
Practical and Verifiable C++ Dynamic Cast

for Hard Real-Time Systems

Damian Dechev, Rabi Mahapatra, Bjarne Stroustrup

The dynamic cast operation allows flexibility in the design and use of data management facilities

in object-oriented programs. Dynamic cast has an important role in the implementation of the

Data Management Services (DMS) of the Mission Data System Project (MDS), the Jet Propulsion

Laboratory’s experimental work for providing a state-based and goal-oriented unified architecture

for testing and development of mission software. DMS is responsible for the storage and transport

of control and scientific data in a remote autonomous spacecraft. Like similar operators in other

languages, the C++ dynamic cast operator does not provide the timing guarantees needed for

hard real-time embedded systems. In a recent study, Gibbs and Stroustrup (G&S) devised a

dynamic cast implementation strategy that guarantees fast constant-time performance. This

paper presents the definition and application of a co-simulation framework to formally verify and

evaluate the G&S fast dynamic casting scheme and its applicability in the Mission Data System

DMS application. We describe the systematic process of model-based simulation and analysis that

has led to performance improvement of the G&S algorithm’s heuristics by about a factor of 2. In

this work we introduce and apply a library for extracting semantic information from C++ source

code that helps us deliver a practical and verifiable implementation of the fast dynamic casting

algorithm.

Categories and Subject Descriptors: Programming Tools and Techniques [Programming Lan-

guage]: C++

This is the authors’ version of the work. It is posted here by permission of the publisher. Not for
redistribution. The definitive version is published in JCSE, December 2008.

Journal of Computing Science and Engineering,Vol 2.,No 4.,December 2008,.

2 ·
Additional Key Words and Phrases: constant time dynamic cast, autonomous embedded systems,

model-based software development, static analysis

1. INTRODUCTION

ISO Standard C++ [ISO/IEC 14882 International Standard 1998] has become

a common choice for hard real-time embedded systems such as the Jet Propul-

sion Laboratory’s Mission Data System [Ingham et al. 2004]. This is so because

ISO C++ offers efficient abstraction model, good hardware use, and predictability.

C++’s model of computation has helped engineers deliver more correct, maintain-

able, and comprehensible software compared to code relying on lower-level pro-

gramming concepts [Stroustrup 2004]. However, several C++ features are usually

considered unsuitable for programming real-time systems because they do not guar-

antee predicable constant-time performance [Goldthwaite 2006]. ISO C++ does

not provide the necessary timing guarantees for free store (heap) allocation, ex-

ception handling, and dynamic casting. In particular, the most common compiler

implementations of the dynamic cast operator traverse the representation of the

inheritance tree (at run time) searching for a match. Such implementations of

dynamic cast are not predictable and are unsuitable for real-time programming.

Gibbs and Stroustrup (G&S) [Gibbs and Stroustrup 2006] describe a technique

for implementing dynamic cast that delivers significantly improved and constant-

time performance. The key idea is to replace the runtime search through the class

hierarchy with a simple (constant-time) calculation, much as the common imple-

mentations of the C++ virtual function calls search the class hierarchy at compile

time to reduce the runtime action to a simple array subscripting operation. In the
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 3

G&S scheme, a heuristic algorithm assigns an integer type ID at link time to each

class. The type ID assignment rules guarantee that at run time a simple modulo

operation can reveal the type information and check the validity of the cast. The

requirements for the heuristics assigning the type IDs are that:

(1) They must keep the size of the type ID to a small number of bits. A 64-bit

type ID should be sufficient for very large class hierarchies

(2) Avoid conflicts and type ID assignments that create ambiguous or erroneous

type resolution at run time

(3) Handle virtual inheritance

There are four heuristic schemes and a few possible optimizations suggested in

[Gibbs and Stroustrup 2006]. However, none of those heuristics guarantee the best

solution for every possible class hierarchy. The quality of the type ID assignment

heuristics has a critical importance for the performance of the G&S scheme. With

better heuristics, a smaller type ID size would be sufficient to facilitate complex

and large class hierarchies that would certainly need a significantly bigger type

ID size with a poor assignment scheme. The main contribution of this work is to

present how the algorithm optimization problem encountered has been successfully

automated and moreover that its automation has led us to quick but significant

improvements of the initial scheme. To guarantee a practical and verifiable imple-

mentation of the fast dynamic casting scheme, we introduce and apply our innova-

tive expression template [Veldhuizen 1995] -based approach for extracting semantic

information from the C++ source code.
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

4 ·

As pointed out by Lowry [Lowry 2002], the increasing complexity of future space

missions, such as the Mars Science Laboratory [Volpe 2005] and Project Constel-

lation [Stoica et al. 2005], raises concerns whether it is possible to establish their

reliability in a cost-effective manner. Lowry’s analysis indicates that at the present

moment the verification and certification cost of mission critical software exceeds

its development cost. Perrow [Perrow 1999] studies the risk factors in the modern

high technology systems. His work identifies two significant hazard dimensions: in-

teractions and coupling. Complex interactions represent unexpected and unknown

sequences and thus cannot be entirely comprehensible at the time of system de-

velopment. A tightly-coupled system has a number of time-dependent processes

that cannot tolerate delays. Perrow classifies space missions in the riskiest cate-

gory since both hazard factors are present. The dominant paradigms for software

development, assurance, and management at NASA rely on the principle ”test-

what-you-fly and fly-what-you-test”. Born out of experience and hindsight, this

methodology had been applied in a large number of robotic space missions at the

Jet Propulsion Laboratory. For such missions, it has proven suitable in achieving

adherence to some of the most stringent standards of man-rated certification such

as the DO-178B [RTCA 1992], the Federal Aviation Administration (FAA) soft-

ware standard. Its Level A requirements demand 100% coverage of all high and

low level assurance policies. However, the present certification methodologies are

prohibitively expensive for systems of high complexity [Schumann and Visser 2006].

