yp pe e a as sz z = a a.s si iz ze e() ;
a al ll lo oc c = a a.g ge et t_ _a al ll lo oc ca at to or r() ; / / copy the allocator

i if f (a as sz z<=s sz z) { / / copy over old elements and destroy surplus elements:
c co op py y(a a.b be eg gi in n() ,a a.b be eg gi in n()+a as sz z,v v) ;
f fo or r (T T* p p = v v+a as sz z; p p!=s sp pa ac ce e; ++p p) p p->˜T T() ;

}

e el ls se e { / / copy over old elements and construct additional elements:
c co op py y(a a.b be eg gi in n() ,a a.b be eg gi in n()+s sz z,v v) ;
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n()+s sz z,a a.e en nd d() ,s sp pa ac ce e) ;

}
s sp pa ac ce e = v v+a as sz z;
r re et tu ur rn n *t th hi is s;

}

These optimizations are not free. The c co op py y() algorithm does not offer the strong
exception-safety guarantee. It does not guarantee that it will leave its target unchanged
if an exception is thrown during copying. Thus, if T T: :o op pe er ra at to or r=() throws an excep-
tion during c co op py y(), the v ve ec ct to or r being assigned to need not be a copy of the vector
being assigned, and it need not be unchanged. For example, the first five elements
might be copies of elements of the assigned vector and the rest unchanged. It is also
plausible that an element – the element that was being copied when T T: :o op pe er ra at to or r=()
threw an exception – ends up with a value that is neither the old value nor a copy of the
corresponding element in the vector being assigned. However, if T T: :o op pe er ra at to or r=()
leaves its operands in a valid state if it throws an exception, the v ve ec ct to or r is still in a valid
state – even if it wasn’t the state we would have preferred.

Here, I have copied the allocator using an assignment. It is actually not required
that every allocator support assignment.

The standard-library v ve ec ct to or r assignment offers the weaker exception-safety property
of this last implementation – and its potential performance advantages. That is, v ve ec ct to or r
assignment provides the basic guarantee, so it meets most people’s idea of exception
safety. However, it does not provide the strong guarantee. If you need an assignment
that leaves the v ve ec ct to or r unchanged if an exception is thrown, you must either use a
library implementation that provides the strong guarantee or provide your own assign-
ment operation. For example:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, c co on ns st t v ve ec ct to or r<T T,A A>& b b) / / "obvious" a = b
{

v ve ec ct to or r<T T,A A> t te em mp p(a a.g ge et t_ _a al ll lo oc ca at to or r()) ;
t te em mp p.r re es se er rv ve e(b b.s si iz ze e()) ;
f fo or r (t ty yp pe en na am me e v ve ec ct to or r<T T,A A>: :i it te er ra at to or r p p = b b.b be eg gi in n() ; p p!=b b.e en nd d() ; ++p p)

t te em mp p.p pu us sh h_ _b ba ac ck k(*p p) ;
s sw wa ap p(a a,t te em mp p) ;

}

If there is insufficient memory for t te em mp p to be created with room for b b.s si iz ze e() ele-
ments, s st td d: :b ba ad d_ _a al ll lo oc c is thrown before any changes are made to a a. Similarly, if
p pu us sh h_ _b ba ac ck k() fails for any reason, a a will remain untouched because we apply
p pu us sh h_ _b ba ac ck k() to t te em mp p rather than to a a. In that case, any elements of t te em mp p created by
p pu us sh h_ _b ba ac ck k() will be destroyed before the exception that caused the failure is re-
thrown.

Swap does not copy v ve ec ct to or r elements. It simply swaps the data members of a
v ve ec ct to or r; that is, it swaps v ve ec ct to or r_ _b ba as se es (Sect. 3.2). Consequently, it does not throw
exceptions even if operations on the elements might. Consequently, s sa af fe e_ _a as ss si ig gn n()
does not do spurious copies of elements and is reasonably efficient.

As is often the case, there are alternatives to the obvious implementation. We can
let the library perform the copy into the temporary for us:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, c co on ns st t v ve ec ct to or r<T T,A A>& b b) / / simple a = b
{

v ve ec ct to or r<T T,A A> t te em mp p(b b) ; / / copy the elements of b into a temporary
s sw wa ap p(a a,t te em mp p) ;

}

Indeed, we could simply use call-by-value:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / simple a = b (note: b is passed by value)
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, v ve ec ct to or r<T T,A A> b b)
{

s sw wa ap p(a a,b b) ;
}

The last two variants of s sa af fe e_ _a as ss si ig gn n() don’t copy the v ve ec ct to or r’s allocator. This is a
permitted optimization.

