
A Principled, Complete, and Efficient Repre-

sentation of C++

Gabriel Dos Reis and Bjarne Stroustrup

Abstract. We present a systematic representation of C++, called IPR, for
complete semantic analysis and semantics-based program transformations.
We describe the ideas and design principles that shaped the IPR. In particu-
lar, we describe how general type-based unification is key to minimal compact
representation, fast type-safe traversal, and scalability. For example, the rep-
resentation of a fairly typical non-trivial C++ program in GCC 3.4.2 was 32
times larger than its IPR representation; this led to significant improvements
to GCC. IPR is general enough to handle real-world programs involving many
translation units, archaic programming styles, and generic programming us-
ing C++0x extensions that affect the type system. The difficult issue of how
to represent irregular (ad hoc) features in a systematic (non ad hoc) manner
is among the key contributions of this paper. The IPR data structure can rep-
resent all of C++ with just 157 simple node types; to compare the ISO C++
grammar has over 700 productions. The IPR is used for a variety of program
analysis and transformation tasks, such as visualization, loop simplification,
and concept extraction. Finally, we report impacts of this work on existing
C++ compilers.

1. Introduction

The C++ programming language [16] is a general-purpose programming language,
with bias toward system programming. It has, for the last two decades, been widely
used in diverse application areas [32, 33, 31]. Besides traditional applications of
general-purpose programming languages, it is being used in high-performance com-
puting, embedded systems (such as cell phones and wind turbines), safety-critical
systems (such as airplane controls), space exploration, etc. Consequently, the de-
mand for static analysis and advanced semantics-based transformations of C++
programs is pressing. That in turn calls for scalable infrastructures capable of

2 Dos Reis and Stroustrup

representing and processing large real world programs. Dozens of analysis frame-
works for C++ programs, and for programs written in a combination of C++ and
other programming languages (typically C and Fortran) exist [24, 1, 22], but none
handle the complete C++ language. Most analysis frameworks are specialized to
particular applications — e.g. “class browsing”, a particular C++ front-end rep-
resentation — and few (if any) can claim to both handle types and be portable
across compilers.

A scalable infrastructure for analyzing large programs written in a language
as complex as C++ must be well engineered but also requires more than “just
engineering” and “implementation tricks.” This paper discusses a principled, com-
plete, and efficient data structure for direct representation of C++ programs. It
is implemented in C++, and designed as part of a general analysis and transfor-
mation infrastructure, called The Pivot, developed at Texas A&M University and
used for research there and in a few other places. In particular, The Pivot aims at
supporting high-level parallel and distributed programming techniques. It consists
of:

1. data structures for Internal Program Representation (IPR);
2. a persistent form named eXternal Program Representation (XPR);
3. tools for converting between IPR and XPR;
4. general traversal and transformation tools.

In addition, there are IPR generator compiler interfaces. Those serve as the build-
ing blocks for specific tools such as IDL generators, style checkers, etc. An in-depth
coverage of the The Pivot [7] infrastructure is postponed to future publication.
Rather, the main focus of this paper is the design principles and implementation
of the central data structure of The Pivot.

The IPR does not handle macros before their expansion in the preprocessor.
With that caveat, we currently represent every C++ construct completely and
directly. Note that by “completely” we mean that we capture all the type informa-
tion, all the scope and overload information, and are able to reproduce input line-
for-line. We capture templates (specializations and all) before they are instantiated
— as is necessary to utilize the information represented by “concepts” [9, 15]. To
be able to do this for real-world programs, we also handle implementation-specific
extensions. We currently generate IPR from the GCC [14], EDG [10], and Clang [5]
front ends.

Our emphasis on completeness stems from a desire to provide a shared tool
infrastructure. Complete representation of C++ is difficult, especially if one does
not want to expose every irregular detail to every user. Some complexity is inher-
ent, stemming from C++’s support of a wide range of programming styles; some
is incidental, stemming from a long history of evolution under a wide range of
real-world pressures; some originated in the earliest days of C. Independently of
the sources of the complexity, a representation that aims to be general — aims
to be a starting point for essentially every type of analysis and transformation —

A Principled, Complete, and Efficient Representation of C++ 3

must cope with it. Each language feature — however obscure or advanced — not
handled implies lack of support for some sub-community.

Our contribution is to define, implement, and refine a small and efficient li-
brary with a regular and theoretically well-founded structure for completely repre-
senting a large irregular, real-world language. The IPR library has been developed
side by side with a formalism to express the static semantics of C++[8].

2. Design Rules

The goals of generality directly guide the design criteria of IPR:

1. Complete — represents all ISO C++ constructs, but not macros before ex-
pansions, not other programming languages.

2. General — suitable for every kind of application, rather than targeted to a
particular application area.

3. Regular — does not mimic C++ language irregularities; general rules are
used, rather than long lists of special cases.

4. Fully typed — every IPR node has a type.
5. Minimal — its representation has no redundant values and traversal involves

no redundant dynamic indirections.
6. Compiler neutral — not tied to any particular compiler.
7. Scalable — able to handle hundreds of thousands of lines of code on common

machines (such as our laptops).

Obviously, we would not mind supporting languages other than C++, and a frame-
work capable of handling systems composed out of parts written in (say) C++,
C, Fortran, Java, C#, and Python would be very useful to many. However, we do
not have the resources to do that well, nor do we know if that can be done well.
That is, we do not know whether it can be done without limiting the language fea-
tures used in the various languages, limiting the kinds of analysis supported by the
complete system, and without replicating essentially all representation nodes and
analysis facilities for each language. These questions are beyond the scope of this
paper. It should be easy to handle at least large subsets of dialects. In this context,
the C programming language is a set of dialects. Most C++ implementations are
de facto dialects [4].

Within IPR, C++ programs are represented as collections of graphs. For
example, consider the declaration of a function named copy

int∗ copy(const int∗ b, const int∗ e, int∗ out);

which presumably copies elements in the sequence [b, e) into the sequence whose
start is designated by out. To represent that function declaration, we must create
nodes for the various entities involved, such as types, identifiers, function param-
eters, etc. Some information is implicit in the C++ syntax. For example, this
declaration will occur in a scope, may overload other copy functions, and this
copy may throw exceptions. The IPR makes all such information easily accessible
to a user. For instance, the IPR representation of copy contains the exception

4 Dos Reis and Stroustrup

specification throw(...)— meaning can throw an exception of any type — a link
to the enclosing scope, and links to other entities (e.g. overloads) called copy in
that scope.

The types const int∗ and int∗ are both mentioned twice: const int∗ for
the first two parameters, and int∗ for the third parameter and the return type. To
reduce redundancy, the IPR library unifies nodes, so that a single node represents
all ints in a program, and another node represents all const ints in a program,
referring to the int node for its int part. The implication of this is that we can
make claims of minimality of the size of the representation and of the number of
nodes we have to traverse to gather information. It also implies that the IPR is
not “just a dumb data structure”: it is a library that performs several fundamental
services as it creates the representation of a program. Such services would otherwise
have had to be done by each user or by other libraries. For instance, the IPR
implements a simple and efficient automatic garbage collection.