In this paper we present a co-simulation framework based on the SPIN model

checker [Holzmann 2003] to simulate, evaluate, and formally verify the G&S fast
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 5

dynamic casting algorithm and its application in mission critical code such as the

Data Management Services [Wagner 2005] of the Mission Data System. The aim

of the Mission Data System is to provide a unified state-based and goal-oriented

architecture for building complete data and control systems for autonomous space

missions. The framework’s state- and model-based methodology and its associated

systems engineering processes and development tools have been successfully applied

on a number of test systems including the physical rovers Rocky 7 and Rocky 8 and

a simulated Entry, Descent, and Landing (EDL) system for the Mars Science Labo-

ratory mission. We use the feedback from the model checker to perform systematic

analysis of the G&S scheme and look for improvements to the heuristics for type ID

assignment. SPIN is an on-the-fly, linear-time logic model-checking tool that was

designed for the formal verification of dynamic systems with asynchronously exe-

cuted processes. Model-checking tools have been widely applied for the verification

of a large variety of systems, including flight software [Gluck and Holzmann 2002],

network protocols [Musuvathi and Engler 2004], and scheduling algorithms [Ruys

2003]. We are unaware of work suggesting its use for the analysis and optimiza-

tion of compiler heuristics. Compiler verification usually focuses on seeking a proof

on the preservation of the program semantics during the various compiler passes

[Lerner et al. 2003]. Our work presents the application of a model-checking tool

for the analysis and refinement of the combinatorial optimization problem posed

by the G&S type ID assignment scheme. Our co-simulation framework consists of

the following components:

(1) An abstract model of the G&S type ID assignment heuristics
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

6 ·

(2) A procedure for exhaustive search of the state space discovering the best type

ID assignment

The analysis of the heuristics simulation performed in SPIN provides us with ideas

of possible improvements to the G&S type ID assignment. We include and evaluate

the proposed improvements in the abstract model in order to seek refinement of the

G&S type ID assignment scheme. The experiments we have executed show that

the G&S priority assignment is not optimal with respect to the best possible type

ID assignment where non-virtual multiple inheritance is used. While potentially

dangerous if not constructed carefully, such hierarchies happen to be of significant

practical importance [Stroustrup 2000]. Based on our experiments, we suggest opti-

mizations that lead to significant improvement of the G&S heuristics performance.

We rely on model checking for the validation, simulation, and analysis of the fast

dynamic casting algorithm. Due to the heavy computational overhead and the

state space explosion problem the application of formal verification techniques is

limited to abstract models of the system’s design. In this work we introduce and

apply an innovative expression-template based technique for extracting semantic

information from the C++ source code in order to deliver a practical and verifiable

implementation of the G&S fast dynamic casting scheme. This paper makes the

following contributions:

(1) Introduces the use of a co-simulation framework based on model-checking for

the analysis and improvement of a compiler-heuristics optimization problem

(2) Verifies and analyzes the G&S C++ fast dynamic casting scheme and its ap-

plication in mission critical code such as the MDS Data Management Services
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 7

(3) Implements optimizations to the G&S heuristics leading to the discovery of

optimal type ID assignment in 85% of the class hierarchies, in contrast to 48%

for the original G&S algorithm

(4) Presents the design and application of an innovative expression template -based

approach for extracting semantic information from the application’s source code

in order to guarantee a practical and verifiable implementation of the fast dy-

namic casting scheme

The rest of the paper is organized as follows: section 2: a brief description of

the G&S fast dynamic cast algorithm, section 3: our approach to co-simulation

and improvements to the G&S heuristics, section 4: discussion on the challenges

of mission critical code and the applicability of the G&S dynamic cast section 5:

performance results for the G&S algorithm and the proposed improvements, section

6: design and implementation of Basic Query: a library for extracting semantic

information from C++ programs and its application for delivering a practical and

verifiable fast dynamic cast operation, and section 7: conclusion.

2. FAST DYNAMIC CASTING ALGORITHM

The G&S fast constant-time implementation of the dynamic cast operator works

as follows: at link time, a static integer type ID number, preferably 32 or 64-bit

long, is assigned to each class. The ID numbers are selected so that the operation

ida modulus idb yields zero if and only if the class with ida is derived from the

class with idb. This is done by exploiting the uniqueness of factorization of integers

into prime factors. Each class is assigned a key prime number. The type ID of

a class is calculated by multiplying its key number with the key numbers of each
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

8 ·

of its base classes. In the cases where a class contains more than a single copy of

a base class, the type ID is computed by taking the square of the corresponding

base class ID. The only constraint of the approach is the desire to limit the ID

size to fit the machine’s built-in integer types. The key primes are not required to

be unique and the same prime key can be used for classes that belong to different

groups (i.e. do not share common descendants). Gibbs and Stroustrup suggest four

approaches for assigning the type IDs in a space-efficient manner. Each method is

based on a preliminary computation of the priority factor of each class. The priority

reflects the class impact on the growth of the type ID numbers in the hierarchy.

