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Abstract 
This paper discusses the problem of how to express a generic construct’s requirements on 
its parameters. In the context of C++ templates, it proposes a notion of “concept 
checking” based on explicitly declared usage patterns. This notion is more abstract, more 
flexible, and easier to express than conventional type checking based on function 
signatures. The proposed notion of concept provides not just precise specification of 
template argument requirements and good compile-time detection of errors, but also 
supports the equivalent of overloading for templates while maintaining C++ templates’ 
support for compile time evaluation and inlining. 
 This paper compares the usage-pattern approach to conventional function-
signature approaches to generic parameter specification: unlike a signature-based 
approach, the usage-pattern approach does not require perfect foresight from a 
programmer or perfect agreement between collaborating developers. Concepts provide a 
complement to types, rather than an alternative. Concepts represent abstract requirements 
more directly than types. The advantages of concepts are not limited to C++; they are 
fundamental and would apply to many languages providing basic support for generic 
programming techniques. 
 

Introduction 
Conventional static (compile-time) type checking performs two roles: 

• it controls the way a programmer can invoke and combine operations (e.g., it 
verifies that you can add two integers and you can add two complex numbers) 

• it provides sufficient information for code to be generated (e.g., it ensures that a 
compiler has the information it needs to generate the exact code sequences to add 
two integers and to add two complex numbers) 

The need to provide the information required for code generation when writing code 
overconstrains the programmer’s expression of solutions. For example, to express a 
simple call, f(a,b), the programmer must state the exact types of a and b, find the 
definition of f, and see that the parameters of f can accept a and b. Overloading and 
generic mechanisms, such as C macros and C++ templates, allow the programmer to 
simply state f(a,b) leaving the resolution of the call to the compiler (much as a 
dynamically checked language leaves the resolution of a call to an interpreter). 
Postponing type checking like this dramatically simplifies the expression of ideas, but 



leaves a serious problem: How does a generic function express its expectations of an 
argument? 
 The most common conventional answer to this question is that a template 
argument must be of a type that’s compatible with a type specified in the template. For 
example: 
 
 template<class T : Base> void f(T);  // pseudo code 
 
Here, Base is a class and any argument to f must be of a class derived from Base.  For 
example: 
 
 class X { /* … */ }; // not derived from Base 
 class Y : public Base { /* … */ }; 
 
 f(X()); // error: an X is not a Base 
 f(Y()); // ok: a Y is a Base 
 f(2); // error: an int is not a Base 
 
Schemes like this have been repeatedly considered for C++ (and rejected) since about 
1986 and is used in languages such as Eiffel, Generic Java, and Generic C# 
[Garcia,2003]. The key is that any template argument must somehow match the type 
required by the template. That is, the types of the operations on a template argument must 
match the types (signatures) of the operations on the type specified in the template 
parameter declaration. The definition of “match” can vary, but in essence all signature-
based schemes require sufficient information for the interface between a generic 
definition and its arguments to be the logical equivalent to a set of function pointers with 
their argument types, return types, and any other information needed to call them (such as 
pass-by-value or pass-by-reference) known at compile-time. 
 The following sections discuss 

• problems and advantages from unconstrained template arguments (as in Standard 
C++) 

• problems with conventional signature-based approaches to constraints checking 
• an alternative approach based on usage patterns 
• how usage-pattern-based concepts can address the problems with signature-based 

approaches 
• how usage-pattern-based concepts can form a flexible and coherent system for 

expressing and using requirements on template parameters. 
The various approaches are primarily evaluated in terms of flexibility and generality of 
what they can express. However, performance of code written using them is also 
considered very important and the complexity of implementing the approaches is taken 
into account. 
 

Unconstrained template arguments 
Templates have been a great success in C++ as measured by the amount of code using 
them, the range of concepts that can be expressed using them, the efficiency of the code 



generated from them, the range of innovative techniques based on them, and the number 
of immitators. However, the template<class T> is simply a variant of math’s “For all T” 
that sacrifice precise statement of requirements on T for flexibility. Naturally, all 
template specialization code is eventually statically checked using the usual type rules, so 
all use of templates is type safe. However, the lack of specification of a template 
definition’s requirements on its template arguments leads to hard to understand code, 
elaborate documentation conventions, workarounds, late detection of errors, and 
spectacularly poor error messages. 
 In the absence of language support, C++ users have resorted to writing 
“requirement” that cannot be checked directly by compilers and to express argument 
constraints as templates. The former approach is a crucial part of the ISO C++ standard 
itself as it defines the properties of arguments to standard library templates as tables of 
required operators and semantics of such operations. That approach is abstract, terse, 
comprehensible, reasonably precise, but cannot be expressed directly in C++ itself. Nor is 
it easy to check these constraints for consistency. The aim of any template argument 
constraint mechanism for C++ must be to express these standard library constraints 
directly. A companion paper [Stroustrup,2003c] does exactly that. 
 In the absence of language support, programmers have managed to express many 
constraints in the language itself [Stroustrup,2001] [Austern,2002] [BOOST,200?]. For 
example: 
 
