C++ Dynamic Cast in Autonomous Space Systems

Damian Dechev !, Rabi Mahapatra !, Bjarne Stroustrup ', David Wagner 2
dechev @tamu.edu, rabi@cs.tamu.edu, bs@cs.tamu.edu, david.a.wagner @jpl.nasa.gov

Texas A&M University !
College Station, TX 77843-3112

Abstract

The dynamic cast operation allows flexibility in the
design and use of data management facilities in object-
oriented programs. Dynamic cast has an important role
in the implementation of the Data Management Services
(DMS) of the Mission Data System Project (MDS), the Jet
Propulsion Laboratory’s experimental work for providing a
state-based and goal-oriented unified architecture for test-
ing and development of mission software. DMS is respon-
sible for the storage and transport of control and scien-
tific data in a remote autonomous spacecraft. Like similar
operators in other languages, the C++ dynamic cast op-
erator does not provide the timing guarantees needed for
hard real-time embedded systems. In a recent study, Gibbs
and Stroustrup (G&S) devised a dynamic cast implemen-
tation strategy that guarantees fast constant-time perfor-
mance. This paper presents the definition and application of
a co-simulation framework to formally verify and evaluate
the G&S fast dynamic casting scheme and its applicability
in the Mission Data System DMS application. We describe
the systematic process of model-based simulation and anal-
ysis that has lead to performance improvement of the G&S
algorithm’s heuristics by about a factor of 2.

1 Introduction

1'ISO Standard C++ [8] has become a common choice
for hard real-time embedded systems such as the Jet Propul-
sion Laboratory’s Mission Data System [7]. This is so
because ISO C++ offers efficient abstraction model, good
hardware use, and predictability. C++’s model of compu-
tation has helped engineers deliver more correct, maintain-
able, and comprehensible software compared to code rely-

IThis is the authors’ version of the work. It is posted here by per-
mission of the publisher. Not for redistribution. The definitive ver-
sion is published in Proceedings of 11th IEEE International Symposium
on Object/component/service-oriented Real-time Distributed Computing
(IEEE ISORC 2008), Orlando, Florida, May 2008.

Jet Propulsion Laboratory, California Institute of Technology 2
4800 Oak Grove Drive, M/S 301-270, Pasadena, CA

ing on lower-level programming concepts [19]. However,
several C++ features are usually considered unsuitable for
programming real-time systems because they do not guar-
antee predicable constant-time performance [5]. ISO C++
does not provide the necessary timing guarantees for free
store (heap) allocation, exception handling, and dynamic
casting. In particular, the most common compiler imple-
mentations of the dynamic cast operator traverse the rep-
resentation of the inheritance tree (at run time) searching
for a match. Such implementations of dynamic cast are not
predictable and are unsuitable for real-time programming.
Gibbs and Stroustrup(G&S) [3] describe a technique for
implementing dynamic cast that delivers significantly im-
proved and constant-time performance. The key idea is to
replace the runtime search through the class hierarchy with
a simple (constant-time) calculation, much as the common
implementations of the C++ virtual function calls search the
class hierarchy at compile time to reduce the runtime ac-
tion to a simple array subscripting operation. In the G&S
scheme, a heuristic algorithm assigns an integer type ID at
link time to each class. The type ID assignment rules guar-
antee that at run time a simple modulo operation can reveal
the type information and check the validity of the cast. The
requirements for the heuristics assigning the type IDs are
that:

(1) They must keep the size of the type ID to a small num-
ber of bits. A 64-bit type ID should be sufficient for
very large class hierarchies

(2) Avoid conflicts and type ID assignments that create am-
biguous or erroneous type resolution at run time

(3) Handle virtual inheritance

There are four heuristic schemes and a few possible opti-
mizations suggested in [3]. However, none of those heuris-
tics guarantee the best solution for every possible class hier-
archy. The quality of the type ID assignment heuristics has a
critical importance for the performance of the G&S scheme.
With better heuristics, a smaller type ID size would be suf-
ficient to facilitate complex and large class hierarchies that

would certainly need a significantly bigger type ID size with
a poor assignment scheme. The main contribution of this
work is to present how the algorithm optimization problem
encountered has been successfully automated and moreover
that its automation has led us to quick but significant im-
provements of the initial scheme.