Thus, classes with greater number of descendants should receive higher priority and

smaller key prime number values respectively. The four possible schemes suggest

that:

1 The priority of a class is the maximum number of ancestors that any of its

descendants has. This scheme was chosen for the initial implementation and

testing of the G&S algorithm and also closely followed in the implementation of

the abstract model used for our simulation

2 ,3, 4. If a range of primes is assigned to every level with wider levels receiving

larger initial values, then each node could be assigned an additional value that

is proportional to the logarithm of the (2. minimum, 3. mean, 4. maximum)

prime in its level. Priorities of hierarchy leaves are computed by taking the sum

of these additional values for the leaf itself and all of its ancestor classes

After the priority of each class has been computed, the classes with the highest

priority get the smallest prime numbers. According to this scheme, prime numbers
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 9

can be reused only if there are two classes on the same level of the class hierarchy

and only if they do not share common descendants, they are not siblings, and

also that none of their parents share a common descendant. According to the ID

Fig. 1. A class hierarchy with 11 classes

assignment rules, we know that:

(1) idx = kx × (ka)2 × ka1 × (kb)2 × kb1 × kc

(2) idy = ky × kc × kc1 × (kd)2 × kd1 × kb

(3) idz = kz × kd × kd1 × kc

As an example, let us consider the class hierarchy presented in Figure 1. Given a

set Sclasses with 11 classes in the hierarchy and the set of the first 11 prime numbers

P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}, we must assign each class V a key kv ∈ P

such that, the maximum of the set idleaf = {idx, idy, idz}, the set consisting of the

ID numbers of all leaf nodes in Sclasses, is minimal. As we already know, prime

numbers need not be unique for each class and can be reused in same circumstances.

3. A CO-SIMULATION FRAMEWORK

The goals of the co-simulation framework are to validate the main invariants of the

G&S heuristics, improve its performance, and establish its applicability in mission

critical systems. The co-simulation process in the framework (Figure 2) consists

of three consecutive stages: verification, evaluation, and analysis. The verification
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

10 ·

phase is a straightforward application of model checking where an abstract descrip-

tion of the system’s behavior is checked against a set of invariants. In the evaluation

stage the simulation results from the probabilistic approach are contrasted to the

outcome of the deterministic approach. The aim of the analysis stage is to closely

examine the instances where the solutions yielded by the two implementations dif-

fer. We identify patterns among the inconsistent results that reveal the weaknesses

of the probabilistic solution. The framework works by executing two independent

Fig. 2. A Co-Simulation Framework for G&S Improvement and Verification

models, the G&S model and the exhaustive search model. The first input compo-

nent to the co-simulation framework (Figure 2) is an abstract model of the G&S fast

dynamic casting heuristics, implemented in Promela (SPIN’s input language) and

the embedded C primitives it allows. The G&S abstract model is subsequently used

to verify the main invariants of the G&S heuristics and at the same time provide

us with a simulation testbed to examine the heuristics performance. The second

component of the framework is the exhaustive search model that simply looks into

all possible type ID assignments to discover the optimal solution for a given class
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 11

hierarchy. We employ SPIN’s search engine to perform the exhaustive search. In

Algorithm 1 we present the pseudocode of our co-simulation approach. The fol-

lowing sections elaborate in more details on each of the stages of the framework.

Algorithm 1 Pseudocode of the co-simulation approach.
1: const int MAX NUMBER TESTS
2: V ERIFY :

3: repeat

4: Formal V erification (G&S Model)→ error report
5: if (no errors) then

6: goto EV ALUATE

7: else
8: study counter example

9: correct G&S
10: until TRUE

11: EV ALUATE :

12: count = 0
13: for (count < MAX NUMBER TESTS) do

14: Simulation(G&S Model)→ G&S solution

15: Enumeration(Exhaustive Search Model)→ best solution
16: if (G&S solution 6= best solution) then

17: add instance to SIS

18: count + +
19: ANALY ZE :

20: for all i ∈ SIS do
21: look for a pattern

22: modify G&S

23: goto EV ALUATE

3.1 Formal Verification

Every G&S implementation operates under the assumption that when a prime num-

ber is reused, it is assigned to non-conflicting classes. In addition, the maximum

type ID must fit within the boundaries of a memory word. We check these invari-

ants during the program verification phase. Establishing the validity of the G&S

invariants is done by straightforward application of model-checking with SPIN. In

SPIN the critical system properties are expressed in the syntax of linear time logic.

Based on the G&S abstract specification, the model-checker performs a systematic
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

12 ·

exploration of all possible states. In case of failure, SPIN provides a counterexam-

ple that demonstrates a behavior that has led to an illegal state. In our model, the

invariants are expressed as a never claim [Holzmann 2003], and are checked just

before and after the execution of every statement.

3.2 Evaluation

SPIN has been previously employed to implement solutions of scheduling [Brinksma

and Mader 2000] and discrete optimization [Ruys 2003] problems. The problem we

face in the G&S heuristics is a combinatorial optimization problem [Nemhauser and

Wolsey 1988]. Given a finite set I, a collection F of subsets of I, and a real-valued

function w defined on I, a discrete optimization problem could be defined as the

task of finding a member S of F , such that:
∑
e∈S

w(e) is as small (or as large) as

possible.