 template<class T> struct  Addable { // Ts can be added 
  static void constraints(T a, T b) { a+b; } 
  Value_type() { void (*p)(T) = constraints; } 
 }; 
 
 template<class T> class My_type 
  : private Addable<T> { // any T must be Addable 
  // … 
 }; 
 
 template<class T> void my_fct(T a) 
 { 
  Addable<T>(); // any T must be Addable 
  // … 
 } 
 
 My_type<int> m1;  // ok: ints can be added 
 My_type<char*> m2; // error: pointers cannot be added 
 
 void f(int i, char* p) 
 { 
  f(i); // ok: ints can be added 
  f(p); // error: pointers cannot be added 
 } 
 



This technique gives rather good error messages and allows the programmer to express a 
wide range of constraints. Unfortunately, it is not perfect. For example, a constraints class 
cannot catch the use of an unexpected function in a template function. For example: 
 
 template<class Value_type> struct Forward_iterator { 
  static void constraints(Forward_iterator p) 
  {  
   Forward_iterator q = p; p = q; // can be copied 
   p++; ++p;    // can be incremented 
   Value_type v = *p;   // points to Value_types 
  } 
  Forward_iterator() { void(*p)(Forward_iterator) = constraints; } 
 }; 
 
 template<class Iter> void my_fct(Iter p, Iter q) 
 { 
  Forward_iterator<iterator_traits<I>::value_type>(); 
  // … 
  p = p+2; // oops, uncaught: + not in Forward_iterator 
  // … 
 } 
 
 void fct(int v[], int s, istream& is) 
 { 
  my_fct(v,v+s); // will compile because int* has + defined 
  // … 
  istream_iterator<int> ii(is); 
  istream_iterator<int> eos; 
  my_fct(ii,eos); // error: istream::iterator doesn’t have + defined 
  // … 
 } 
 
The inability to catch such fairly common errors in template definitions leaves problems 
to be found late in the compilation process, sometimes years after the original definition 
of the templates. 
 Despite its limitations, the constraints template class technique deserves a much 
wider use than it currently has because it does address a major problem in the C++ type 
system. The main deficiencies of the approach is that 

• constraints are part of the definition of a template rather than part of its 
declaration or type. 

• the form of the constraint templates is perceived as odd enough to deter many 
programmers and is vulnerable to spurious compiler warnings (some variants of 
the idea are so elaborate that they have to be used via macros) 

• it is not possible to select among templates based on properties of a template 
argument type 



• constraints template classes cannot catch the use of an unexpected operation on a 
template argument  

• there is no common style of constraints classes 
• there is no basic set of constraints templates in the standard library covering 

common template argument constraints 
Variants of this approach was used from the very earliest days of C++ and are 
documented in D&E [Stroustrup,1994]. One variant has become popular as part of the 
BOOST library [BOOST,200?]. 
 Using constraints template classes does not address the most fundamental 
problem with the unconstrained template arguments in C++. Constraints cannot provide 
separation between the definition of a template and its use, leading to serious 
comprehension and implementation complexities. No mechanism within the current 
language could address that problem. This problem can only be addressed by a new 
language facility. 
 That said, unconstrained template arguments provide many fundamental 
advantages, which are the basis of the success of C++ templates. Templates 

• give uniform treatment to built-in and user-defined types 
• are neutral in respect to calling conventions (e.g. a+b can be resolved as a built-in 

+ operator, a member function call, or as a call of a free-standing function) 
• enable excellent inlining, so that templates can be used for basic containers and 

high-performance numeric types 
• require only minimal foresight from writers of argument types (e.g. a writer of a 

new class does not have to specify which interfaces the class can meet before 
using it as a template argument) 

These are major advantages that must not be lost in an attempt to improve the separation 
between template definitions and their use, to improve type checking of templates, and to 
improve the range of uses of templates. Given those constraints on a solution, the ideal is 

• to completely verify the correctness of a template body in the absence of actual 
template arguments 