As pointed out by Lowry [10], the increasing complexity
of future space missions, such as the Mars Science Labo-
ratory [20] and Project Constellation [17], raises concerns
whether it is possible to establish their reliability in a cost-
effective manner. Lowry’s analysis indicates that at the
present moment the verification and certification cost of
mission critical software exceeds its development cost. Per-
row [13] studies the risk factors in the modern high tech-
nology systems. His work identifies two significant haz-
ard dimensions: interactions and coupling. Complex inter-
actions represent unexpected and unknown sequences and
thus cannot be entirely comprehensible at the time of sys-
tem development. A tightly-coupled system has a num-
ber of time-dependent processes that cannot tolerate de-
lays. Perrow classifies space missions in the riskiest cate-
gory since both hazard factors are present. The dominant
paradigms for software development, assurance, and man-
agement at NASA rely on the principle “test-what-you-fly
and fly-what-you-test”. Born out of experience and hind-
sight, this methodology had been applied in a large number
of robotic space missions at the Jet Propulsion Laboratory.
For such missions, it has proven suitable in achieving adher-
ence to some of the most stringent standards of man-rated
certification such as the DO-178B [14], the Federal Avia-
tion Administration (FAA) software standard. Its Level A
requirements demand 100% coverage of all high and low
level assurance policies. However, the present certification
methodologies are prohibitively expensive for systems of
high complexity [16].

In this paper we present a co-simulation framework
based on the SPIN model checker [6] to simulate, evalu-
ate, and formally verify the G&S fast dynamic casting al-
gorithm and its application in mission critical code such as
the Data Management Services [21] of the Mission Data
System. The aim of the Mission Data System is to pro-
vide a unified state-based and goal-oriented architecture for
building complete data and control systems for autonomous
space missions. The framework’s state- and model-based
methodology and its associated systems engineering pro-
cesses and development tools have been successfully ap-
plied on a number of test systems including the physical
rovers Rocky 7 and Rocky 8 and a simulated Entry, De-
scent, and Landing (EDL) system for the Mars Science
Laboratory mission. We use the feedback from the model
checker to perform systematic analysis of the G&S scheme
and look for improvements to the heuristics for type ID as-
signment. SPIN is an on-the-fly, linear-time logic model-

checking tool that was designed for the formal verifica-
tion of dynamic systems with asynchronously executed pro-
cesses. The most recent advances in the state space reduc-
tion techniques has made it possible to validate large soft-
ware applications. Model-checking tools have been widely
applied for the verification of a large variety of systems,
including flight software [4], network protocols [11], and
scheduling algorithms [15]. We are unaware of work sug-
gesting its use for the analysis and optimization of compiler
heuristics. Compiler verification usually focuses on seeking
a proof on the preservation of the program semantics during
the various compiler passes [9]. Our work presents the ap-
plication of a model-checking tool for the analysis and re-
finement of the combinatorial optimization problem posed
by the G&S type ID assignment scheme. Our co-simulation
framework consists of the following components:

(1) An abstract model of the G&S type ID assignment
heuristics

(2) An procedure for exhaustive search of the state space
discovering the best type ID assignment

The analysis of the heuristics simulation performed in SPIN
provides us with ideas of possible improvements to the
G&S type ID assignment. We include and evaluate the pro-
posed improvements in the abstract model in order to seek
refinement of the G&S type ID assignment scheme. The
experiments we have executed show that the G&S priority
assignment is not optimal with respect to the best possible
type ID assignment where non-virtual multiple inheritance
is used. While potentially dangerous if not constructed care-
fully, such hierarchies happen to be of significant practical
importance [18]. Based on our experiments, we suggest
optimizations that lead to significant improvement of the
G&S heuristics performance. This paper makes the follow-
ing contributions:

(1) Introduces the use of a co-simulation framework based
on model-checking for the analysis and improvement of
a compiler-heuristics optimization problem

(2) Verifies and analyzes the G&S C++ fast dynamic cast-
ing scheme and its application in mission critical code
such as the MDS Data Management Services

(3) Implements optimizations to the G&S heuristics lead-
ing to the discovery of optimal type ID assignment in
85% of the class hierarchies, in contrast to 48% for the
original G&S algorithm

The rest of the paper is organized as follows: section 2: a
brief description of the G&S fast dynamic cast algorithm,
section 3: our approach to co-simulation and improvements
to the G&S heuristics, section 4: discussion on the chal-
lenges of mission critical code and the applicability of the

G&S dynamic cast section 5: performance results for the
G&S algorithm and the proposed improvements, and sec-
tion 6: conclusion.