Except for the simplest cases, a discrete optimization problem is difficult because

its design space is typically disjoint and nonconvex. Therefore, the optimization

methods applied to continuous optimization problems cannot be utilized in this

case. In a small discrete problem, it would be possible to exhaustively list all possi-

ble combinations. As the number of parameters increase, the state explosion makes

optimizations difficult. The two general strategies for approaching a discrete opti-

mization problem can be classified as deterministic and probabilistic. What we do

for the G&S exploration in SPIN could be described as applying a deterministic

approach for the evaluation of a set of proposed probabilistic methods. The Branch

and Bound method [Nemhauser and Wolsey 1988] guarantees the discovery of the

global optimum in the cases when the problem is linear or convex and is the most
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 13

frequently used discrete optimization method. It is based on the sequential analysis

of the discrete tree of each parameter. The branches that can be estimated to reach

invalid or unfeasible solutions are consequently eliminated. This simple optimiza-

tion could also be applied in some limited cases in the SPIN’s Fast Dynamic Casting

exhaustive search. Let us explore a class hierarchy with three classes A, B, and

C, where B is derived from A, and C is derived from both A and B. In this case,

we have Sclasses = {A, B, C}, P = {2, 3, 5}, and idleaf = {idc}. The enumeration

is given in Table I. We assume that the computation starts at a state S0 where

idc = kc × kb × (ka)2 ka kb kc

60 2 3 5

60 2 5 3

90 3 2 5

90 3 5 2

150 5 2 3

150 5 3 2

Table I. Enumeration of all solutions

all three keys ka, kb, and kc are uninitialized. Then we assign possible values from

the set P to the key variables of the classes A, B, and C. The enumeration shown

above can be expressed as the computation shown on Figure 3. The graph shows

Fig. 3. Exhaustive search computation

only the valid states of the computation. There are a number of invalid states that
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

14 ·

are not shown on the graph. For example, according to the rules defined in G&S,

it is possible to reuse some of the prime numbers in P . Thus, we can try and add

an edge kb = 2 in state S1, however the reuse of 2 in this case is invalid since A

and B are conflicting classes.

The illustrated automation in Figure 3 provides a foundation for the construction

of a Promela model for the deterministic solution. Each possible prime number

assignment to a given class key is represented by a separate state transition in

the exhaustive search model. SPIN initiates the optimum search at state S0 and

visits all possible states. At each end state the value of the minimum of the set

of leaves, in this case represented only by idc, is computed and compared to the

current minimum. This approach is similar to the algorithm described by Ruys

in [Ruys 2003] and shown in Algorithm 2. For such an application, we use the

model checker in a somewhat unusual fashion. In this scenario, the validation

property checks whether the value of idc is greater than the current minimum. Each

time this condition is violated, the current minimum is updated and the process is

automatically repeated until SPIN confirms that there are no routes violating the

specification. Since the solution is deterministic, it is guaranteed to discover the

Algorithm 2 Finding the global minimum in the state space.
1: intput : Promela model M

2: output : the optimal minimum for the problem M
3: min = (worst case) maximum value for id
4: repeat

5: use SPIN to check M with condition (idc > min)
6: if (error found) then

7: min = idc

8: until (error found)

global optimum for type ID assignment. The performance of the G&S heuristics
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 15

is measured by running a simulation of the G&S model that has been used earlier

for verification. Now we are left with only one important task (not automated at

this stage), the comparison of the results from the probabilistic and deterministic

solutions. Once we identify a set of inconsistent results, we try to find a pattern

and refine the G&S heuristics. Then the refined scheme is implemented in the

probabilistic model and the evaluation process is reiterated.

3.3 Analysis

The simulation and enumeration models are continuously executed until, if possible,

a set of instances with inconsistent solutions can be identified. Thus, each instance

in the Set of Inconsistent Solutions(SIS), represents a given class hierarchy for

which the deterministic and probabilistic approach have discovered different solu-

tions. The class hierarchies for each test could be guided or created in a random

fashion. For the generation of the test data in our experiments we implemented

a pseudo random class hierarchy generation algorithm, in a manner similar to the

TGFF (Task-Graphs-For-Free) method as described in [Dick et al. 1998]. We look

for patterns among the collected hierarchies in SIS and seek clues that can lead us

to improvements of the G&S scheme. Potential improvements are tested by adding

them to the G&S model and evaluate their effect. Such scheme modifications are

carefully selected since it is possible that they might enhance a given G&S feature

and at the same time weaken another. Ideally, the improvements lead to a heuristic

scheme that provides the best solutions for a larger number of the test hierarchies

and at the same time has a time complexity equal to or less than the earlier heuristic

scheme.
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

16 ·

With the numerous advanced state space reduction techniques utilized by the

SPIN model checker, little can be done to further optimize the exhaustive search.

Class hierarchies of double or triple the size of the ones presented in the paper can

possibly be facilitated with increased computational power and the parallelization

of our approach. In the current framework, the exhaustive search is used to identify

flaws in the G&S type ID assignment scheme. The goal of our experiments is to

reach quick and effective optimization of the G&S scheme, and we have been able

to achieve it with the current size of our models. A promising direction for our

future research is to devise a parallelization scheme for our methodology, so that

we can perform simulations on a larger scale.

4. APPLICATION IN MISSION-CRITICAL SOFTWARE

Modern space mission systems have evolved from simple embedded devices into

complex computing platforms with high autonomy and an exceptionally large de-

mand for human-computer interaction. Consequently, such systems require reliable

and flexible data systems managing the collection, storage, and transportation of

data. The Mission Data System(MDS) is the Jet Propulsion Laboratory’s state-

and goal-oriented framework for building embedded control systems with a high

degree of autonomy. MDS provides the building blocks for the implementation of

embedded platforms based on the concepts of state estimation and control. The

Data Management Services(DMS) is the MDS component responsible for the pro-

duction, storage, processing, and transfer of control and scientific data. In [Wagner

2005] Wagner defines the challenges of data management in MDS as the problems

of producing and storing data and converting the data to various formats as needed
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 17

by its consumers. In addition, DMS needs to ensure the secure and lossless trans-

port of the data with limited resources and through unreliable physical medium. To

design and relate the data system entities, DMS employs concepts from high-level

ISO C++ including templates, object-oriented class encapsulation, and dynamic

casting necessary for the conversion of the data formats.