The design of IPR is not derived from any compiler’s internal data structures.
In fact, a major aim of the IPR is to be compiler independent. Representations
within compilers have evolved over years to serve diverse requirements, such as
error detection and reporting, code generation, providing information for debug-
gers and browsers, etc. The IPR has only one aim: to allow simple traversals with
access to all information as needed and in a uniform way. By simple traversal, we
mean that the complexity of a traversal is proportional to the analysis or transform
performed, rather than proportional to the complexity of the source language (for
example, see §6.7). Because the IPR includes full type information, full overload
resolution, and full understanding of template specialization, it can be generated
only by a full C++ compiler. That is, the popular techniques relying on just a
parser (syntax analyzer or slightly enhanced syntax analyzer) are not adequate:
They do not generate sufficient information for complete representation. The IPR
is designed so as to require only minimal invasion into a compiler to extract the
information it needs.

The IPR is a fully-typed abstract-syntax tree. This is not the optimal data
structure for every kind of analysis and transformation. It is, however, a repre-
sentation from which more specialized representations (e.g. a data flow or control
flow graph) can be generated far more easily than through conventional parsing or
major surgery to compiler internals. In particular, we are developing a high-level
flow graph representation that can be held in memory together with the AST and
share type, scope, and variable information.

3. The IPR language

The C++ programming language as defined by the ISO standard [16] is complex.
A viable representation must resist the temptation of exposing all irregularities.
A complete representation cannot afford to provide support only for a “nice”
subset. Consequently, the IPR seeks to present a regular superset of ISO C++,

A Principled, Complete, and Efficient Representation of C++ 5

with faithful semantics. The language defined by IPR nodes consists mostly of
expressions. IPR expressions are generalizations of C++ expressions. We will refer
to the latter as classic expressions. IPR expressions are divided into four major
categories: classic expressions, types, statements and declarations. Here, we present
only the representation of the type system. The semantics can be found in [9] and
[8].

Using τ for types, ǫ for expressions, δ for declarations, and ~• for sequence of
•, the C++ type system is modeled as a multi-sorted algebra shown in Figure 1.

IPR nodes Example
τ ::= Pointer(τ) T*

— Reference(τ) T&

— Array(τ, ǫ) T[68]

— Qualified(cv , τ) const T

— Function (τ, τ, τ) int (int, int) throw()

— Class(~δ, ~δ) class B : A { int v; }

— Union(~δ) union { int i; double d; }

— Enum(~δ) enum { bufsize = 1024 };

— Namespace (~δ) namespace { int count; }
— Decltype(ǫ) decltype(count)

— As type(ǫ) int

— Template (τ, τ) class template

— Product(~τ) function parameter-type list

— Sum(~τ) exception specification list

cv ::= None no cv-qualifier

— Const const

— Volatile volatile

— Restrict restrict // not ISO C++

Figure 1: Abstract syntax of IPR nodes for the C++ type system

The type constructors Pointer, Reference and Array correspond to the usual
operations for constructing pointers, references, and array types. The operations
points to, refers to, element type and bound extract the arguments used to con-
struct such types according to the equations

points to (Pointer (τ)) = τ ,

refers to (Reference (τ)) = τ ,

element type (Array (τ, ǫ)) = τ ,

bound (Array (τ, ǫ)) = ǫ .

The Decltype constructor gives the “declared” type of an expression. The type
constructor As type turns an arbitrary expression into a type. A type constructed

6 Dos Reis and Stroustrup

by Decltype or As type supports the operation expr which yields the argument used
to construct that type:

expr (Decltype (ǫ)) = ǫ, expr (As type (ǫ)) = ǫ.

The decltype operator is part of C++0x’s support for generic programming [18].
We use As type to introduce built-in types and type variables within IPR, and to
handle dependent types in template declarations.

Product and Sum types do not explicitly exist in C++. However they are
notions informally used by C++ programs, which are useful for a formal specifi-
cation. For example, we use Product to represent lists of function parameter types.
The Sum type constructor is dual to Product [23]. It represents a collection of
types supporting a set of common operations. For example, we use Sum to repre-
sent union members and members of exception specifications. Both Product and
Sum supports the subscription and size operations. The operation size reports the
number of types in the product or sum.

size (Product (s)) = size (s) ,

size (Sum (s)) = size (s) ,

Product (s)
i
= si ,

Sum (s)
i
= si .

Unlike ISO C++, the IPR considers that a template declaration has a a type. The
Template constructor takes as arguments a parameter-type list in form of a product
type, and a type to be parameterized. Note that this generalization allows us to
parameterize any declaration, including variable and namespace declarations. The
IPR aims for greater generality and regularity than what C++ currently offers.

Given a template, we can retrieve its parameters using parameters and the
parameterized type using parameterized :

parameters (Template (p, τ)) = p,

parameterized (Template (p, τ)) = τ.

For example, given (the node representing) the class template

template<typename T, int N>

struct Buffer {

T data[N];

};

parameterized will return (the node representing) the class-expression:

struct { T data[N]; }

We consider a uniform, complete, and universally applicable representation of a
programming language the ultimate (and in general unobtainable) ideal for com-
piler and tools developers. We urge the reader to resist the temptation of conclud-
ing, from the presentation given so far, that a uniform and complete representation
of C++ is easy. It is not. Several obstacles have to be overcome, and irregularities
must be embedded in more general structures, hiding complexity from users, yet

A Principled, Complete, and Efficient Representation of C++ 7

retaining the standard semantics of C++ (e.g. see [4]). Some of these challenges
are discussed in greater detail in §6.

4. The Role of Algebra and Analysis

A large number of C++ expressions share the same structure. For example, x + y
is a binary expression whose representation is similar to that of dynamic cast<const
T*>(p), and to that of the type expression int [32]. They are all binary opera-
tors. In the design and implementation of the IPR, we adopt a systematic algebraic
view that captures those similarities. This algebraic view naturally leads to struc-
tures that are parameterized by the type of their components. Templates in C++
are the primary abstraction tools to deal with “algebra”.

For a particular usage, the user may not necessarily be interested in the
exact algebraic structure of a particular IPR node. Rather, she might be more
interested in whether the node represents an expression, or a declaration, or a
member function definition. So, we need an approximation mechanism to cut down
on the amount of (sometimes overwhelming) information that the algebraic view
gives us. We need a mechanism for selective ignorance of details. Which is what
Analysis is really all about. Class inheritance in C++ is the primary mechanism
for “approximation”. Base classes provide an initial estimate that get refined by
derived classes. A carefully engineered combination of templates (“Algebra”) and
class inheritance (“Analysis”) is at the core of the IPR implementation as we
explain in the next section. The end goal being a principled, complete, efficient
representation of the semantics of a C++ program, i.e. the geometry of a program,
which is usually expressed as a linear sequence of characters (common concrete
syntax.)

5. Representation

Representing C++ completely is equivalent to formalizing its static semantics.
Basically, there is a one-to-one correspondence between a semantic equation and
an IPR node. The IPR does not primarily represent the syntax of C++ entities.
It represents a superset of C++ that is far more regular than C++. Semantic
notions such as overload-sets and scopes are fundamental parts of the library and
types play a central role. In fact every IPR entity has a type, even types. Thus, in
addition to supporting type-based analysis and transformation, the IPR supports
concept-based analysis and transformation.

5.1. Nodes

Here, we do not attempt to present every IPR node. Instead, we present only as
much of IPR as is needed to understand the key ideas and underlying principles.
The IPR is a direct representation of the C++ semantics rather than a direct
representation of its syntax, so calling it an AST is a bit of a misnomer (unless

8 Dos Reis and Stroustrup

you – unconventionally – think of the ’S’ as standing for “semantic”). Each node
represents a fundamental part of C++ so that each piece of C++ code can be
represented by a minimal number of nodes (and not, for example, by a number of
nodes determined by a parsing strategy).