3.4 p pu us sh h_ _b ba ac ck k(())

From an exception-safety point of view, p pu us sh h_ _b ba ac ck k() is similar to assignment in that
we must take care that the v ve ec ct to or r remains unchanged if we fail to add a new element:

t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d v ve ec ct to or r<T T,A A>: :p pu us sh h_ _b ba ac ck k(c co on ns st t T T& x x)
{

i if f (s sp pa ac ce e == l la as st t) { / / no more free space; relocate:
v ve ec ct to or r_ _b ba as se e b b(a al ll lo oc c,s si iz ze e()?2 2*s si iz ze e():2 2) ; / / double the allocation
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(v v,s sp pa ac ce e,b b.v v) ;
n ne ew w(b b.s sp pa ac ce e) T T(x x) ; / / place a copy of x in *b.space
++b b.s sp pa ac ce e;
d de es st tr ro oy y_ _e el le em me en nt ts s() ;
s sw wa ap p<v ve ec ct to or r_ _b ba as se e<T T,A A> >(b b,*t th hi is s) ; / / swap representations
r re et tu ur rn n;

}
n ne ew w(s sp pa ac ce e) T T(x x) ; / / place a copy of x in *space
++s sp pa ac ce e;

}

Naturally, the copy constructor initializing *s sp pa ac ce e might throw an exception. If that
happens, the value of the v ve ec ct to or r remains unchanged, with s sp pa ac ce e left unincremented.
In that case, the v ve ec ct to or r elements are not reallocated so that iterators referring to them
are not invalidated. Thus, this implementation implements the strong guarantee that an
exception thrown by an allocator or even a user-supplied copy constructor leaves the
v ve ec ct to or r unchanged. The standard library offers the strong guarantee for p pu us sh h_ _b ba ac ck k().

Note the absence of a try-block (except for the one hidden in
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y()). The update was done by carefully ordering the operations so
that if an exception is thrown, the v ve ec ct to or r remains unchanged.

The approach of gaining exception safety through ordering and the ‘‘resource

acquisition is initialization’’ technique tends to be more elegant and more efficient than
explicitly handling errors using try-blocks. More problems with exception safety arise
from a programmer ordering code in unfortunate ways than from lack of specific
exception-handling code. The basic rule of ordering is not to destroy information
before its replacement has been constructed and can be assigned without the possibility
of an exception.

Exceptions introduce possibilities for surprises in the form of unexpected control
flows. For a piece of code with a simple local control flow, such as the o op pe er ra at to or r=(),
s sa af fe e_ _a as ss si ig gn n(), and p pu us sh h_ _b ba ac ck k() examples, the opportunities for surprises are lim-
ited. It is relatively simple to look at such code and ask oneself ‘‘can this line of code
throw an exception, and what happens if it does?’’ For large functions with compli-
cated control structures, such as complicated conditional statements and nested loops,
this can be hard. Adding try-blocks increases this local control structure complexity
and can therefore be a source of confusion and errors. I conjecture that the effective-
ness of the ordering approach and the ‘‘resource acquisition is initialization’’ approach
compared to more extensive use of try-blocks stems from the simplification of the local
control flow. Simple, stylized code is easier to understand and easier to get right.

Note that the v ve ec ct to or r implementation is presented as an example of the problems
that exceptions can pose and of techniques for addressing those problems. The stan-
dard does not require an implementation to be exactly like the one presented here.
What the standard does guarantee is described in Sect. E.4 of [1].

3.5 Constructors and Invariants

From the point of view of exception safety, other v ve ec ct to or r operations are either equiva-
lent to the ones already examined (because they acquire and release resources in simi-
lar ways) or trivial (because they don’t perform operations that require cleverness to
maintain valid states). However, for most classes, such ‘‘trivial’’ functions constitute
the majority of code. The difficulty of writing such functions depends critically on the
environment that a constructor established for them to operate in. Said differently, the
complexity of ‘‘ordinary member functions’’ depends critically on choosing a good
class invariant. By examining the ‘‘trivial’’ v ve ec ct to or r functions, it is possible to gain
insight into the interesting question of what makes a good invariant for a class and how
constructors should be written to establish such invariants.