The actual telemetry data objects in MDS communicate with each other via byte

streams produced by the transport protocol (e.g. spacecraft to ground communica-

tion). The receiver of the telemetry data needs to recreate the data object from the

byte stream and thus invoke type casting in numerous occasions. Constant-time dy-

namic cast is also needed by the MDS Goal Network in the case when a controller or

estimator [Wagner 2005] passes a goal via the Coordinating Goal Network(CGN),

typically a large dynamic data structure. In CGN the goal is propagated using

only its abstract attributes(start and end time, and the associated state variable).

The achiever object who eventually picks up the goal needs to reconstruct the data

object via dynamic downcasting to the specific type that conveys the state-specific

achievement criteria. The application of the common compiler implementation of

dynamic cast has proved to be unacceptable due to poor performance and the lack

of the timing guarantees.

The G&S scheme was devised as a solution to a real industrial problem related

to C++ use for hard real time code. Inquiries in the C++ community revealed

that the problem was fundamental and common, rather than isolated: develop-

ers simulate dynamic casting with other language features, leading to type-unsafe

special-purpose code or the avoidance of best object-oriented practices. Naturally,
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

18 ·

such workaround code slows down development, complicates maintenance, and in-

creases the need for testing.

5. RESULTS

We applied the co-simulation process described in the previous section to a large

number of class hierarchies. The tested hierarchies are not built into our models.

Instead, we have applied a methodology reminiscent to TGFF [Dick et al. 1998] to

automatically generate hundreds of possible test cases. For illustration, we show

the results from a set of seven pseudo random class hierarchies (Appendix A). The

results of the G&S heuristics model and the exhaustive search are shown in Table

II. A brief comparison of the results indicates that the G&S heuristics do not give

optimal performance for class hierarchies with non-virtual multiple-inheritance. A

closer look at the algorithm reveals that the priority calculation routine takes into

account only the number of descendants that each class has. Let us consider the

class hierarchy from test case 7. We notice that according to the current scheme,

the base classes 0, 1, and 2 all get the same priority rank since they all share the

descendant 6. Class 6 is at the lowest level of the hierarchy and has the largest

number of ancestors. If we would like to optimize the heuristics, we must find a way

to increase the priority of base class 2. Our reasoning is derived from the fact that

Class 2 is ambiguous and the leaf Class 6 contains two copies of it. Similarly, let us

have a closer look at test case 1. In the optimal solution, Class 5 takes the lower

prime number (11) compared to Class 4, despite the fact that its only descendant

has less ancestors compared to Class 4. The reason for this result is the fact that

the derived Class 3 contains two ambiguous bases while Class 4 contains only one
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 19

ambiguous base. As a result of our analysis we conclude that higher priority should

be given to derived classes and their ancestors who contain more ambiguous base

classes. To fix these weaknesses, we extend the G&S heuristics by adding two simple

rules:

(1) We count every ambiguous ancestor twice when we determine the number of

ancestors to each class

(2) For each base class, we count the number of derived classes that include more

than one copy of it, and add that number directly to its priority

We call this enhanced G&S heuristics Fast Dynamic Casting Plus(FDC+). As

Table II shows, for the initial set of test cases, FDC+ performance is 100% equiv-

alent to the performance of the deterministic approach. In the performed tests,

Case No G&S Exhaustive search FDC+

Case 1 (keys) (2, 3, 5, 7, 11, 13, 17) (3, 2, 5, 7, 13, 11, 17) (3, 2, 5, 7, 13, 11, 17)
Case 1(ids of all leaves) (16380, 16830) (13860, 13260) (13860, 13260)
Case 2 (keys) (2, 13, 3, 5, 17, 7, 11) (2, 13, 3, 5, 17, 7, 11) (2, 13, 3, 5, 17, 7, 11)
Case 2 (ids of all leaves) (1326, 2310) (1326, 2310) (1326, 2310)
Case 3 (keys) (2, 3, 13, 5, 7, 17, 11) (2, 3, 13, 5, 7, 17, 11) (2, 3, 13, 5, 7, 17, 11)
Case 3 (ids of all leaves) (26, 51, 2310) (26, 51, 2310) (26, 51, 2310)
Case 4 (keys) (2, 3, 5, 7, 11, 13, 17) (2, 3, 5, 7, 11, 13, 17) (2, 3, 5, 7, 11, 13, 17)
Case 4 (ids of all leaves) (2310, 1547) (2310, 1547) (2310, 1547)
Case 5 (keys) (2, 3, 5, 7, 11, 7, 11) (2, 3, 5, 7, 11, 7, 11) (2, 3, 5, 7, 11, 7, 11)
Case 5 (ids of all leaves) (42, 66, 70, 110) (42, 66, 70, 110) (42, 66, 70, 110)
Case 6 (keys) (2, 3, 5, 11, 13, 7, 17) (2, 3, 5, 11, 13, 7, 17) (2, 3, 5, 11, 13, 7, 17)
Case 6 (ids of all leaves) (66, 78, 420, 170) (66, 78, 420, 170) (66, 78, 420, 170)
Case 7 (keys) (2, 3, 5, 7, 11, 13, 17) (3, 5, 2, 7, 11, 13, 17) (3, 5, 2, 7, 11, 13, 17)
Case 7 (ids of all leaves) (2552550) (1021020) (1021020)