• to completely verify the correctness of a template use in the absence of  the 
template body 

The base-class approach 
An approach relying on specifying template argument constraints as base classes is 
fundamentally simple to understand (partly because it’s familiar) and simple to 
implement. Each template argument is constrained to be a class derived from a specified 
base class so that a template definition is “syntactic sugar” for the use of objects of 
classes implementing the interface specified by the “constraining base class”. No 
fundamentally new semantic notions have been introduced. For example: 
 
 struct Element { // defines interface for elements of containers that can be sorted 
  virtual bool less_than(Element&) =0; 
  virtual void swap(Element&) =0; 
 }; 
 
 template<class T : Element> void sort(Container<T>& c) // pseudo code 



 { 
  // … 
  if (c[i].less_than(c[j])) c[i].swap(c[j]); 
  // … 
 } 
 
 class Number : public Element { 
  int n; 
 public:  
  bool less_than(Element& e)  { return n<((Number&)e).n; } 
  void swap(Element&e ) 
  { 
   int tmp = ((Number&)e).n; // extract value from argument 
   ((Number&)e).n=n;  // store new value in argument 
   n = tmp; 
  } 
  // … 
 }; 
 
 Container<Number> nc; 
 // … 
 sort(nc); 
 
Note the casts needed in the Number class. A language could make them implicit in the 
same way as a language could eliminate the need for an explicit & to denote a reference. 
However, a conversion is needed somewhere and somehow to get from the base class 
interface to the derived class types. 
 This explicitly parameterized sort() is (assuming some suitable definition of 
Container) equivalent to an unparameterized function: 
 
 void sort(ElementContainer& c) 
 { 
  // … 
  if (c[i].less_than(c[j])) c[i].swap(c[j]); 
  // … 
 } 
 
In a language relying on a universal base class “Object”, this would become: 
 
 void sort(Container& c) 
 { 
  // … 
  Element& ci = (Element&)c[i]; // run-time checked conversion 
  Element& cj = (Element&)c[j]; // run-time checked conversion 
  if (ci.less_than(cj)) ci.swap(cj); 
  // … 



 } 
 
This simple mapping of a generic function (relying on parameterization) to its object-
oriented equivalent (relying on virtual functions in a class hierarchy) demonstrates how 
this kind of constraints on arguments to generic constructs provide a simple solution to 
one of the most fundamental problems of C++ templates: This use of constraints cleanly 
separates the template definition from the definition of its template arguments, allowing 
for separate compilation of the two. Unfortunately, this useful separation comes with a 
high cost both in terms of logical properties and performance. 
 Consider first the lesser problem: performance. The obvious implementation – 
relying on a vector of functions – imposes a virtual function call overhead on every 
operation on a template argument. For simple operations, such as subscripting on arrays 
or addition of integers, that cost becomes prohibitive for high-performance applications. 
Naturally, the actual cost varies from machine to machine and from compiler to compiler, 
but the difference in speed between a simple integer add and an indirect function call 
performing an integer add can easily be a factor of 50. In addition, the casts to derived 
classes in the implementation of the generic operations can be costly. To preserve type 
safety, they need to involve a run-time type check. 
 These performance problem can be addressed in some generality through 
interfaces relying on non-virtual functions and though whole-program analysis. They can 
also be partially addressed by ad hoc techniques involving a compiler “knowing” the 
definition of “critical” templates generating optimized code depending on properties of 
argument. However, the task of generating code equivalent to what is obtained for 
Standard C++ templates is distinctly non-trivial and beyond most compilers for realistic 
programs. 
 The more serious problems are logical: To be an argument to a template, a type 
must be derived from the constraint base class (interface) used by the template. This has 
several nasty implications 

• a template writer must 
• turn a requirement to use certain operations into a requirement to derive from 

a named class providing those operations 
• represent operations as members of a class (i.e. no free-standing function can 

be allowed and dependent types has somehow to be represented as members) 
• a would-be template argument type must 