5.2. Node design

The IPR library provides users with classes to cover all aspects of ISO C++.
Those classes are designed as a set of hierarchies, and can be divided into two
major groups:

1. abstract classes, providing interfaces to representations
2. concrete classes, providing implementations.

The interface classes support non-mutating operations only; these operations are
presented as virtual functions. Currently, traversals use the Visitor Design Pat-
tern [13] or an iterator approach [35].

IPR is designed to yield information in the minimum number of indirections.
Consequently, every indirection in IPR is semantically significant. That is, an
indirection refers to 0, 2 or more possibilities of different kinds of information, but
not 1. For if there was only 1 kind of information, that kind of information would
be accessed directly. Therefore an if-statement, a switch, or an indirect function
call is needed for each indirection. We use virtual function calls to implement
indirections. In performance, that is equivalent to or faster than a switch plus a
function call [17]. Virtual functions are preferable for simplicity, code clarity, and
maintenance.

Node

Expr

Stmt

Decl

Var

Node impl

Expr impl

Stmt impl

Decl impl

Var impl

Figure 2: Early design of the IPR class hierarchy

The obvious design of such class hierarchies is an elaborate lattice relying
on interfaces presented as abstract virtual base classes, and implementation class
hierarchies, with nice symmetry between them — see Figure 2. This was indeed
our first design. However, that led to hard-to maintain code (prone to lookup

A Principled, Complete, and Efficient Representation of C++ 9

errors and problems with older compilers), overly large objects (containing the
internal links needed to implement virtual base classes), and slow (due to overuse of
virtual functions). These overheads are indicators that the “obvious” design fails to
meet IPR’s fundamental design criterion to have each indirection be semantically
significant: Some of the internal structure used to support virtual function calls
unnecessarily delay choices among alternatives until run time.

The current design (described below) relies on composition of class hierarchies
from templates, minimizing the number of indirections (and thus object size),
and the number of virtual function calls. This implementation strategy reflects a
combined algebraic and analytic view (see §4) of a program representation. To
minimize the number of objects and to avoid logically unnecessary indirections,
we use member variables, rather than separate objects accessed through pointers,
whenever possible.

5.2.1. Interfaces. Type expressions and classic expressions can be seen as the re-
sult of unary, or binary, or ternary node constructors. So, given suitable arguments,
we need just three templates to generate every IPR node for “pure C++”. In addi-
tion, we occasionally need a fourth argument to handle linkage to non-C++ code,
requiring a quaternary node. For example, every binary node can be generated
from this template:

template<class Cat = Expr, // kind (category) of node

class First = const Expr&,

class Second = const Expr&>

struct Binary : Cat {

typedef Cat Category;

typedef First Arg1_type;

typedef Second Arg2_type;

virtual Arg1_type first() const = 0;

virtual Arg2_type second() const = 0;

};

Binary is the base class for all nodes constructed with two arguments, such as an
array type node or an addition expression node. The first template parameter Cat
specifies the kind (or category) of the node: classic expression, type, statement,
or declaration. The other two template parameters specify the type of arguments
expected by the node constructor. Most node constructors take expression argu-
ments, so we provide the default value Expr. The functions first() and second()
provide generic access to data.

Note how Binary is derived from its first argument (Cat). That is how Binary
gets its set of operations and its data members: It inherits them from its argu-
ment. This technique is called “the curiously recurring template pattern” [6] or
“the Barton-Nackman trick”1; it has been common for avoiding tedious repetition
and unpleasant loopholes in type systems for two decades (it is mentioned in the

1variations of this technique are usually referred as Barton-Nackman trick; the essence was
documented in [11]

10 Dos Reis and Stroustrup

ARM [11], but rarely fails to surprise). The strategy is systematically applied in
the IPR library, leading to linearization of the class hierarchy (see Figure 3). A

Node

Expr

Stmt

Decl

Var

impl :: Expr < T >

impl :: Stmt < T >

impl :: Decl < T >

impl :: Var

T = Var

Figure 3: Current design of the IPR library

specific interface class is then derived from the appropriate structural class tem-
plate (Unary, Binary, or Tertiary). For instance, an array type is structurally
a binary type expression and is therefore represented by node with the following
IPR interface:

struct Array : Binary<Category<array_cat,Type>, const Type&> {

Arg1_type element_type() const { return first(); }

Arg2_type bound() const { return second(); }

};

That is, an Array is a Type taking two arguments (a Type and an Expr) and a re-
turn type (a Type). Array’s two member functions provide the obvious interface:
element type() returns the type of an element and bound() returns the num-
ber of elements. Please note that the functions element type() and bound() are
themselves not virtual functions; they are simple “forwarding” inline functions,
therefore induce no overhead.

The category argument Category<array cat,Type> exposes an implemen-
tation detail. The category is Type (i.e., an array is a type), but to optimize
comparisons of types, we associate an integer array cat with the Array type.
Logically, it would be better not to expose this implementation detail, but avoid-
ing that would involve either a per-node memory overhead storing the array cat
value or a double dispatch in every node comparison. We introduced array cat
after finding node comparison to be our main performance bottleneck. So far, we
have found no systematic technique for hiding array cat that doesn’t compromise
our aim to keep the IPR minimal.

A Principled, Complete, and Efficient Representation of C++ 11

5.2.2. Concrete Representations. Each interface class has a matching implemen-
tation class. Like the interface classes, the (concrete) implementation classes are
generated from templates. In particular, impl::Binary is the concrete implemen-
tation corresponding to the interface ipr::Binary:

template<class Interface>

struct impl::Binary : Interface {

typedef typename Interface::Arg1_type Arg1_type;

typedef typename Interface::Arg2_type Arg2_type;

struct Rep {

Arg1_type first;

Arg2_type second;

Rep(Arg1_type f, Arg2_type s)

: first(f), second(s) { }

};

Rep rep;

Binary(const Rep& r) : rep(r) { }

Binary(Arg1_type f, Arg2_type s) : rep(f, s) { }

// Override ipr::Binary<>::first.

Arg1_type first() const { return rep.first; }

// Override ipr::Binary<>::second.

Arg2_type second() const { return rep.second; }

};

The impl::Binary implementation template specifies a representation, construc-
tors, and access functions (first() and second()) for the Interface. Given
impl::Binary, we simply define Array as a typedef for the implementation type:

typedef impl::Binary<impl::Type<ipr::Array> > Array;

The Array type is generated as an instantiation of the Binary template.

5.2.3. Examples. The IPR does not consider C++ built-in types, such as int,
special. Rather, it represents them in a way that allows uniform treatment of all
types (user-defined and built-in). To get specific about the properties of built-in
types, we need knowledge of the target machine’s model (e.g., the size of int, its
alignment, etc.). However, those specific details are not needed for a high-level
representation of a program. Currently, the IPR provides only a partial interface
to such compiler- and machine-specific information. For example, we can acquire
the information needed to evaluate constant expressions, but not answer questions
about alignment. This interface will be expanded as needed.