Operations such as v ve ec ct to or r subscripting are easy to write because they can rely on
the invariant established by the constructors and maintained by all functions that
acquire or release resources. In particular, a subscript operator can rely on v v referring
to an array of elements:

t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A> T T& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e i i)
{

r re et tu ur rn n v v[i i] ;
}

It is important and fundamental to have constructors acquire resources and establish a
simple invariant. To see why, consider an alternative definition of v ve ec ct to or r_ _b ba as se e:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > / / clumsy use of constructor
c cl la as ss s v ve ec ct to or r_ _b ba as se e {
p pu ub bl li ic c:

A A a al ll lo oc c; / / allocator
T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of elements, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

v ve ec ct to or r_ _b ba as se e(c co on ns st t A A& a a, t ty yp pe en na am me e A A: :s si iz ze e_ _t ty yp pe e n n)
: a al ll lo oc c(a a) , v v(0 0) , s sp pa ac ce e(0 0) , l la as st t(0 0)

{
v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ;
s sp pa ac ce e = l la as st t = v v+n n;

}

˜v ve ec ct to or r_ _b ba as se e() { i if f (v v) a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; }
};

Here, I construct a v ve ec ct to or r_ _b ba as se e in two stages: First, I establish a ‘‘safe state’’ where v v,
s sp pa ac ce e, and l la as st t are set to 0 0. Only after that has been done do I try to allocate memory.
This is done out of misplaced fear that if an exception happens during element alloca-
tion, a partially constructed object could be left behind. This fear is misplaced because
a partially constructed object cannot be ‘‘left behind’’ and later accessed. The rules for
static objects, automatic objects, member objects, and elements of the standard-library
containers prevent that. However, it could/can happen in pre-standard libraries that
used/use placement new to construct objects in containers designed without concern
for exception safety. Old habits can be hard to break.

Note that this attempt to write safer code complicates the invariant for the class: It
is no longer guaranteed that v v points to allocated memory. Now v v might be 0 0. This
has one immediate cost. The standard-library requirements for allocators do not guar-
antee that we can safely deallocate a pointer with the value 0 0. In this, allocators differ
from d de el le et te e. Consequently, I had to add a test in the destructor.

This two-stage construct is not an uncommon style. Sometimes, it is even made
explicit by having the constructor do only some ‘‘simple and safe’’ initialization to put
the object into a destructible state. The real construction is left to an i in ni it t() function
that the user must explicitly call. For example:

t te em mp pl la at te e<c cl la as ss s T T> / / archaic (pre-standard, pre-exception) style
c cl la as ss s V Ve ec ct to or r {

T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of elements, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

p pu ub bl li ic c:
V Ve ec ct to or r() : v v(0 0) , s sp pa ac ce e(0 0) , l la as st t(0 0) { }
˜V Ve ec ct to or r() { f fr re ee e(v v) ; }

b bo oo ol l i in ni it t(s si iz ze e_ _t t n n) ; / / return true if initialization succeeded

/ / ... Vector operations ...
};

t te em mp pl la at te e<c cl la as ss s T T>
b bo oo ol l V Ve ec ct to or r<T T>: :i in ni it t(s si iz ze e_ _t t n n) / / return true if initialization succeeded
{

i if f (v v = (T T*)m ma al ll lo oc c(s si iz ze eo of f(T T)*n n)) {
u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,T T()) ;
s sp pa ac ce e = l la as st t = v v+n n;
r re et tu ur rn n t tr ru ue e;

}
r re et tu ur rn n f fa al ls se e;

}

The perceived value of this style is
(1) The constructor can’t throw an exception, and the success of an initialization

using i in ni it t() can be tested by ‘‘usual’’ (that is, non-exception) means.
(2) There exists a trivial valid state. In case of a serious problem, an operation can

give an object that state.
(3) The acquisition of resources is delayed until a fully initialized object is needed.

However, this two-stage construction technique doesn’t deliver its expected benefits
and can itself be a source of problems.

The first point (using an i in ni it t() function in preference to a constructor) is bogus.
Using constructors and exception handling is a more general and systematic way of
dealing with resource acquisition and initialization errors. This style is a relic of pre-
exception C++. Having a separate i in ni it t() function is an opportunity to

(1) forget to call i in ni it t(),
(2) call i in ni it t() more than once,
(3) forget to test on the success of i in ni it t(),
(4) forget that i in ni it t() might throw an exception, and
(5) use the object before calling i in ni it t().

Constructors and exceptions were introduced into C++ to prevent such problems [3].
The second point (having an easy-to-construct ‘‘safe’’ valid state) is in principle a

good one. If we can’t put an object into a valid state without fear of throwing an
exception before completing that operation, we do indeed have a problem. However,
this ‘‘safe state’’ should be one that is a natural part of the semantics of the class rather
than an implementation artifact that complicates the class invariant.