Table II. Co-simulation of the seven cases from Appendix A

we have generated 127 pseudo random class hierarchies and applied G&S, FDC+,

and the exhaustive search to each one of them. The experimental results showed

that FDC+ was able to yield the best type ID assignment in 85% of the class hi-

erarchies compared to 48% for the G&S heuristics. The time performance of the

three schemes is shown in Figure 4. While the time performances of the G&S and

FDC+ algorithms are equal and both run in a very low constant-time (the function
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

20 ·

at 00:01 min on Figure 4), logically the time performance of the exhaustive search

increases exponentially with the increase of the number of classes nodes in a given

class hierarchy. The analysis of the test results indicated that FDC+ finds a better

Fig. 4. Search time for type ID assignment

type ID compared to the G&S approach in 39% of the test scenarios. For the greater

part of the test cases, FDC+ matched the optimal type ID assignment computed

by the exhaustive search. This efficiency boost is due to the optimized performance

of FDC+ in the cases where multiple non-virtual inheritance is present in the class

hierarchy. We have also observed that the implementation of these optimizations

does not lead to efficiency loss in other scenarios and the performance of FDC+ is

always at least as good as the performance of G&S. Our experimental results have

indicated that the introduced optimizations in FDC+ have fixed a weakness of the

original G&S approach and have improved the success rate in finding the best type

ID assignment. The G&S scheme requires a key of a memory size that is a function

of the size and shape of a class hierarchy. Thus, the improved heuristics almost

double the size of class hierarchies that can be handled by a given key size. Since
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 21

the scheme gets significantly slower when a key gets too large for a machine word,

the improvements to the heuristics address the main limitation of the G&S scheme.

6. BASIC QUERY: EXTRACTING SEMANTIC INFORMATION FROM CODE

The heavy computational overhead of the model-checking tools as well as the prob-

lem of state space explosion limits the applicability of our SPIN models to the pro-

cess of system simulation and analysis. For its use in practice, the FDC+ scheme

needs to provide a compile time guarantee for each program that all of its type

IDs fit within the allowed bounds of a memory word. To achieve a practical and

verifiable fast dynamic casting operation we enhanced our implementation with a

static analysis module that checks the type ID assignment’s validity.

In the remaining part of this section we describe the design and implementation

of Basic Query (BQ), an innovative library for extracting semantic information

from C++ source code. BQ user-defined actions are executed by traversing a com-

pact high-level abstract syntax tree (AST) called Internal Program Representation

(IPR). IPR is at the center of a C++ static analysis framework named The Pivot

[Stroustrup and Reis 2005]. We take advantage of BQ’s simplicity and efficiency

in formulating and combining static analysis queries to construct a set of graphs

representing all class hierarchies in a C++ program. Having the class graphs at

compile time allows FDC+ to guarantee, prior to the program’s execution, that all

assigned type IDs fit within the required bounds of a 64-bit memory word.

The Pivot is a compiler-independent platform for static analysis and semantics-

based transformation of the complete ISO C++ programming language and some

advanced language features proposed for the next generation C++, C++0x [Becker
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

22 ·

2006]. The Pivot represents C++ programs in two distinct formats (Figure 5):

(1) Internal Program Representation (IPR). IPR is a high level, compact, fully

typed abstract syntax tree that can represent complete ISO C++ programs as

well as incomplete program fragments and individual translation units

(2) eXternal Program Representation (XPR). XPR is a persistent and human read-

able format for program representation. XPR uses a prefix notation and is quick

to parse (a single token look ahead and no symbol table needed)

IPR

Fig. 5. An XPR and IPR representations of a C++ template class definition

Fundamental to our BQ library is the design of a fast and flexible methodology for

traversing the IPR, The Pivot’s AST. We define a depth-first search (DFS) visitor

class, called the IPR Xplorer Visitor Class, that performs the AST search following

the order of the ISO C++ grammar definition [Stroustrup 2000]. The Xplorer

allows the programmer to statically define a set of actions to be executed during

the DFS traversal including a terminating condition as well as actions upon the
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 23

encounter of specific IPR nodes (C++ expressions, declarations, and statements)

and AST edges (interfaces of the IPR nodes). In such a way, the cost of a user-

defined action could be less than a single traversal of the abstract syntax tree.

The functionalities and user interfaces of the Xplorer visitor are reminiscent to the

syntax and operation of the Boost’s DFS Visitor [Abrahams and Gurtovoy 2004].

When an action is specified, the programmer instantiates each of these classes with

two compile-time arguments, a TP (trigger point), identifying the exact point of

triggering the action, and a TN (target node), specifying the type of IPR nodes

which are the traversal’s target. The following examples illustrate the usage of the

Xplorer visitor: xplore expr node < discover, ipr :: Call >, we specify an action at

the point of discovery of each ipr::Call node, and xplore stmt node < body, ipr ::

Switch >, a user-defined action is executed prior to exploring the edge body of an

IPR node of type ipr::Switch.

In some scenarios it is preferred to have linear access to the nodes of a pro-

gram unit and at the same time manipulate the AST through an intuitive and

familiar user interface. Our Xplorer Visitor defines the classes: IPR V isitor and

IPR Iterator. Their design closely follows the functionality and philosophy of the

visitor design pattern [Abrahams and Gurtovoy 2004] and the C++ STL Iterator

[Stroustrup 2000] classes, providing a convenient way to search, manipulate, or

modify a set of IPR objects. The convenience of this method comes at a certain

price: the DFS traversal needs to collect and store in advance all of the nodes

from a program unit, thus the cost of the user-specified actions is at least a single

traversal of the AST.
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

24 ·

BQ user-defined actions are constructed at compile time by using the mechanism

of expression templates. An expression template is a programming technique that

relies on the compiler’s evaluation of template arguments in order to pass C++

expressions as inlined function arguments. This approach has been successfully

applied in a number of Boost Libraries [Abrahams and Gurtovoy 2004] to deliver

efficient and modern C++ designs that avoid the use of costly C-style pointers to

callback functions. In the case of BQ queries, we employ expression templates to

evaluate at compile-time a combination of user-specified parameters and pass the

user’s request for run-time execution as an inlined function argument. Thus, by

eliminating the necessity to resort to an object-oriented design utilizing pointers to

class member function to specify user intent, we gain performance and flexibility.