2 Fast Dynamic Casting Algorithm

The G&S fast constant-time implementation of the dy-
namic cast operator works as follows: at link time, a static
integer type ID number, preferably 32 or 64-bit long, is as-
signed to each class. The ID numbers are selected so that
the operation id, modulus idy, yields zero if and only if the
class with 7d, is derived from the class with ¢d;. This is
done by exploiting the uniqueness of factorization of inte-
gers into prime factors. Each class is assigned a key prime
number. The fype ID of a class is calculated by multiply-
ing its key number with the key numbers of each of its base
classes. In the cases where a class contains more than a sin-
gle copy of a base class, the type ID is computed by taking
the square of the corresponding base class ID. The only con-
straint of the approach is the desire to limit the ID size to fit
the machine’s built-in integer types. The key primes are not
required to be unique and the same prime key can be used
for classes that belong to different groups (i.e. do not share
common descendants). Gibbs and Stroustrup suggest four
approaches for assigning the type IDs in a space-efficient
manner. Each method is based on a preliminary computa-
tion of the priority factor of each class. The priority reflects
the class impact on the growth of the type ID numbers in
the hierarchy. Thus, classes with greater number of descen-
dants should receive higher priority and smaller key prime
number values respectively. The four possible schemes sug-
gest that:

1 The priority of a class is the maximum number of ances-
tors that any of its descendants has. This scheme was
chosen for the initial implementation and testing of the
G&S algorithm and also closely followed in the imple-
mentation of the abstract model used for our simulation

2 3, 4. If a range of primes is assigned to every level
with wider levels receiving larger initial values, then each
node could be assigned an additional value that is pro-
portional to the logarithm of the (2. minimum, 3. mean,
4. maximum) prime in its level. Priorities of hierarchy
leaves are computed by taking the sum of these additional
values for the leaf itself and all of its ancestor classes

After the priority of each class has been computed, the
classes with the highest priority get the smallest prime num-
bers. According to this scheme, prime numbers can be
reused only if there are two classes on the same level of the
class hierarchy and only if they do not share common de-
scendants, they are not siblings, and also that none of their
parents share a common descendant. According to the ID
assignment rules, we know that:

Figure 1. A class hierarchy with 11 classes

(1) idy = kg x (ko)? X kay, % (kp)? X kp, X ke
() idy = ky X ke X key % (ka)? X ka, x kp
(3) idz = k‘z X k’d X kdl X kc

Given a set C' with 11 classes in the hierarchy and the set
of the first 11 prime numbers P = {2, 3, 5, 7, 11, 13, 17,
19, 23, 29, 31}, we must assign each class V akey k, € P
such that, the maximum of the set idjcqr = {ids,idy,id,},
the set consisting of the ID numbers of all leaf nodes in C,
is minimal. As we already know, prime numbers need not
be unique for each class and can be reused in same circum-
stances.

3 A Co-simulation Framework

The goals of the co-simulation framework are to vali-
date the main invariants of the G&S heuristics, improve
its performance, and establish its applicability in mission
critical systems. The co-simulation process in the frame-
work (Figure 2) consists of three consecutive stages: ver-
ification, evaluation, and analysis. The verification phase
is a straightforward application of model checking where
an abstract description of the system’s behavior is checked
against a set of invariants. In the evaluation stage the simu-
lation results from the probabilistic approach are contrasted
to the outcome of the deterministic approach. The aim of
the analysis stage is to closely examine the instances where
the solutions yielded by the two implementations differ. We
identify patterns among the inconsistent results that reveal
the weaknesses of the probabilistic solution. The frame-
work works by executing two independent models, the G&S
model and the exhaustive search model. The first input
component to the co-simulation framework (Figure 2) is
an abstract model of the G&S fast dynamic casting heuris-
tics, implemented in Promela (SPIN’s input language) and
the embedded C primitives it allows. The G&S abstract
model is subsequently used to verify the main invariants of
the G&S heuristics and at the same time provide us with a
simulation testbed to examine the heuristics performance.
The second component of the framework is the exhaustive
search model that simply looks into all possible type ID
assignments to discover the optimal solution for a given

—
verification G&S Model
Verification
Propertes [(——»{(sPN) TTmEEEEOT »
LTL) Exhaustive Search
Model

Exhaustive
Search Model
simulation ..-"" exhaustive search
loptimization

probabilistic ! deterministic

Analysis Evaluate

Figure 2. A Co-Simulation Framework for G&S Im-
provement and Verification

class hierarchy. We employ SPIN’s search engine to per-
form the exhaustive search. In Algorithm 1 we present the
pseudocode of our co-simulation approach. The following
sections elaborate in more details on each of the stages of
the framework.

