
Questions from Paul Krill from Infoworld; answers from Bjarne Stroustrup

The edited and abbreviated for publication version is here.

* When will C++ 17 be available?

C++17 will become official sometime in 2017, probably in the fall, and
the major implementations are likely to be ready then, or even before.
Parts are shipping already.

* What do you see as the major new features?

Define “major”. I consider a language feature or a library component
major if it affects the way you think about programming and affects how
you structure your code. With that definition, sadly, my answer must
be: For most people, I don’t see anything major in C++17.

I like the file system library and the parallel algorithms. They are
useful and will make some tasks easier for many, but I don’t consider
them major.

However, many of the features that I consider major are available in
some form or other today. Have a look at Herb Sutter’s recent blogs
about the Jacksonville meeting and how the committee operates:
• https://isocpp.org/blog/2016/03/trip-report-jax-sutter
• https://isocpp.org/std/the-life-of-an-iso-proposal

In addition to the standard itself, the committee produces Technical
Specifications (TSs) and members of the community involved with the
committee produce implementations. The major features are appearing as
TSs. For example:

• Concepts
• Networking
• More concurrency stuff
• Ranges (STL2)
• Modules
• Coroutines

Can we say that these are “part of C++17”? Not really; they will not be
part of every C++ implementation, but they exist. They are backed by
committee votes. They are carefully documented and usually their
implementations have gone through a few revisions. A TS, once approved
and issued by the ISO (as for example the Concepts TS has been), has
official standing.

Herb Sutter (the C++ standard committee’s convener) and others are
encouraging us to consider these TS as “beta releases” of standard
facilities. I don’t know how far we should push that analogy, but if
you are willing to use a beta release of some software, you should
consider these features.

* With the addition of constexpr lambdas, does C++ continue to become more of
a functional programming language? What does that mean for C++ developers?

http://www.infoworld.com/article/3044727/application-development/qa-bjarne-stroustrup-previews-c-17.html
https://isocpp.org/blog/2016/03/trip-report-jax-sutter
https://isocpp.org/std/the-life-of-an-iso-proposal

Since the introduction of the STL (about 1994) there has been a steady
and cautious increase in the use of functional-programming techniques
in C++.

Constexpr lambdas is simply an extension of the set of features that
can be used at compile time, rather than something specifically
functional. You can now also have loops in constexpr functions (and
through that in constant expressions).

If the “structured bindings” proposal is accepted for C++17, functions
with multiple return values will become easier to use, much as such
functions are used in functional programming.

* Apparently, Concepts, for improving compiler diagnostics, won’t make it
into C++ 17 after also not making it into previous releases. Is this a big
disappointment?

Yes, for me at least, it this a huge disappointment. Together with
Gabriel Dos Reis and others, I have worked on this problem for a couple
of decades, on this particular approach since 2003, and we have had
Andrew Sutton’s implementation to play with for about 3 years. I
consider it ready for a standard release next year, but a large number
of committee members disagreed (for various reasons).

Very soon, concepts will ship as part of GCC6.0, so by the time C++17
ships next year, the standard will have to play catchup.

Please note that the current concept design represents a completely
different approach from the failed C++0x concepts. The current approach
is simpler and in many ways more powerful and flexible. A concept is
simply a compile-time predicate on a set of types and values.

I consider “better error messages” a (most useful) consequence of the
fundamental advantage of concepts: we can specify the requirements of
our generic code (templates) on its arguments. This leads to better
designs, better interfaces, the ability to use simple overloading,
simpler implementations, and potentially more efficient code (through
simpler code).

Concepts will do for generic code what function argument declarations
(function prototypes) did for ordinary code using K&R-C-style
functions. Today, we have a really hard time imagining how people
managed before that (1979 for C++, earlier for many other languages).
In a few short years, we will think the same about concepts.

* Can you answer the same question about Modules and Coroutines, which also
won’t make it in?

I would have liked to get modules for better protection against changes
in some components context (e.g., protection against macros) and better
compiler speed, but that proposal isn’t ready for C++17, so it goes
into a TS.

I think that eventually, modules will become massively important. They
address long-standing problems in C and C++. An early version currently
ships as part of Microsoft’s C++ compiler. A different variant, more

dependent on external tooling and more friendly to macros, is available
in some versions of Clang.

I am disappointed that stackless co-routines are being put into a TS
rather than directly into the standard itself. I think they are ready
and important for a few critical use cases (pipelines and generators).
An early version currently ships as part of Microsoft’s C++ compiler.

* Why didn’t you just delay shipping the standard for a year and get
concepts, modules, and coroutines?

I was asked that question directly in the plenary session. My answer
was roughly: No, we must ship C++17 as promised. A delay will set a
very bad precedence and cause more delays in the future. If C++17
became C++18, I suspect that C++20 would become C++22 or C++23 and we
would be well on our way back to the 10 year cycle for ISO standards.

* is this an adequate explanation of coroutines for C++’s purpose?
Coroutines are computer program components that generalize subroutines for
nonpreemptive multitasking.