Expression templates are not used in the construction of the entire pattern tree

because of the heavy syntax and the reduced expressiveness that such an approach

would impose. Instead, the ’glue’ between all statically computed BQ elements is

encoded in the BQ operations (Table III). The clean and flexible syntax of the

BQ user-defined actions is achieved through the exploitation of the C++ compiler’s

ability to perform complex template argument inference.

A BQ action (also a BQ pattern) consists of three components: a Recursive

Query Object (RQO) containing the root of the traversal as well as the result from

an applied pattern or a sequence of patterns, a set of BQ elements, and a set of

BQ operations. At each step of the AST traversal, the RQO decides whether the

target is reachable from the current point and carry on with the execution of the

pattern or terminate the search. A BQ pattern is expressed through a combination
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 25

of a number of BQ elements and BQ operations applied to the recursive query

object. There are a number of possible applications of the BQ operations on the

BQ elements (Table IV). A BQ element specifies one or several edges in the pattern

tree. A BQ element could be one of three possible types:

(1) Exe member < x, e >. (EM) generates a straightforward edge e from an IPR

node x. For example, if the vertex x is an IPR node of type ipr :: Type decl

and the edge e is ipr :: initializer, the result of the operation is the IPR node

yielded by the execution of the IPR interface x− > initializer (that is the

initializer of a C++ type declaration).

(2) Exe condition < x, e, c >. (EC) generates an edge e from an IPR node x, only

if a specified boolean condition c is met

(3) Exe iprseq < x, en >. (ES) produces a sequence of edges en resulting in a set

of IPR nodes. An example of such an edge in the pattern tree is the call to

retrieve all bases of a class declaration (x− > bases()).

Operation Operand Description

Apply < execute an action specified by a BQ element
Apply and Evaluate ∧ executes a BQ element and returns the result (a bool, an IPR node or a set of nodes)

Evaluate − > returns the result from the application of a BQ pattern

Table III. BQ Operations

Operation Result Operation Description Result Description

RCO < ES Set of IP R Nodes applies an ES sequence of IPR nodes (such as a list of base classes)
RCO < EM RCO executes an EM, stores the result in RQO a pointer to RQO
RCO < EC RCO executes an EC, stores the result in RQO a pointer to RQO
RCO ∧ EC bool executes an EC, stores the result in RQO the evaluation of EC’s condition
(Set of IP R Nodes) ∧ EC bool searches for a match for EC’s condition true if at least one instance satisfies the predicate

Table IV. Application of the BQ operations

Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

26 ·

An important component of our class hierarchy extraction routine is the specifi-

cation of a user-defined action searching for all class declarations in a program that

are children of a certain base class. To do that we specify a BQ check that tests

every pair of classes for a parent-child relationship. As an example of a BQ routine,

we present the definition of the function object Is derived from (Algorithms 3 and

4), that tests a pair of class nodes for a parent-child relationship. In this section

we presented the design and application of the static analysis tools that help us

deliver a practical and verifiable fast dynamic cast implementation. The remaining

algorithms from our class graph construction routine (that we do not show in this

paper) are a technical detail of simply applying the discussed techniques.

Algorithm 3 Testing a pair of C++ classes for a parent-child relationship

1: RCO : ipr :: Expr

2: EC1 : ipr :: Type decl− > has initializer
3: EM : ipr :: Type decl− > initializer

4: ES1 : ipr :: Class− > bases ∗ − > ipr :: Base type
5: EC2 : ipr :: Base type− > name cmp

6: Is derived from : RC < EC1 < EM1 < ES1 ∧ EC2− > bool

Algorithm 4 Testing a pair of C++ classes for a parent-child relationship, source code

1: Input: an IPR Expression node e
2: Recursive query RCO(e);
3: Exe condition < ipr :: Type decl, has initializer, bool > Has Init(&val cmp < bool >, true);
4: Exe member < ipr :: Type decl, initializer > Init;
5: Exe iprseq < ipr :: Class, ipr :: Base type, bases > Get Bases;
6: Exe condition < ipr :: Base type, name, constipr :: Name&, std :: string >

Is Name(&name cmp, parent name);

7: return RCO < Has Init < Init < Get Bases ∧ Is Name;

7. CONCLUSION

In this work we applied co-simulation of the deterministic and probabilistic solu-

tions to the combinatorial optimization problem posed by the G&S type ID as-

signment scheme. Our framework proved successful in verifying and refining the
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 27

existing G&S heuristics. We demonstrated how we use the simulation results to

devise improvements to the G&S algorithm and evaluate them. The results from

our experiments indicate that the improved G&S heuristics (FDC+) provide the

optimal type ID assignment in 85% of the class hierarchies, compared to 48% for

the regular G&S algorithm. The efficiency of the type ID assignment scheme has

significant importance for the performance of the fast dynamic casting by Gibbs

and Stroustrup [Gibbs and Stroustrup 2006]. This paper presented a practical ap-

proach of how to discover improvements to the type ID assignment scheme in a

simple and effective manner. The main advantage of the presented approach is

the ease and simplicity of the discovery and test for potential improvements. The

improved heuristics that we have described in this work almost doubles the size of

class hierarchies that can be handled by a given key size. A more extensive simu-

lation might suggest further improvements to the type ID assignment scheme. Our

main goal in this work has been to demonstrated how an algorithm optimization

problem encountered has been successfully automated and moreover that its au-

tomation has led us to quick but significant improvements of the initial scheme. In

addition, we introduced the design and application of Basic Query, an innovative

expression-template based library for extracting semantic information from C++

source code. We demonstrated how to apply Basic Query to achieve a practical

and verifiable implementation of the FDC+ scheme.