If the ‘‘safe’’ state is not a natural part of the semantics of the class, the invariant is
complicated and a burden is imposed on every member function. For example, the
simple subscript operation becomes something like:

t te em mp pl la at te e< c cl la as ss s T T> T T& V Ve ec ct to or r<T T>: :o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e i i)
{

i if f (v v) r re et tu ur rn n v v[i i] ;
/ / error handling

}

If part of the reason for using a two-stage initialization was to avoid exceptions, the
error handling part of that o op pe er ra at to or r[]() could easily become complicated.

Like the second point, the third (delaying acquisition of a resource until is needed)
misapplies a good idea in a way that imposes cost without yielding benefits. In many
cases, notably in containers such as v ve ec ct to or r, the best way of delaying resource

acquisition is for the programmer to delay the creation of objects until they are needed.
To sum up: the two-phase construction approach leads to more complicated invari-

ants and typically to less elegant, more error-prone, and harder-to-maintain code. Con-
sequently, the language-supported ‘‘constructor approach’’ should be preferred to the
‘‘i in ni it t()-function approach’’ whenever feasible. That is, resources should be acquired
in constructors whenever delayed resource acquisition isn’t mandated by the inherent
semantics of a class.

The negative effects of two-phase construction become more marked when we con-
sider application classes that acquire significant resources, such as network connec-
tions and files. Such classes are rarely part of a framework that guides their use and
their implementation in the way the standard-library requirements guide the definition
and use of v ve ec ct to or r. The problems also tend to increase as the mapping between the
application concepts and the resources required to implement them becomes more
complex. Few classes map as directly onto system resources as does v ve ec ct to or r.

4 Implications for Library Users

One way to look at exception safety in the context of the standard library is that we
have no problems unless we create them for ourselves: The library will function cor-
rectly as long as user-supplied operations meet the standard library’s basic require-
ments. In particular, no exception thrown by a standard container operation will cause
memory leaks from containers or leave a container in an invalid state. Thus, the prob-
lem for the library user becomes: How can I define my types so that they don’t cause
undefined behavior or leak resources?

The basic rules are:
(1) When updating an object, don’t destroy its old representation before a new rep-

resentation is completely constructed and can replace the old one without risk
of exceptions. For example, see the implementations of s sa af fe e_ _a as ss si ig gn n() and
v ve ec ct to or r: :p pu us sh h_ _b ba ac ck k() in Sect. 3.
(1a) If you must override an old representation in the process of creating the

new, be sure to leave a valid object behind if an exception is thrown. For
example, see the ‘‘optimized’’ implementation of v ve ec ct to or r: :o op pe er ra at to or r=().

(2) Before throwing an exception, release every resource acquired that is not owned
by some (other) object.
(2a) The ‘‘resource acquisition is initialization’’ technique and the language

rule that partially constructed objects are destroyed to the extent that they
were constructed can be most helpful here.

(2b) The u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() algorithm and its cousins provide automatic
release of resources in case of failure to complete construction of a set of
objects.

(3) Before throwing an exception, make sure that every operand is in a valid state.
That is, leave each object in a state that allows it to be accessed and destroyed
without causing undefined behavior or an exception to be thrown from a
destructor. For example, see v ve ec ct to or r’s assignment in Sect. 3.2.
(3a) Note that constructors are special in that when an exception is thrown from

a constructor, no object is left behind to be destroyed later. This implies

that we don’t have to establish an invariant and that we must be sure to
release all resources acquired during a failed construction before throwing
an exception.

(3b) Note that destructors are special in that an exception thrown from a
destructor almost certainly leads to violation of invariants and/or calls to
t te er rm mi in na at te e().

In practice, it can be surprisingly difficult to follow these rules. The primary reason is
that exceptions can be thrown from places where people don’t expect them. A good
example is s st td d: :b ba ad d_ _a al ll lo oc c. Every function that directly or indirectly uses n ne ew w or an
a al ll lo oc ca at to or r to acquire memory can throw b ba ad d_ _a al ll lo oc c. In some programs, we can solve
this particular problem by not running out of memory. However, for programs that are
meant to run for a long time or to accept arbitrary amounts of input, we must expect to
handle various failures to acquire resources. Thus, we must assume every function
capable of throwing an exception until we have proved otherwise.