Algorithm 1 Pseudocode of the co-simulation approach.

1: constint MAX_NUMBERTESTS
2: VERIFY :

3: repeat

4: Formal Verification (G&S Model) — error report
5: if (noerrors) then
6.

7

8

goto EVALUATE
else
: study counter example
9: correct G&S
10: until TRUE
11: EVALUATE :
12: count =0
13: for (count < MAX_ NUMBER.TESTS) do
14: Simulation(G&S Model) — G&S solution
15: Enumeration(Exhaustive Search — Model) —
best solution
16: if (G&S solution # best solution) then
17: add instance to SIS
18: count + +
19: ANALYZE :
20: foralli € SIS do
21: look for a pattern
22: modify G&S
23: goto EVALUATE

3.1 Formal Verification

Every G&S implementation operates under the assump-
tion that when a prime number is reused, it is assigned to
non-conflicting classes. In addition, the maximum type ID
must fit within the boundaries of a memory word. We check

these invariants during the program verification phase. Es-
tablishing the validity of the G&S invariants is done by
straightforward application of model-checking with SPIN.
In SPIN the critical system properties are expressed in the
syntax of linear time logic. Based on the G&S abstract spec-
ification, the model-checker performs a systematic explo-
ration of all possible states. In case of failure, SPIN pro-
vides a counterexample that demonstrates a behavior that
has lead to an illegal state. In our model, the invariants are
expressed as a never claim [6], and are checked just before
and after the execution of every statement.

3.2 Evaluation

SPIN has been previously employed to implement solu-
tions of scheduling [1] and discrete optimization [15] prob-
lems. The problem we face in the G&S heuristics is a com-
binatorial optimization problem [12]. Given a finite set [,
a collection F' of subsets of I, and a real-valued function
w defined on I, a discrete optimization problem could be
defined as the task of finding a member S of F, such that:

Z w(e) is as small (or as large) as possible.

ecS
Except for the simplest cases, a discrete optimization prob-

lem is difficult because its design space is typically disjoint
and nonconvex. Therefore, the optimization methods ap-
plied to continuous optimization problems cannot be uti-
lized in this case. In a small discrete problem, it would
be possible to exhaustively list all possible combinations.
As the number of parameters increase, the state explosion
makes optimizations difficult. The two general strategies
for approaching a discrete optimization problem can be
classified as deterministic and probabilistic. What we do
for the G&S exploration in SPIN could be described as ap-
plying a deterministic approach for the evaluation of a set
of proposed probabilistic methods. The Branch and Bound
method [12] guarantees the discovery of the global optimum
in the cases when the problem is linear or convex and is the
most frequently used discrete optimization method. It is
based on the sequential analysis of the discrete tree of each
parameter. The branches that can be estimated to reach in-
valid or unfeasible solutions are consequently eliminated.
This simple optimization could also be applied in some lim-
ited cases in the SPIN’s Fast Dynamic Casting exhaustive
search. Let us explore a class hierarchy with three classes
A, B, and C, where B is derived from A, and C' is derived
from both A and B. In this case, we have C'={A, B, C}, P
={2,3,5}, and idjcq s = {id.}. The enumeration is given in
Table 1. We assume that the computation starts at a state .Sy
where all three keys k,, ky, and k. are uninitialized. Then
we assign possible values from the set P to the key variables
of the classes A, B, and C. The enumeration shown above
can be expressed as the computation shown on Figure 3.

[ide = ke X kp X (ka)?][k
60 2
60 2
90 3
3
5
5

90
150
150

DN W DN | W ||

Table 1. Enumeration of all solutions

The graph shows only the valid states of the computation.

Figure 3. Exhaustive search computation

There are a number of invalid states that are not shown on
the graph. For example, according to the rules defined in
G&S, it is possible to reuse some of the prime numbers in
P. Thus, we can try and add an edge k;, = 2 in state Sy,
however the reuse of 2 in this case is invalid since A and B
are conflicting classes.