To build a node to represent int, we first build an Identifier node with the
name of the type: "int". That Identifier node is also an expression. Then, we state
that it actually is a type using the type constructor As type:

As type(Identifier("int"))

12 Dos Reis and Stroustrup

In IPR every node has a type. But what kind of type is this "int"? IPR represents
the notion of a “type of a built-in type” as a "typename" node:

As type(Identifier("typename"))

Finally, we state that the "typename" node is the type of the "int" node. In all
the code looks like this:

impl::As_type* inttype = unit->make_as_type(unit->get_identifier("int"));

inttype->constraint = unit->get_typename();

Since this operation is done frequently (at least for all the 20 built-in types), the
operation is abstracted into dedicated member functions of impl::Unit:

const ipr::As_type& get_as_type(const ipr::Expr&);

const ipr::As_type& get_as_type(const ipr::Expr&, const ipr::Linkage);

The second version constructs types with specified linkage (the default being C++
linkage). These functions are what we expect users to call in the situation we just
described. The result is this set of nodes:

As type

Type int

None

type

name

qualifiers�	

�� //

main variant
�	

�� //

expr

As type

�

�� �

�	 //

Type of type int

None

type�	

�� //

name

qualifiers
�

�oo

main variant

�

�oo

expr

Identifier

�

��

�

�� //

�

�	
�

�� //

"int"

type
�

�� //

string�	

�� //

��

�

Identifier

�	

�oo

��

�oo

"typename"

type �

�	
�

�oo

string�	

�� //

Figure 4: IPR model for the C++ type int

The conventions for our node diagrams are:

1. all nodes are drawn as boxes, labeled with their node constructor names;
2. boxes contain slots for the names of supported operations. Arrows indicate

virtual function calls;
3. values like sequence sizes or cv-qualification constants are depicted directly

in slots.

The As type node is where the name of a type is tied to the properties of the
type. A given As type may contain data specifying properties of a type, such as
the size and operations applicable to an int or the concept of a template argument
type (as proposed for C++0x [9, 15]). We don’t actually need to add elaborate
data to As type nodes; in some cases, we have found it more convenient to keep
tables of properties “elsewhere” and find them using the As type as a lookup key.

For type int, this representation may seem over-elaborate. However, it allows
for the essential uniform treatment of all types, which significantly simplifies use
and it imposes no significant cost. The notion of a concept [9, 15] is essential
for template arguments, where “what is the type of this type?” or “what are the
requirements for this set of types and values?” become central questions in most

A Principled, Complete, and Efficient Representation of C++ 13

high-level analysis. Answering such questions simply and efficiently for every type
is key to semantics-based analysis and transformations.

As type provides qualifiers() and main variant() operations. Like most
IPR operations, these operations directly reflect C++ semantics. For example, for
the type const int, qualifiers() returns const and main variant() returns
int.

To build a node that represents a pointer to int, we start with the represen-
tation of int and apply the Pointer type constructor:

unit->get_pointer(inttype);

That way, we get:

Pointer
None

type

name

qualifiers�	

�� //

main variant
�	

�� //

points to

As type

�

�� //

None

type

name

qualifiers�	

�� //

main variant
�	

�� //

expr

As type

�

�� �

�	 //

�

�� �

�	 //

None

type�	

�� //

name

qualifiers
�

�oo

main variant

�

�oo

expr

Identifier

�

�� //

�

�� //

"int"

type
�

�� //

string�	

�� //

Identifier
�	

�oo

��

�oo

"typename"

type
�

�oo

string�	

�� //

Type id

�

��

type
�

�oo

type expr�	

�� //

Figure 5: IPR model for the C++ type int∗

What is the name of int∗? The name is a Type id node. All nodes that
represent types support the operation name , providing a uniform way of accessing
every kind of name. The name() operation returns an expression that represents
the name of a Type. In this example, name() returns the Identifier("int") for
int and the Pointer to int for int. Again, this exactly mirrors the ISO C++
standard where we can talk of types with no conventional names such as int∗&
and struct{int a; char∗ p; }.

A Type id node supports the operation type expr such that

type expr (Type id (t)) = t ,

and as a node that represents an expression, its type satisfies the relation

type (Type id (t)) = type (t) .

5.3. Sharing

By node sharing, we mean that two nodes that represent the same entity shall have
the same address. In particular, node sharing implies that if a node constructor is
presented twice with equal lists of arguments, it will yield the same node. If node
sharing is implemented for a class, that class is said to be unified [12]. Since a
user-defined type (classes or enums) can be defined only once in a given translation
unit, sharing of nodes is suggested by C++ language rules. Every IPR node can
be unified; exactly which are unified is a design choice related to performance (of
the IPR itself and of applications). This can be used to tune IPR.

14 Dos Reis and Stroustrup

Implementing node sharing is easy for named types, but less straightforward
for built-in types and types constructed out of other types using composition oper-
ators (e.g., int, double (*)(double), and vector<Shape*>). The problem arise
because such types are not introduced by declarations. They can be referred to
without being explicitly introduced into a program. For example, we can say int*
or take the address of a double and implicitly introduce double* into our set of
types. Node sharing for such types implies maintenance of tables that translate
arguments to constructed nodes. Since an expression does not have a name, unify-
ing expression nodes share this problem (and its solution) with nodes for unnamed
types.

We can define node sharing based on at least two distinct criteria: syntactic
equivalence, or semantic equivalence. Node sharing based on syntactic equivalence
has implications on the meaning of overloaded declarations; two declarations might
appear overloaded even though only the spelling of their types differs. For exam-
ple, the following function template declarations are possibly overloads whereas
Standard C++ rules state they declare the same function.

template<typename T, typename U>

void bhar(T, U);

template<typename U, typename T>

void bhar(U, T);

The reason is that for templates, only the positions of template-parameters (and
their kinds) are relevant. Normally, we do not care whether the name of a template-
parameter is T or U; however, in real programs, people often use meaningful names,
such as ForwardIterator instead of T.

5.4. Effects of unification

Building nodes, without node sharing, is very simple: allocate enough storage to
store the node and set its components. The obvious expense is wasted memory.
The representation of the type int, for instance, requires 6+2x words for As type;
and 3 + x words for Identifier, excluding storage for the string "int" – where
x designates allocation overhead (usually 2 words). So, that representation uses
at least 9 + 3x words. In that account, we do not include the storage needed to
represent the concept of type, as we take it to be shared by most types. Therefore,
the representation of the type of copy (§2), with no sharing, needs at least 36+12x

words for the four occurrences of int. On popular machines where a word is 4 bytes
and allocation overhead is at least 2 words, that representation needs at least 240
bytes.

Space is time. It should be obvious that, because nodes are not repeatedly
created to represent the same type, node sharing leads to reduced memory usage
and less scattering in the address space (and therefore few cache misses.) Experi-
ments with the classic first program

#include <iostream>

int main() {

A Principled, Complete, and Efficient Representation of C++ 15

std::cout << "Hello, World" << std::endl;

}

based on GCC-3.4.2 — at the time we started the IPR project — reveal that, in
non-sharing mode, there are 60855 calls to type constructors; out of which we have

1. 60% for named types (only less than 1% are syntactically distinct),
2. 17% for pointer types,
3. 11% for const-qualified types,

Due to curiosities in the GCC compiler infrastructure, we cannot get precise count-
ing of nodes, so the above are approximates (±5%). However, the GCC represen-
tation was about 32 times the size of the IPR representation. The “Hello, World!”
program is useful because it drags in so much relatively advanced code though
its #includes. However, even for medium-sized programs we must multiply the
figures by at least 100 to get realistic measures, and then our savings in time and
space begin to appear significant. Once we start to represent multiple translation
units simultaneously, unification becomes a critical component of scalability.

Inspired by our design and our measurements, GCC has switched to a uni-
fied internal representation of types. The first author of this paper was a GCC
maintainer and shipping manager.