One simple way to try to avoid surprises is to use containers of elements that do not
throw exceptions (such as containers of pointers and containers of simple concrete
types) or linked containers (such as l li is st t) that provide the strong guarantee. Another,
complementary, approach is to rely primarily on operations, such as p pu us sh h_ _b ba ac ck k(),
that offer the strong guarantee that an operation either succeeds or has no effect. How-
ever, these approaches are by themselves insufficient to avoid resource leaks and can
lead to an ad hoc, overly restrictive, and pessimistic approach to error handling and
recovery. For example, a v ve ec ct to or r<T T*> is trivially exception safe if operations on T T
don’t throw exceptions. However, unless the objects pointed to are deleted some-
where, an exception from the v ve ec ct to or r will lead to a resource leak. Thus, introducing a
H Ha an nd dl le e class to deal with deallocation and using v ve ec ct to or r<Handle<T> > rather than the
plain v ve ec ct to or r<T T*> will probably improve the resilience of the code.

When writing new code, it is possible to take a more systematic approach and make
sure that every resource is represented by a class with an invariant that provides the
basic guarantee. Given that, it becomes feasible to identify the critical objects in an
application and provide roll-back semantics (that is, the strong guarantee – possibly
under some specific conditions) for operations on such objects.

As mentioned in Sect. 3, the basic techniques for dealing with exceptions, focusing
on resources and invariants, also help getting code correct and efficient. In general,
keeping code stylish and simple by using classes to represent resources and concepts
makes the code easier to understand, easier to maintain, and easier to reason about.
Constructors, destructors, and the support for correct partial construction and
destruction are the language-level keys to this. ‘‘Resource acquisition is initialization’’
is the key programming technique to utilize these language features.

Most applications contain data structures and code that are not written with excep-
tion safety in mind. Where necessary, such code can be fitted into an exception-safe
framework by either verifying that it doesn’t throw exception (as was the case for the C
standard library) or through the use of interface classes for which the exception behav-
ior and resource management can be precisely specified.

When designing types intended for use in an exception-safe environment, we must
pay special attention to the operations used by the standard library: constructors,

destructors, assignments, comparisons, swap functions, functions used as predicates,
and operations on iterators. This is best done by defining a class invariant that can be
simply established by all constructors. Sometimes, we must design our class invariants
so that we can put an object into a state where it can be destroyed even when an opera-
tion suffers a failure at an ‘‘inconvenient’’ point. Ideally, that state isn’t an artifact
defined simply to aid exception handling, but a state that follows naturally from the
semantics of the type.

When considering exception safety, the emphasis should be on defining valid states
for objects (invariants) and on proper release of resources. It is therefore important to
represent resources directly as classes. The v ve ec ct to or r_ _b ba as se e (Sect. 3.2) is a simple exam-
ple of this. The constructors for such resource classes acquire lower-level resources
(such as the raw memory for v ve ec ct to or r_ _b ba as se e) and establish invariants (such as the proper
initialization of the pointers of a v ve ec ct to or r_ _b ba as se e). The destructors of such classes implic-
itly free lower-level resources. The rules for partial construction and the ‘‘resource
acquisition is initialization’’ technique support this way of handling resources.

A well-written constructor establishes the class invariant for an object. That is, the
constructor gives the object a value that allows subsequent operations to be written
simply and to complete successfully. This implies that a constructor often needs to
acquire resources. If that cannot be done, the constructor can throw an exception so
that we can deal with that problem before an object is created. This approach is
directly supported by the language and the standard library.

The requirement to release resources and to place operands in valid states before
throwing an exception means that the burden of exception handling is shared among
the function throwing, the functions on the call chain to the handler, and the handler.
Throwing an exception does not make handling an error ‘‘somebody else’s problem.’’
It is the obligation of functions throwing or passing along an exception to release
resources that they own and to put operands in consistent states. Unless they do that,
an exception handler can do little more than try to terminate gracefully.

5 Acknowledgements

The concepts and techniques described here are the work of many individuals. In par-
ticular, Dave Abrahams, Matt Austern, and Greg Colvin made major contributions to
the notions of exception safety embodied in the C++ standard library.

6 References

[1] Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley. 1994.
ISBN 0-201-54330-3.

[2] Andrew Koenig (editor): Standard – The C++ Language. ISO/IEC
14882:1998(E). Information Technology Council (NCITS). Washington, DC,
USA. http://www.ncits.org/cplusplus.htm.

[3] Bjarne Stroustrup: The C++ Programming Language (Special Edition). Addison-
Wesley. 2000. ISBN 0-201-70073-5.