The illustrated automation in Figure 3 provides a foun-
dation for the construction of a Promela model for the deter-
ministic solution. Each possible prime number assignment
to a given class key is represented by a separate state tran-
sition in the exhaustive search model. SPIN initiates the
optimum search at state Sy and visits all possible states. At
each end state the value of the minimum of the set of leaves,
in this case represented only by id., is computed and com-
pared to the current minimum. This approach is similar to
the algorithm described by Ruys in [15] and shown in Algo-
rithm 2. For such an application, we use the model checker
in a somewhat unusual fashion. In this scenario, the vali-
dation property checks whether the value of ¢d, is greater
than the current minimum. Each time this condition is vi-
olated, the current minimum is updated and the process is
automatically repeated until SPIN confirms that there are
no routes violating the specification. Since the solution is
deterministic, it is guaranteed to discover the global opti-
mum for type ID assignment. The performance of the G&S
heuristics is measured by running a simulation of the G&S
model that has been used earlier for verification. Now we
are left with only one important task (not automated at this
stage), the comparison of the results from the probabilistic
and deterministic solutions. Once we identify a set of incon-

Algorithm 2 Finding the global minimum in the state space.

1: intput : Promela model M
output : the optimal minimum for the problem M
min = (worst case) mazimum value for id
repeat
use SPIN to check M with condition (id. > min)
if (error found) then
min = id.

X LA

until (error found)

sistent results, we try to find a pattern and refine the G&S
heuristics. Then the refined scheme is implemented in the
probabilistic model and the evaluation process is reiterated.

3.3 Analysis

The simulation and enumeration models are continu-
ously executed until, if possible, a set of instances with in-
consistent solutions can be identified. Thus, each instance
in the Set of Inconsistent Solutions(S1S), represents a given
class hierarchy for which the deterministic and probabilis-
tic approach have discovered different solutions. The class
hierarchies for each test could be guided or created in a ran-
dom fashion. For the generation of the test data in our
experiments we implemented a pseudo random class hi-
erarchy generation algorithm, in a manner similar to the
TGFF(Task-Graphs-For-Free) method as described in [2].
We look for patterns among the collected hierarchies in S1S
and seek clues that can lead us to improvements of the G&S
scheme. Potential improvements are tested by adding them
to the G&S model and evaluate their effect. Such scheme
modifications are carefully selected since it is possible that
they might enhance a given G&S feature and at the same
time weaken another. Ideally, the improvements lead to a
heuristic scheme that provides the best solutions for a larger
number of the test hierarchies and at the same time has a
time complexity equal to or less than the earlier heuristic
scheme.

Despite the numerous advanced state space reduction
techniques utilized by the SPIN model checker, little can be
done to further optimize the exhaustive search. The main
goal of our experiments is to reach quick and effective opti-
mization of the G&S scheme, thus the class hierarchies con-
sidered were not the largest and most complex that our mod-
els can handle. The models developed for our experiments
are capable of handling class hierarchies of double or triple
the size of the ones presented in the paper, and even larger
number of classes can be facilitated with increased com-
putational power. In the framework, the exhaustive search
is used to identify flaws in the G&S type ID assignment
scheme, thus, there is no need to create and simulate much
larger hierarchies. In this work our goal is to demonstrate
that the current size of the class hierarchies is sufficient to
discover significant flaws of the original heuristics.

4 Application in Mission-Critical Software

Modern space mission systems have evolved from sim-
ple embedded devices into complex computing platforms
with high autonomy and an exceptionally large demand for
human-computer interaction. Consequently, such systems
require reliable and flexible data systems managing the col-
lection, storage, and transportation of data. The Mission
Data System(MDS) is the Jet Propulsion Laboratory’s state-
and goal-oriented framework for building embedded control
systems with a high degree of autonomy. MDS provides the
building blocks for the implementation of embedded plat-
forms based on the concepts of state estimation and control.
The Data Management Services(DMS) is the MDS com-
ponent responsible for the production, storage, processing,
and transfer of control and scientific data. In [21] Wagner
defines the challenges of data management in MDS as the
problems of producing and storing data and converting the
data to various formats as needed by its consumers. In addi-
tion, DMS needs to ensure the secure and lossless transport
of the data with limited resources and through unreliable
physical medium. To design and relate the data system en-
tities, DMS employs concepts from high-level ISO C++ in-
cluding templates, object-oriented class encapsulation, and
dynamic casting necessary for the conversion of the data
formats.