For program analysis that requires type comparison, node sharing offers time
efficiency because type comparison is reduced to pointer comparison. This is signif-
icant because many forms of analysis (as well as the IPR itself) basically boil down
to “traverse the program representation doing a lot of comparisons to decide which
nodes need attention”. With node sharing, those comparisons are simple pointer
comparisons. Without node sharing they are recursive double dispatch operations.
This difference in run-time cost is greater than a factor of 100: a single machine
instruction comparing two words v.s. two indirect function calls. The time and
space gained sharing nodes should be weighted against the overhead of building
and using hash tables to be able to find existing nodes when you make a new node.

Obviously, the idea of node sharing (unification) is not new. However, in
the context of program transformation, we see it as more than an optimization
technique. It is essential for scaling beyond toy programs and toy examples, but
another advantage of node sharing is consistency. Since there can be only one node
for a type named Foo, we never need to walk through the whole graph to modify
the properties of all Foos. That is an important property when merging separately
compiled translation units, doing whole-program analysis, and doing systematic
substitutions. For example, with a single substitution, we can replace all uses of a
type, say int[], with another type, say vector<int>, in a whole translation unit.

6. Dealing with Real-world Complexities

“The devil is in the details.” If C++ had been designed yesterday with “simple
complete representation” as a major goal, representing it would have relatively
been easy. Basically, the previous section would have been the end of the story.

16 Dos Reis and Stroustrup

However, elements of C++ were designed more than 30 years ago (for pre-K&R
C) and many more elements (both standard and non-standard) have been added
since. This seriously complicates the design of a complete representation for C++.
On the one hand, we must save the developers of tools from this incidental com-
plexity (“abstract them away”) wherever possible. On the other hand, these “de-
tails” must be dealt with to produce a tool, rather than a toy and sometimes
tool developers are specifically interested in such messy details. For example, we
have experimented with tools to help “rejuvenate” code by replacing older idioms
and language features with more modern ones[25]. C++ is complicated. However,
much of that complication is the direct result of almost three decades of serious
industrial use. Other languages in wide use have suffered similar increases in size,
complexity, and diversity of styles of use. It follows that the techniques we have
developed for C++ are likely to be applicable a broad range of real-world lan-
guages with long-lived code bases and dialects. When looking at the effort needed,
we also consider the number of people that will benefit from extra work required
for a mature language.

Dealing with “details” has been much more than 50% of the total design
effort. The “details” are plentiful and irregular. However, we must fit them into
a more general framework so that the IPR user do not need to remember (and
handle) a long list of special cases. In other words, we cannot take an ad hoc
approach to dealing with ad hoc language features. We must abstract the many
“details” into a few IPR constructs.

6.1. Lexical and home scopes

A name can simultaneously belong to more than one scope. For example:

int f(int i) {

extern int g(int); // g is global

return g(i);

}

class A {

friend void f(A) { } // f is in enclosing scope; visible

// only through ‘‘argument dependent’’

// name lookup

};

namespace N {

extern "C" void bar(); // bar is global

}

In the function f(int), the locally declared function g(int) is visible only in
the local block established by the body of f(int). However, it really belongs to
the global scope; that is, there is no nested or local functions in C or C++. The
function f(A) defined in the class A really belongs to the enclosing namespace
scope of A. However, an ordinary name lookup will not find it (unless a matching
declaration is also available in that scope, which is not the case here). That function

A Principled, Complete, and Efficient Representation of C++ 17

is visible only through a special name lookup (argument dependent name lookup)
that considers the syntactic form of a call and the type of the arguments. The third
example declares the function bar() as having a “C” language calling convention,
consequently it really belongs to the global scope. However name lookup will not
find it in the global scope – it is visible only the scope of N. Note also that there
can be only one such function in the whole program named bar with that same
type and “C” calling convention.

Note that the first example is also C and surprisingly common in C-style
C++ code.

The general solution to all of these problems (and more) is that every decla-
ration has a lexical scope and some have a different home scope. The lexical region
is the scope in which the declaration appear in the source text. The home region
the scope in which the declaration really belongs to according to the C++ rules.
For most cases, those two regions are the same. However, for each of the examples
above the home region and lexical region differ.

In the IPR, all information relating to the entity declared can be found though
its entry in its home scope.

struct Decl : Stmt {

// ...

virtual const Name& name() const = 0;

virtual const Region& home_region() const = 0;

virtual const Region& lexical_region() const = 0;

// ...

};

If a name appears only in one scope, its home region() is the same as its
lexical region().

6.2. Overloading, specialization, etc.

Often, several declarations are related. For example, a function can have several
declarations (which must match) and several functions in a scope can have the
same name (so that they must be considered together for overload resolution). Of
course, IPR must keep the information that the programmer provided (the many
declarations), but it must also present a single entity (the function, the variable,
the template) to the user unless the user express an interest in “the details”.
Consider:

void print(double);

void f(int i) { print(i); } // invoke print(double)

void print(int);

void g(int i) { print(i); } // invoke print(int)

void print(double d) { cout << d; }

18 Dos Reis and Stroustrup

The IPR represents different functions with the same name in the same scope as
overload sets; different declarations of the same function are linked to the first
declaration of that function. All declarations are placed in their proper scopes and
their proper places in those scope. This is essential: Note how you can change the
meaning of the program fragment above by reordering the declarations. This is
unfortunate, but follows directly from the C++ standard and is used in real code.

The IPR Decl class handles all linked declarations with just three functions:

struct Decl : Stmt {

// ...

virtual const Decl& master() const = 0;

virtual const Sequence<Decl>& decl_set() const = 0;

virtual const Decl& defining_decl() const = 0;

// ...

};

The master() is the first declaration of a given name encountered. The decl set()
is the set of all declarations of that name. The defining decl() is the defining
declaration.

The distinction between an overload set and a linked set of declarations of
the same entity is also used to directly represent the C++ distinction between
overloading and specialization.

6.3. Lowering

Even at the level of an AST, different users want different levels of representation.
Replacing constructs present in the original source code with equivalent constructs
to gain a simpler and more uniform representation is called “lowering.” Macro
expansion, elimination of type aliases, and putting expressions on a common form
(e.g. by replacing operators such as ++ and -> with alternatives) are examples of
“lowering.” Making type conversions, constructor and destructor calls explicit can
be considered “lowering,” as can expansion of #included header files,

To preserve information and thereby support a larger set of applications,
the IPR doesn’t lower by default. If you want lowering, you can ask IPR to do
so at creation time. This works well for particular examples of lowering, such as
elimination of typedef names, it would be impractical to provide every desired
combination of features to be “lowered.” The IPR provides a few common example
and users have developed IPR-to-IPR tools for more specialized lowering needs.

6.3.1. Macros. We have already “lowered” the representation of the program by
expanding macros, so that the IPR represents a compiler’s view of a program,
rather than the view of a programmer looking at a screen. This is an important
design decision for IPR and not one that is always ideal. However, we did not
have much choice. Macros are inherently irregular, so that distinctions among
fundamental notions — such as, declaration, statement, and expression — are
often blurred by macros.

IPR’s inability to represent macros is fundamental, but also a major problem
for source-to-source transformation applications such as source code rejuvenation

A Principled, Complete, and Efficient Representation of C++ 19

[25]. Consequently, we are working on a tool to classify macros and replace “well
behaved macros” with better-behaved language features, such as consts, inline
functions, and templates. Such replacement is itself a form of source code rejuve-
nation.