8. ACKNOWLEDGEMENTS

We would like thank David Wagner and Kirk Reinholz from the Jet Propulsion

Laboratory and Peter Pirkelbauer from Texas A&M University for the meaningful
Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

28 ·

discussions on this work. We are grateful to the anonymous referees for their

insightful comments and suggestions.

A. APPENDIX

—

—

—

—

REFERENCES

Abrahams, D. and Gurtovoy, A. 2004. C++ Template Metaprogramming: Concepts, Tools,

and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley Professional.

Becker, P. 2006. Working Draft, Standard for Programming Language C++, ISO WG21 N2009.

Brinksma, E. and Mader, A. 2000. Verification and Optimization of a PLC Control Schedule.

Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

· 29

In Proceedings of the 7th International SPIN Workshop on SPIN Model Checking and Software

Verification. Springer-Verlag, London, UK, 73–92.

Dick, R. P., Rhodes, D. L., and Wolf, W. 1998. TGFF: task graphs for free. In

CODES/CASHE ’98: Proceedings of the 6th international workshop on Hardware/software

codesign. IEEE Computer Society, Washington, DC, USA, 97–101.

Gibbs, M. and Stroustrup, B. 2006. Fast dynamic casting. Softw. Pract. Exper. 36, 2, 139–156.

Gluck, R. and Holzmann, G. 2002. Using spin model checker for flight software verification. In

In Proceedings of the 2002 IEEE Aerospace Conference.

Goldthwaite, L. 2006. Technical Report on C++ Performance. In ISO/IEC PDTR 18015.

Holzmann, G. 2003. The Spin Model Checker, Primer and Reference Manual. Addison-Wesley,

Reading, Massachusetts.

Ingham, M., Rasmussen, R., Bennett, M., and Moncada, A. 2004. Engineering Complex

Embedded Systems with State Analysis and the Mission Data System. In In Proceedings of

First AIAA Intelligent Systems Technical Conference 2004.

ISO/IEC 14882 International Standard. 1998. Programming languages C++. American

National Standards Institute.

Lerner, S., Millstein, T., and Chambers, C. 2003. Automatically proving the correctness of

compiler optimizations. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on

Programming language design and implementation. ACM Press, New York, NY, USA, 220–231.

Lowry, M. R. 2002. Software Construction and Analysis Tools for Future Space Missions. In

TACAS (2002-03-18), J.-P. Katoen and P. Stevens, Eds. Lecture Notes in Computer Science,

vol. 2280. Springer, 1–19.

Musuvathi, M. and Engler, D. R. 2004. Model checking large network protocol implementa-

tions. In NSDI’04: Proceedings of the 1st conference on Symposium on Networked Systems

Design and Implementation. USENIX Association, Berkeley, CA, USA, 12–12.

Nemhauser, G. L. and Wolsey, L. A. 1988. Integer and combinatorial optimization. Wiley-

Interscience, New York, NY, USA.

Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

30 ·

Perrow, C. 1999. Normal Accidents. Princeton University Press.

RTCA. 1992. Software Considerations in Airborne Systems and Equipment Certification (DO-

178B).

Ruys, T. C. 2003. Optimal scheduling using branch and bound with spin 4.0. In Model Checking

Software, Proceedings of the 10th International SPIN Workshop, T. Ball and S. K. Rajamani,

Eds. Lecture notes in Computer Science, vol. 2648. Springer Verlag, Berlin, 1–17.

Schumann, J. and Visser, W. 2006. Autonomy Software: V&V Challenges and Characteristics.

In In Proceedings of the 2006 IEEE Aerospace Conference.

Stoica, A., Keymeulen, D., Csaszar, A., Gan, Q., Hidalgo, T., Moore, J., Newton, J.,

Sandoval, S., and Xu, J. 2005. Humanoids for lunar and planetary surface operations. In In

Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics.

Stroustrup, B. 2000. The C++ Programming Language. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA.

Stroustrup, B. 2004. Abstraction and the c++ machine model. In ICESS (2005-09-14). Lecture

Notes in Computer Science, vol. 3605. Springer, 1–13.

Stroustrup, B. and Reis, G. D. 2005. Supporting SELL for High-Performance Computing.

In In Proceedings of the International Workshop on Languages and Compilers for Parallel

Computing, LCPC 2005.

Veldhuizen, T. L. 1995. Expression templates. C++ Report 7, 5 (June), 26–31. Reprinted in

C++ Gems, ed. Stanley Lippman.

Volpe, R. 2005. Rover Technology Development and Mission Infusion Beyond Mars Exploration

Rover. In IEEE Aerospace Conference.

Wagner, D. 2005. Data Management in the Mission Data System. In In Proceedings of the IEEE

System, Man, and Cybernetics Conference.

Journal of Computing Science and Engineering, Vol 2, No 4, December 2008.