The actual telemetry data objects in MDS communicate
with each other via byte streams produced by the transport
protocol (e.g. spacecraft to ground communication). The
receiver of the telemetry data needs to recreate the data ob-
ject from the byte stream and thus invoke type casting in
numerous occasions. Constant-time dynamic cast is also
needed by the MDS Goal Network in the case when a con-
troller or estimator [21] passes a goal via the Coordinat-
ing Goal Network(CGN), typically a large dynamic data
structure. In CGN the goal is propagated using only its ab-
stract attributes(start and end time, and the associated state
variable). The achiever object who eventually picks up the
goal needs to reconstruct the data object via dynamic down-
casting to the specific type that conveys the state-specific
achievement criteria. The application of the common com-
piler implementation of dynamic cast has proved to be unac-
ceptable due to poor performance and the lack of the timing
guarantees.

The G&S scheme was devised as a solution to a real in-
dustrial problem related to C++ use for hard real time code.
Inquiries in the C++ community revealed that the problem
was fundamental and common, rather than isolated: devel-
opers simulate dynamic casting with other language fea-
tures, leading to type-unsafe special-purpose code or the
avoidance of best object-oriented practices. Naturally, such
workaround code slows down development, complicates
maintenance, and increases the need for testing.

5 Results

We applied the co-simulation process described in the
previous section to a large number of class hierarchies. The
tested hierarchies are not built into our models. Instead,
we have followed a pseudo random generation methodology
similar to TGFF task graph generation as described in [2] to
automatically generate hundreds of possible test cases. For
illustration, we show the results from a set of seven pseudo
random class hierarchies (Appendix A). The results of the
G&S heuristics model and the exhaustive search are shown
in Table 2. A brief comparison of the results indicates that
the G&S heuristics do not give optimal performance for
class hierarchies with non-virtual multiple-inheritance. A
closer look at the algorithm reveals that the priority calcula-
tion routine takes into account only the number of descen-
dants that each class has. Let us consider the class hierar-
chy from test case 7. We notice that according to the current
scheme, the base classes 0, 1, and 2 all get the same priority
rank since they all share the descendant 6. Class 6 is at the
lowest level of the hierarchy and has the largest number of
ancestors. If we would like to optimize the heuristics, we
must find a way to increase the priority of base class 2. Our
reasoning is derived from the fact that Class 2 is ambiguous
and the leaf Class 6 contains two copies of it. Similarly, let
us have a closer look at test case 1. In the optimal solu-
tion, Class 5 takes the lower prime number (11) compared
to Class 4, despite the fact that its only descendant has less
ancestors compared to Class 4. The reason for this result
is the fact that the derived Class 3 contains two ambigu-
ous bases while Class 4 contains only one ambiguous base.
As a result of our analysis we conclude that higher priority
should be given to derived classes and their ancestors who
contain more ambiguous base classes. To fix these weak-
nesses, we extend the G&S heuristics by adding two simple
rules:

(1) We count every ambiguous ancestor twice when we de-
termine the number of ancestors to each class

(2) For each base class, we count the number of derived
classes that include more than one copy of it, and add
that number directly to its priority

We call this enhanced G&S heuristics Fast Dynamic Cast-
ing Plus(FDC+). As Table 2 shows, for the initial set of test
cases, FDC+ performance is 100% equivalent to the perfor-
mance of the deterministic approach. In the performed tests,
we have generated 127 pseudo random class hierarchies and
applied G&S, FDC+, and the exhaustive search to each one
of them. The experimental results showed that FDC+ was
able to yield the best type ID assignment in 85% of the class
hierarchies compared to 48% for the G&S heuristics. The
time performance of the three schemes is shown in Figure

[CaseNo [[_G&s | _Exhaustive search [FDC+]

Case 1 (keys) (23,5, ,11,13,17) | (3,2,5,7,13,11,17) | (3,2,5,7, 13, 11, 17)
Case 1(ids of all leaves) (16380, 16830) (13860, 13260) (13860, 13260)

Case 2 (keys) (2,13,3,5,17,7,10) | (2,13,3,5,1,7,11) | (2,13,3,5,17,7, 11)
Case 2 (ids of all leaves) (1326, 2310) (1326, 2310) (1326, 2310)