No. I don’t think those references help; this is better. Think of a
coroutine as simply a function that resumes from where it returned the
last time it was called. For example, we can write a naïve (and
efficient) coroutine to generate Fibonacci sequence like this:

 gen<int> fibonacci() { // generate 0,1,1,2,3,5,8,13 …
 int a = 0; // initial values
 int b = 1;

 while (true) {
 co_yield a; // return next Fibonacci number
 int next = a+b;
 a = b; // update values
 b = next;
 }
 }

The co_yield statement returns a value and waits for the next call. We
could use it like this:

 for (auto v: fibonacci()) cout << v << ′\n′;

Note I use no explicit global state and no static variable. The point
is that for realistic examples keeping the state of a computation is
non-trivial and coroutines handle that for you. The code generate for
this fibonacci() is as efficient as any hand-optimized version using a
function and some non-local state.

These are stackless coroutines. That is, you cannot suspend and resume
in a function called from the coroutine. That’s the simplest, most
restrictive, and fastest form of coroutines. There are also coroutines
that have their own stacks and coroutines that are best described as
non-preemptive threads. We’d like something like that also for C++, but
those are not yet quite ready (as far as I know).

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Nonpreemptive_multitasking
https://en.wikipedia.org/wiki/Coroutine

As an aside, I can point out that for its first 10 years, C++ had a
fast coroutine library (the task library) that was the basis for many
early applications. Without the coroutines in the task library, you’d
never have heard of C++. Unfortunately, the task library was not
considered sufficiently user friendly, so the non-AT&T implementations
didn’t ship it, and it didn’t make it into the standard.

* Which of these improvements in C++ 17 will have the most impact on
developers
 * (parts of) Library Fundamentals TS v1
 * Parallelism TS v1
 * File System TS v1
 * Special math functions
 * hardware_*_interference_size
 * .is_always_lockfree()
 * clamp()
 * non-const .data() for string

It depends who you are and what you are doing. For me, I suspect the
parallel algorithms will be the most important and having the file
system library will be a nice convenience. For some, optional, any, and
string_view from the Library Fundamentals will be significant. There
are also many small improvements all over the standard library.

If you do serious math (e.g., physics computation, data science, or
statistics) the “special math functions” (e.g., Bessel functions) are
essential so it is good that they are now in the standard.

* Is this still an accurate reflection of what is planned for C++ 17?

Unfortunately, it is not. That interview reflects what I hoped for and
what I considered feasible then. I presented another summary of what I
was aiming at for C++17 to the committee last year. It was unlikely
that we could get all of that, but I had not expected that we would get
hardly any. Roll on 2020!

But note that much (maybe even most) of what I wished for is available
today! Most are in TSs. You can use these features if you are willing
to use beta versions.

* Isn’t C++ being leveraged a lot for low-level mobile development?

Yes, that too. C++ is used in most infrastructure software, in games,
in finance, and much, much more. For example see this survey. Yes, it
appears that there is now well over 4 million C++ programmers.

* Will all facets of C++17 be known in July?

I hope so. We have a number of smaller proposals to decide about in
Oulu, Finland, in late June 2016. For example:

 Dynamic memory allocation for over-aligned data (for better vectorization)
 Template parameter deduction for constructors (make many “make functions”

redundant).
 constexpr_if (a compile-time if)

http://www.infoworld.com/article/2840344/c-plus-plus/stroustrop-c-goals-parallelism-concurrency.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4492.pdf
http://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0035r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0128r1.html

 Refining Expression Evaluation Order for Idiomatic C++ (finally, we can eliminate
bugs from people accidentally relying on undefined order of evaluation)

 Default comparisons (==, !=, <, <=, >, and >=)
 Operator Dot (smart references)
 Generalizing the Range-Based For Loop (for sentinel-based and counted ranges)
 Structured bindings (simple use of multiple return types)

With a bit of luck, most will make it; but then again, we can’t be sure
about anything until the votes are counted. The committee strives for
consensus so it doesn’t take many objectors to keep a proposal out of
the standard. A “no” vote counts about as much as five “yes” votes.

Should we get most of those, C++17 will become much more interesting
compared to what was approved at the March 2016 meeting.

* I presume you’re still directly involved in C++’s development?

Certainly, I just came back from six grueling days at the standards
meeting in Jacksonville, Florida. I write and evaluate proposals, I
experiment (e.g., with multimethods and FP-style pattern matching – see
my publication list). It’s hard work and occasionally pretty tough, but
when something works out, the benefits are immense for millions of
developers, and through them, billions of users of their work.

* Also, what are you up to these days? Still a professor at Texas A&M?

My “day job” is in the technology division of Morgan Stanley, a large
commercial bank. I mostly deal with issues of performance and
reliability; that is very much what I have always been doing. This
involves a fair bit of networking and distributed systems work. There
is a lot of C++ code and more being constructed every day.

This is one of the reasons for my (collaborative) work on the C++ Core
Guidelines to help people write better, more modern C++. Recently, we
figured out how to write completely type- and resource-safe C++ and the
tools for ensuring that are on their way.

I now live in New York City where I sometimes give a course at Columbia
University. I retain a connection with Texas A&M University as a
University Distinguished Professor.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0145r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0221r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0252r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0184r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r1.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
http://www.stroustrup.com/resource-model.pdf