6.3.2. Type aliases. Before lowering, IPR takes a purely syntactic view of aliases.
For example:

typedef int Length;

// ...

void f(Length);

void f(int);

Before lowering, the IPR – like a naive human reader – will think that there are two
functions (syntactic equivalence) whereas after lowering it will realize that there
really (according to C++) is only one. The distinction can be useful for some
forms of analysis that assign meaning to typedef names (and to other aliases).
For example, this can be used to detect inconsistent programming styles that
may hide bugs from a human reader. “Other aliases” include namespace aliases,
using declarations, and (in C++0x) template aliases. It is important that the IPR
implement a uniform policy vis a vis aliases.

6.3.3. Canonical use of operators. Several operations can be achieved by different
uses of operators. For example, ++x and x+=1 are equivalent and may be equiv-
alent to x.operator++(). Consequently, there is the issue of how to use of such
operations: Sometimes we want to see what the programmer wrote and sometimes
we would prefer a canonical representation. Consider:

void f(T x, TT p) {

++x;

T(x) = 5;

p->f();

}

We could represent ++x as a use of operator ++ or as call node for the function
operator++(). The first alternative is the user’s view, the syntactic view. The lat-
ter view is “lowered” to reflect a semantic view. For example, lowering to a uniform
function call notation simplifies programs concerned with program execution.

It is important to have a uniform policy on this kind of examples. Several
times we (as have others) thought we had a free choice in such decisions for a
specific operator, language construct, or type. In fact, we do not. Consider the
case where the example above is a template function with T as an unconstrained
template parameter.

template<typename T, typename TT>

void f(T x, TT p) {

++x;

T(x) = 5;

p->f();

}

20 Dos Reis and Stroustrup

Now, we cannot even know whether T(x) is a cast or a declaration of a variable
x with redundant parentheses! Any uniform policy in a system that fully han-
dles templates must retain the syntactic view – any lowering will be premature.
Also, the syntactic view is the only one that allows re-generation of the user’s
code without risk of subtle semantic changes. For example, if we transformed
++x to a uniform call syntax (say) operator++(&x), we would not (without ad-
ditional information) know whether the user wrote ++x or x.operator++() or
operator++(&x).

6.3.4. Header file inclusion. Some of the most complicated code you will ever see
is code that most programmers do not usually see: The contents of header files,
especially the contents of header files related to systems interfaces. For complete
and precise analysis, we have to be able to handle such code (and we do, see §6.4),
but to simplify analysis we sometimes want to treat the declarations in a header
as a set of primitives (assuming their definition is correct and need not be part of
the analysis) and for program-to-program transformation it is typically essential
that the generated program still #includes a header rather than containing the
contents of the header.

By default, we expand headers, but that can lead to surprises as an innocuous
header, such as the ISO standard library iostream, can drag in tens of thousands
of lines of code (mostly because it itself #includes files full of implementation
details). Consequently, the use of “skeletons” is becoming popular. In this context,
a “skeleton” is a simplified header file containing only what a standard requires
and no messy implementation details. In particular, a “skeleton” contains no types
used only to specify implementation details, no functions except the ones that are
part of the documented interface, and no data members of classes. “Skeletons” for
the standard library headers can be extracted from the ISO standard itself, but
for other libraries and popular operating systems headers they must be generated
(by hand or by an IPR tool) from the source code itself. The IPR user must then
choose chose between “skeletons” and the real headers.

Unfortunately, a program cannot fully automate the generation of “skele-
tons.” If our aim is portability, we still need to (by hand) eliminate non-standard
additions to the contents of header file. For example, strdup() is not part of the
ISO C standard library even though it is often found in <string.h>.

6.4. Proprietary extensions

Most compiler providers have a host of proprietary language extensions that the
average end user doesn’t see. However, the deep internals of most standard libraries
are littered with them. Try representing the innocent-looking ”Hello, world!” pro-
gram:

#include<iostream>

int main() {

std::cout << "Hello, world!";

}

A Principled, Complete, and Efficient Representation of C++ 21

To do this, we have to handle dozens of proprietary extensions. Such extensions (of
course) differ from provider to provider and it is not unusual that they vary from
release to release. They tend to be plentiful in the lowest levels of code (OS inter-
faces, I/O, memory management, etc.), so the standard headers included to com-
pile ”Hello, world!” is a good place to look for them. For example, in <iostream>
from GCC-4.3.0, we find five extensions in what should have been a simple one-line
function declaration:

extern int

snprintf (char *__restrict __s, size_t __maxlen,

__const char *__restrict __format, ...)

throw () __attribute__ ((__format__ (__printf__, 3, 4)));

Often, such extensions are hidden from the programmers by wrapping them in
macros, but the IPR sees through that. To deal with this, we have temporarily
been reduced to the “ad hockery” of simply adding IPR nodes to represent the
proprietary extensions, usually one new node per extension. Given the rate of
change in these extensions, this approach is not sustainable. The ”Hello, world!”
program is portable and by default the IPR for it should also be. The solution is
to modularize the program so that we do not represent “details” of <iostream>
in the IPR unless the user explicitly requests it (see §6.3.4).

Please note that not handling proprietary extensions is not an option for
a general representation, such as IPR, even though it can be for a specialized
representation (say) aimed at the specific task of parallelizing array computations.

6.5. Separate compilation and whole-program analysis

Real-world C++ programs consist of many separately-compiled translation units.
Each translation unit often consists of many hundreds of header files recursively
#included by a single source code file. As described so far, the IPR represents a
C++ translation unit as it appears after preprocessing; that is, as a single source
file with the information from the header files included and macros expanded. We
can handle multiple translation units by storing the IPR for many units and then
reading them back in. The ability to store the IPR in what we call XPR (“eXternal
Program Representation”) format is essential because most C++ compilers cannot
compile two translation units in a single invocation.

The fact that IPR is unified is most useful here because that way every
inconsistency between translation units is automatically caught. For example, we
could try to generate IPR for a program with the two source files

// x.cpp

int glob;

int gfct();

and

// y.cpp

double glob;

void gfct();

22 Dos Reis and Stroustrup

The IPR will detect the two errors.
So, the IPR (supported by XPR) trivially supports whole-program analysis:

Compile all source files one at a time and store their XPR representation. Then add
the XPR files that you want to a single IPR and run traversals and transforms as
usual. This is also the point where the compactness of nodes and the space savings
from unification really pays off.

However, the situation is still not quite ideal. Considering the problems with
proprietary extensions deep in implementations, we must consider an explicit ap-
proach to modularity. We can use the “skeleton approach” §6.3.4 or we could
determine the use of headers as we go along. The IPR knows the source of every
declaration (to the line number), so it is easy to tell what interface to a “module”,
such as <iostream> was really used by user code. This implies that we could rep-
resent a use of a module as the name of its header file plus the set of declaration
nodes used to access it. That is, we can treat a header file as a parameterized
module. Generating that is a fairly simple IPR program, but the need to abstract
from details of header files is so common that we are considering integrating it
into the IPR itself.

Note that in general two uses of a “module” represented as a header file are
not equivalent because macros, typedef, etc. can affect the set of definitions in the
header and meaning of those definitions. We can trivially use the IPR to detect
any differences or to detect any differences that matter for a given use, though.

6.6. Simplicity

One measure of simplicity is that the complete source code for IPR (excluding
compiler-to-IPR generators) is just 2,500 lines of C++ (excluding comments).
The number of distinct node types is 157. This count excludes nodes representing
vendor-specific, non-standard features. Of these 157 nodes, 68 nodes represents
individual C++ operators (such as + and *) and 20 nodes represents individual
built-in types (such as int and long double). We represent individual operators
as separate node types, rather than as a single node with a operator-type field
so that we can select among them using a virtual function call rather than as
switch-statement. Had we chosen to minimize the number of nodes rather than
the complexity of user code, the number of nodes would have been 71 or lower.