Case 3 (keys) (2,3,13,5,7,17,10) | (2,3,13,5,7,17,11) | (2,3,13,5,7,17,11)
Case 3 (4ds of all leaves) (26,51, 2310) (26,51, 2310) (26,51, 2310)

Case 4 (keys) 2.3,5,,11L,13,10) | (23,5, L,11,13,17) | (2,3,5,7, 11,13, 17)
Case 4 (ids of all leaves) (2310, 1547) (2310, 1547) (2310, 1547)

Case 5 (keys) (2,3,5, 7, 11,7, 11) (2,3,5, 7,11, 7,11) (2,3,5, 7. 11,7, 1)
Case 5 (i ds of all leaves) (42, 66, 70, 110) (42,66, 70, 110) (42, 66, 70, 110)
Case 6 (keys) 23,5 1L13, 7,10 | (23,5113, 7,17 | (23,5, 11,13,7,17)
Case 6 (i ds of all leaves) (66, 78, 420, 170) (66, 78, 420, 170) (66, 78, 420, 170)
Case 7 (keys) (23,5, ,11,13,17) | (3,52, 7,11,13,17) | (3,5.2,7, 11,13, 17)
Case 7 (ids of all leaves) (2552550) (1021020) (1021020)

Table 2. Co-simulation of the seven cases from Ap-
pendix A

4. While the time performances of the G&S and FDC+
algorithms are equal and both run in a very low constant-
time (the function at 00:01 min on Figure 4), logically the
time performance of the exhaustive search increases expo-
nentially with the increase of the number of classes nodes in
a given class hierarchy. The analysis of the test results indi-

01:09.12

01:00.48 = i ;
00:51 84 -
g 00:43.20 =¢: |
= o0:3456] :
A 00:25.92 :
i 00:17.28 ;
00:08.64 —
00:00.00
Experiment number
G&Sand ______. Exhaustive
FDC+ Search

Figure 4. Search time for type ID assignment

cated that FDC+ finds a better type ID compared to the G&S
approach in 39% of the test scenarios. For the greater part
of the test cases, FDC+ matched the optimal type ID assign-
ment computed by the exhaustive search. This efficiency
boost is due to the optimized performance of FDC+ in the
cases where multiple non-virtual inheritance is present in
the class hierarchy. We have also observed that the imple-
mentation of these optimizations does not lead to efficiency
loss in other scenarios and the performance of FDC+ is al-
ways at least as good as the performance of G&S. Our ex-
perimental results have indicated that the introduced opti-
mizations in FDC+ have fixed a weakness of the original
G&S approach and have improved the success rate in find-
ing the best type ID assignment. The G&S scheme requires
a key of a memory size that is a function of the size and
shape of a class hierarchy. Thus, the improved heuristics
almost double the size of class hierarchies that can be han-

dled by a given key size. Since the scheme gets significantly
slower when a key gets too large for a machine word, the
improvements to the heuristics address the main limitation
of the G&S scheme.

6 Conclusion

In this work we applied co-simulation of the determin-
istic and probabilistic solutions to the combinatorial opti-
mization problem posed by the G&S type ID assignment
scheme. Our framework proved successful in verifying and
refining the existing G&S heuristics. We demonstrated how
we use the simulation results to devise improvements to
the G&S algorithm and evaluate them. The results from
our experiments indicate that the improved G&S heuristics
(FDC+) provide the optimal type ID assignment in 85% of
the class hierarchies, compared to 48% for the regular G&S
algorithm. The efficiency of the type ID assignment scheme
has significant importance for the performance of the fast
dynamic casting by Gibbs and Stroustrup [3]. This paper
presented a practical approach of how to discover improve-
ments to the type ID assignment scheme in a simple and
effective manner. The main advantage of the presented ap-
proach is the ease and simplicity of the discovery and test
for potential improvements. The improved heuristics that
we have described in this work almost doubles the size of
class hierarchies that can be handled by a given key size. A
more extensive simulation might suggest further improve-
ments to the type ID assignment scheme. Our main goal in
this work has been to demonstrated how an algorithm opti-
mization problem encountered has been successfully auto-
mated and moreover that its automation has led us to quick
but significant improvements of the initial scheme. In the
future we intend to utilize a static analysis tool for auto-
matic class hierarchy analysis and extraction.