The code for IPR is available from the authors.

6.7. Traversal

Traversal of IPR nodes is based on a combination of the Visitor Design Pattern
and Generic Programming techniques. As outlined earlier the IPR library offers
two sets of classes:

1. a purely functional, that support only non-mutating operations; and
2. a set of implementation classes supporting both mutating and non-mutating

operations.

The immutable classes are useful for the majority of users. They support analysis
and the generation of new code from an unchanged source. The mutating classes

A Principled, Complete, and Efficient Representation of C++ 23

are more specialized, harder to use well, and geared toward applications that need
to change nodes in place. Given node sharing, “mutating” really means “make a
new node and replace an old node with it”, rather than indiscriminately writing
to node data members. We illustrate uses of both sets with two simple problems
developed in the next sub-sections.

6.7.1. Simple traversals. Consider the problem of traversing a program, looking
for all statements of the form

a = a + b;

collecting the assignment expression and the left-hand-side sub-expression (which
can be a simple variable or more complicated expression).

To solve that problem, we must visit the body of all function definitions,
starting from the global namespace, walking down every class or function defini-
tion. The expressions are collected in form of a map

assignment expression 7→ left hand side.

The corresponding traversal code is straightforward. First, we need a visitor class
that will visit only the interesting nodes, and do nothing to others. The IPR
universal Visitor base class is structured in a way that it provides a default
hook for acting on interface nodes (e.g. Var, Block, Assign, Array) assuming that
we know what to do given their general classification (e.g. declaration, statement,
type, expression) That is, the Visitor::visitmember functions for all node types
other than Decl, Stmt, Expr, and Type are implemented as forwarding functions
to one of

struct Visitor {

// ...

virtual void visit(const Decl&) = 0;

virtual void visit(const Stmt&) = 0;

virtual void visit(const Type&) = 0;

virtual void visit(const Expr&) = 0;

// ...

};

Those functions are pure virtual, therefore must be overridden in derived classes.
For lot of simple visitor classes, it can be a tedious exercise to have to provide

“dummy” overriding definitions for those visit member functions. Consequently,
the IPR library has “helper” visitors, such as the Constant visitor template that
applies the same function object to all nodes. For example Constant visitor<No op>
is the visitor class that does nothing to all kind of nodes.

Given that, the definition of the gathering function is simple:

using namespace std;

using namespace ipr;

// Collect { a = a + b } in this container

typedef map<const Assign*, const Expr*> Map;

24 Dos Reis and Stroustrup

struct Gatherer : Constant_visitor<No_op> {

Map result; // hold matching expressions

// an assignment-statement is a good place to search

void visit(const Assign& e) {

if (const Plus* x = view<Plus>(e.second()) { // assigns a sum

const Expr& lhs = e.first();

if (lhs == x->first()) // assigns to left-hand operand of+

result[&lhs] = &x->first();

}

}

// for an expression statement, the contained

// expression might contain an assignment

void visit(const Expr_stmt& e)

{

e.expr().accept(*this);

}

// search every statement in a block

void visit(const Block& b)

{

const Sequence<Stmt>& stmts = b.body();

for (int i = 0; i < stmts.size(); ++i)

stmts[i].accept(*this);

}

// ...

};

void summary(const Unit& unit)

{

const Sequence<Decl>& decls = unit.get_global_scope().members();

Gatherer gatherer;

for (int i = 0; i < decls.size(); ++i)

decls[i].accept(gatherer);

print_matches(gatherer.result);

}

The function print matches print out a summary of all expressions that match
our criteria and stored in gatherer.result.

6.7.2. Simple transformations. Once we have found expressions that matches the
pattern

x = x + y;

we are interested in replacing them with the equivalent form

x += y;

A Principled, Complete, and Efficient Representation of C++ 25

on the condition that there is an operator +=, either built-in or user-defined, of
the appropriate type accepting a modifiable lvalue (of the same type as x) as its
first operand, and y as its second operand. This transformation requires that we
have complete type information about the declarations in scope. Consequently, it
is not (just) a syntactic transformation. The building block of that transformation
is the following node-building function

// transform ‘‘a = a + b’’ to ‘‘a += b’’,

// setting the type ‘‘t’’ on the resulting expression.

const Plus_assign*

mutify(impl::Unit& unit, const Assign& assignment, const Type& t)

{

const Expr& lhs = assignment.first();

const Expr& lhs = assignment.second();

impl::Plus_assign* result = unit.make_plus_assign(lhs, get_second(rhs))

result->constraint = &t;

return result;

}

The rest of the transformation consists of cloning nodes not in our gatherer.result
table, and replacing those in the tables by their images. Again, this clone-and-
substitute operation is performed by an appropriate visitor and has structure sim-
ilar to what we discussed in the previous section.

A further transformation is to replace all statements of the form

x = x + i;

into

++x;

when i is an integral constant expression with value 1. Doing this requires not
only sufficient understanding of the C++ code to recognize constant expressions,
but also the ability to evaluate them. IPR provides that, so that the application
programmer can write simple code that depends on values. The x=x+1 to ++x
transformation has implicit and useful semantics implications: it increases the
generality of an algorithm when x is an iterator, i.e. it transform an operation
that requires a random-access iterator into an operation that assumes only forward
iterator property.

7. Related and Future Work

The IPR was inspired by the eXtented Type Information library designed by the
second author. XTI focused on the representation of the C++ type system, whereas
IPR aims at the full C++ language. There are many projects [1, 29, 30, 2, 22, 28,
21] targeting static analysis and transformations of C++ programs. For example,
CodeBoost [2, 3, 20] focuses on transformations of C++ programs, for numerical
PDE solvers, written in the Sophus style. Simplicissimus [29, 30] and ROSE [28]
are other projects for transforming C++ programs. Coverity is a widely used and

26 Dos Reis and Stroustrup

very complete commercial set of C and C++ analysis tools [4]. Many of these
systems are commercial and not documented in the literature. Few aim to handle
full Standard C++, few aim at generality (as opposed to specific applications),
and few aim at compiler independence. None — to our knowledge — aim at all
three.

The IPR is designed to fully support the next generation of ISO standard
C++ (nicknamed C++0x)[19, 34]. The basic supports for that are in place, though
we will have to wait for the final standard and compiler support to complete this
work.

Obviously, our immediate aims include applications that further test the gen-
erality and portability of the IPR and its associated tools. We have been able to
represent the full source code of FireFox. We have simple visualization tools and
several experiments related to the analysis and simplification of code have been
and is being conducted. For example, we have used IPR in experiements that
extracted concepts (template argument requirements) from C++ template defini-
tions [27], detected and analysed loops for potential simplification [26], and as part
of the infrastructure of for abstract interpretation of C++ programs. To ease the
development of such programs, we have developed an IPR based pattern-matching
language and library[26], and library support for selective traversal [35]. We are
working on experiments with the use of concepts and library-specific validations,
optimizations, and transformations in the domains of parallel, distributed, and
embedded systems.

We plan to provide more ways of specifying traversals and transforms (such
as ROSE and CodeBoost) and to work on better ways of specifying type-sensitive
(incl. concept sensitive) traversals and transformations. Experience with students
indicate that we also need to either provide simpler ways to specify simple traver-
sals and transformations or to better explain what IPR offers.

From the standpoint of the structure of the IPR, the most important direction
of work is to more systematically handle modularity and lowering.