7 Acknowledgements

We thank Peter Pirkelbauer, Kirk Reinholtz, Gerard
Holzmann, and the anonymous referees for their helpful
suggestions.

A Appendix

Case 1: Case 2:

=S

Figure 5. Test Cases 1 and 2

Figure 6. Test Cases 3 and 4

Case 6:

Figure 7. Test Cases 5 and 6

Case T:

1]

Figure 8. Test Case 7

References

(1]

(2]

(3]

[4

—

[5

—

(6]

(71

[8

—

(9]

(10]

(11]

E. Brinksma and A. Mader. Verification and Optimiza-
tion of a PLC Control Schedule. In Proceedings of the
7th International SPIN Workshop on SPIN Model Checking
and Software Verification, pages 73-92, London, UK, 2000.
Springer-Verlag.

R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs
for free. In CODES/CASHE ’98: Proceedings of the 6th in-
ternational workshop on Hardware/software codesign, pages
97-101, Washington, DC, USA, 1998. IEEE Computer So-
ciety.

M. Gibbs and B. Stroustrup. Fast dynamic casting. Softw.
Pract. Exper., 36(2):139-156, 2006.

R. Gluck and G. Holzmann. Using spin model checker for
flight software verification. In In Proceedings of the 2002
IEEE Aerospace Conference, 2002.

L. Goldthwaite. Technical Report on C++ Performance. In
ISO/IEC PDTR 18015, February 2006.

G. Holzmann. The Spin Model Checker, Primer and Ref-
erence Manual. Addison-Wesley, Reading, Massachusetts,
2003.

M. Ingham, R. Rasmussen, M. Bennett, and A. Moncada.
Engineering Complex Embedded Systems with State Analy-
sis and the Mission Data System. In In Proceedings of First
AIAA Intelligent Systems Technical Conference 2004, 2004.

ISO/IEC 14882 International Standard. Programming lan-
guages C++. American National Standards Institute,
September 1998.

S. Lerner, T. Millstein, and C. Chambers. Automatically
proving the correctness of compiler optimizations. In PLDI
"03: Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages
220-231, New York, NY, USA, 2003. ACM Press.

M. R. Lowry. Software Construction and Analysis Tools for
Future Space Missions. In J.-P. Katoen and P. Stevens, ed-
itors, TACAS, volume 2280 of Lecture Notes in Computer
Science, pages 1-19. Springer, 2002.

M. Musuvathi and D. R. Engler. Model checking large net-
work protocol implementations. In NSDI'04: Proceedings of
the 1st conference on Symposium on Networked Systems De-
sign and Implementation, pages 12-12, Berkeley, CA, USA,
2004. USENIX Association.

[12]

(13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

G. L. Nemhauser and L. A. Wolsey. Integer and combinato-
rial optimization. Wiley-Interscience, New York, NY, USA,
1988.

C. Perrow. Normal Accidents. Princeton University Press,
September 1999.

RTCA. Software Considerations in Airborne Systems and
Equipment Certification (DO-178B), 1992.

T. C. Ruys. Optimal scheduling using branch and bound with
spin 4.0. In T. Ball and S. K. Rajamani, editors, Model
Checking Software, Proceedings of the 10th International
SPIN Workshop, volume 2648 of Lecture notes in Computer
Science, pages 1-17, Berlin, 2003. Springer Verlag.

J. Schumann and W. Visser. Autonomy Software: V&V
Challenges and Characteristics. In In Proceedings of the
2006 IEEE Aerospace Conference, 2006.

A. Stoica, D. Keymeulen, A. Csaszar, Q. Gan, T. Hidalgo,
J. Moore, J. Newton, S. Sandoval, and J. Xu. Humanoids for
lunar and planetary surface operations. In In Proceedings of
the 2005 IEEE International Conference on Systems, Man
and Cybernetics, October 2005.

B. Stroustrup. The C++ Programming Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

B. Stroustrup. Abstraction and the c++ machine model. In
Z. Wu, C. Chen, M. Guo, and J. Bu, editors, ICESS, vol-
ume 3605 of Lecture Notes in Computer Science, pages 1—
13. Springer, 2004.

R. Volpe. Rover Technology Development and Mission In-
fusion Beyond Mars Exploration Rover. In IEEE Aerospace
Conference, March 2005.

D. Wagner. Data Management in the Mission Data System.
In In Proceedings of the IEEE System, Man, and Cybernetics
Conference, 2005.