We will work to make the compiler to IPR generation more complete; it is
already more complete that some popular compilers, but every lacking feature will
cause a problem for someone. In addition we will try to interface the IPR to more
compilers and handle more dialects.

8. Conclusion

Current frameworks for representing C++ are not general, complete, accessible
and efficient. In this paper, we have shown how general, systematic, and simple
design rules can lead to a complete, direct, and efficient representation of ISO
Standard C++. In particular, we don’t have to resort to ad hoc rules for program
representation or low-level techniques for completeness or efficiency. Unification
helps maintain consistency, keeps our program representation compact (as required
for scalability), and minimizes the cost of comparisons. To serve the widest range

A Principled, Complete, and Efficient Representation of C++ 27

of applications, we use syntactic unification. Given syntactic unification, we can
implement semantic unification by a simple transformation, whereas the other way
around is impossible without referring back to the program source text. In addition
to unification, careful and systematic node class and node class hierarchy design
is necessary to minimize overhead and enable scaling.

Acknowledgements

This work was partly supported by NSF grant CCF-0702765.

References

[1] S. Amarasinghe, J. Anderson, M. Lam, and C.-W. Tseng. An overview of the SUIF
compiler for scalable parallel machines. In Proceedings of the Seventh SIAM Confer-
ence on Parallel Processing for Scientific Computing, San Francisco, CA, 1995.

[2] O. Bagge. CodeBoost: A Framework for Transforming C++ Programs. Master’s
thesis, University of Bergen, P.O.Box 7800, N-5020 Bergen, Norway, March 2003.

[3] O. Bagge, K. Kalleberg, M. Haveraaen, and E. Visser. Design of the CodeBoost
transformation system for domain-specific optimisation of C++ programs. In Dave
Binkley and Paolo Tonella, editors, Third International Workshop on Source Code
Analysis and Manipulation (SCAM 2003), pages 65–75, Amsterdam, The Nether-
lands, September 2003. IEEE Computer Society Press.

[4] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World. Communications
of the ACM, 53(2), February 2010.

[5] clang: a C language family frontend for LLVM. http://clang.llvm.org/.

[6] James O. Coplien. Curiously Recurring Template Patterns. C++ Report, 7(2):24–27,
1995.

[7] Gabriel Dos Reis and Bjarne Stroustrup. The Pivot. http://parasol.tamu.edu/
pivot.

[8] Gabriel Dos Reis and Bjarne Stroustrup. A Formalism for C++. Technical Report
N1885=05-0145, ISO/IEC SC22/JTC1/WG21, July 2005.

[9] Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++ Concepts. In Conference
Record of POPL ’06: The 33th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 295–308, Charleston, South Carolina, USA, 2006.

[10] The Edison Design Group. http://www.edg.com/.

[11] Margaret E. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

[12] A. P. Ershov. On programming of arithmetic operations. Commun. ACM, 1:3–6,
August 1958.

[13] Erich Gamma, Richard Helm, Ralph Johson, and John Vlissides. Design Patterns.
Addison-Wesley, 1994.

[14] GNU Compiler Collection. http://gcc.gnu.org/.

28 Dos Reis and Stroustrup

[15] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis,
and Andrew Lumsdaine. Concepts: Linguistic Support for Generic Programming in
C++. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programming Languages, Systems, and Applications, pages 291–
310, New York, NY, USA, 2006. ACM Press.

[16] International Organization for Standards. International Standard ISO/IEC 14882.
Programming Languages — C++, 2nd edition, 2003.

[17] International Organization for Standards. ISO/IEC PDTR 18015. Technical Report
on C++ Performance, 2003. Performance.

[18] J. Järvi, B. Stroustrup, and G. Dos Reis. Decltype and Auto (revision 4). http:
//www.open-std.org/JTC1/SC22/WG21/docs/papers/2004/n1705.pdf, September
2004. ISO/IEC JTC1/SC22/WG21 no. 1705.

[19] ISO/IEC JTC1/SC22/WG21. Programming Languages C++.
Technical report, ISO, March 2010. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf.

[20] K. Kalleberg. User-configurable, High-Level Transformations with CodeBoost. Mas-
ter’s thesis, University of Bergen, P.O.Box 7800, N-5020 Bergen, Norway, March
2003.

[21] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In CGO ’04: Proceedings of the international
symposium on Code generation and optimization, page 75, Washington, DC, USA,
2004. IEEE Computer Society.

[22] Sang-Ik Lee, Troy A. Johnson, and Rudolf Eigenmann. Cetus — An Extensible
Compiler Infrastructure for Source-to-Source Transformation. In Proceedings of the
16th International Workshop on Languages and Compilers for Parallel Computing
(LCPC), pages 539–553, October 2003.

[23] John C. Mitchell. Type systems for programming languages. pages 365–458, 1990.

[24] Georges C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate Language and Tools for Analysis and Tranformations of C Programs. In
Proceedings of the 11th International Conference on Compiler Construction, volume
2304 of Lecture Notes in Computer Science, pages 219–228. Springer-Verlag, 2002.
http://manju.cs.berkeley.edu/cil/.

[25] Peter Pierkelbauer, Damian Dechev, and Bjarne Stroustrup. Source Code Rejuvena-
tion is not Refactoring. In 36th international conference on current trends in theory
and practice of Computer Science, January 2010.

[26] Peter Pirkelbauer. Programming Language Evolution and Source Code Rejuvenation.
PhD thesis, Texas A&M University, September 2010.

[27] Peter Pirkelbauer, Damian Dechev, and Bjarne Stroustrup. Supporr for the Evolu-
tion of C++ Generic Functions. In Software Language Engineering, volume 6563 of
Lecture Notes in Computer Science, pages 123–142. Springer Berlin / Heidelberg,
October 2010.

[28] M. Schordan and D. Quinlan. A Source-to-Source Architecture for User-Defined
Optimizations. In Proceeding of Joint Modular Languages Conference (JMLC’03),
volume 2789 of Lecture Notes in Computer Science, pages 214–223. Springer-Verlag,
2003.

A Principled, Complete, and Efficient Representation of C++ 29

[29] S. Schupp, D. Gregor, D. Musser, and S.-M. Liu. User-extensible simplification —
type-based optimizer generators. In R. Wihlem, editor, International Conference on
Compiler Construction, Lecture Notes in Computer Science, 2001.

[30] S. Schupp, D. Gregor, D. Musser, and S.-M. Liu. Semantic and behavioural li-
brary transformations. Information and Software Technology, 44(13):797–810, Oc-
tober 2002.

[31] Bjarne Stroustrup. C++ Applications. http://www.research.att.com/˜bs/

applications.html.

[32] Bjarne Stroustrup. A History of C++: 1979-1991. In Proceedings of ACM Conference
on History of Programming Languages (HOPL-2), March 1993.

[33] Bjarne Stroustrup. Evolving a Language In And for the Real World: C++ 1991-2006.
In ACM HOPL-III, San Diego, California, June 2007. ACM Press.

[34] Bjarne Stroustrup. What is C++0x? CVu, 21, 2009. Issues 4 and 5.

[35] Luke A. Wagner. Traversal, Case Analysis, and Lowering for C++ Program Analysis.
Master’s thesis, Texas A&M University, June 2009.

Gabriel Dos Reis
Texas A&M University,
College Station, TX-77843, USA
e-mail: gdr@cse.tamu.edu

Bjarne Stroustrup
Texas A&M University,
College Station, TX-77843, USA
e-mail: bs@cse.tamu.edu