• be a class 
• name the constraints of all template arguments for which it will be used as a 

base class 
• be defined after the constraints of all template arguments for which it will be 

used 
• provide the required operations with exactly the required signatures 
• implement its operations as defined for interfaces expressed in terms of base 

classes. 
Turning the need to use some functions into a named class is a redundant logical step that 
leads to a proliferation of classes. The need to name those classes turns into a barrier 
against using separately developed (argument) classes and templates. For example, if I 
need to add two numbers, I may introduce a class Addable as the constraint for my 



template. You – working independently of me – may introduce a class called Add to 
express that same need for your template. Someone who wants to use both our templates 
for a class Number must now derive Number from both Addable and Add. If he didn’t 
initially, he must modify the definition of Number if he wants to use our templates. 
However, that may not be possible because Number may be from a separately developed 
library. The solution would then be to derive a new class His_number from Number and 
whichever of Addable and Add that it wasn’t already derived from. 
 Thus, representing the need to add two numbers can easily (and realistically) 
spawn three classes. Unfortunately, those classes may not be easy to write. Consider: 
 
 struct Addable { // my constraint 
  virtual Addable operator+(Addable) =0; 
 }; 
 
 template<class T : Addable> void my_fct(const vector<T>&); 
 
 class Add { // your constraint 
 public: 
  virtual const Add& operator+(const Add &) =0; 
 }; 
 
 template<class T: Add> T your_fct(T,T); 
 
How would someone write a class derived from both? 
 
 class Number : public Add, public Addable { 
 public: 
  Addable operator+(Addable a) ; 
  const Add& operator+(const Add& a); 
  // … 
 }; 
 
I now have two (separate) virtual functions, each implementing the addition of Numbers. 
Thus, the requirement to express template argument constraints through derivation breeds 
complexity as well as performance problems. 
 Furthermore, the requirement to express operations on template arguments as 
member functions does violence to some of the most common C++ programming idioms. 
For example, the most common way of defining an addition is as a free-standing 
function: 
 
 Number operator+(const Number&, const Number&); 
 
This ensures that any conversions to Number are uniformly applied to both operands of 
+. Similarly, the requirement to derive would force us to avoid built-in types in favor of 
classes defined to mimic built-in types. For example: 
 



 class Int : public Addable { // class to make int meet argument requirements 
  int value; 
 public: 
  // operations 
 }; 
 
I consider this ugly and inefficient (both in terms of programmer effort and execution 
overhead). 
 Finally, implementing arithmetic and logical operations as derived classes is not 
at all simple in C++. Consider an argument. Passing a Number by value as an Addable 
would lead to slicing, so in a signature-based concept scheme we must pass arguments by 
(const) reference. In the derived class function, we must use a dynamic cast to access the 
argument. For example: 
 
 const Add& Number::operator(const Add& a) 
 { 
  Number& n = dynamic_cast<Add&>(a); 
  // … 
 } 
 
This is ugly and inefficient, but could be considered acceptable. However, consider the 
return value. Again, we can’t return by value because that would lead to slicing. On the 
other hand, we can return a reference to a local object, so the returned object must be on 
some sort of free store. For example: 
 
 const Add& Number::operator(const Add& a) 
 { 
  Number& n = dynamic_cast<Add&>(a); 
  Number& res = *new Number; 
  // … 
  return res; 
 } 
 
Preventing that return from becoming the source of a memory leak is non-trivial. 
Basically, it implies the need for a form of automatic garbage collection of such returned 
objects. 
 One way of mitigating the problems with the approach of defining argument 
constraints as base classes is to provide a large number of “standard” base classes for 
“all” users to rely on. However, that doesn’t solve the fundamental problems of class 
proliferation, indirect expression of operations, inefficiency, and inelegance. It simply 
alleviates it partially through “central control” of style issue. In particular, this doesn’t 
address the problem of separate development of templates and template argument types. 
In a language, such as C++, where no language owner exists who could exercise central 
control, this approach is a non-starter. Furthermore, it does not at all address the needs of 
people with existing code: Using base classes to express template argument constraints 



translates into the need to write rather large amounts of non-trivial and costly mediation 
code for existing classes. 
 

The function-match approach 
A more promising approach is to abandon the requirement to derive from a constraints 
base class. Instead, we could require argument classes to “match” constraints specified as 
functions declared by a “match”. For example: 
 
 match Addable { 
  Addable operator+(Addable); 
 }; 
 
 template<class T match Addable>  // pseudo code 
  void my_fct(const vector<T>&); 
 
 class X { 
 public: 
  X operator+(X); 
  X operator*(X); 
  // … 
 }; 
 
 vector<X> vx; 
 // … 
 my_fct(vx); // ok: X has a + like Addable 
 
Given a suitable definition of match, X would match Addable because X, like Addable, 
provides an operator+() taking an operand of its own type and returning a value of its 
own type. 
 This approach eliminates several of the disadvantages of the base-class approach. 
In particular, 

• as a writer of a potential template argument type, I need not name (all) the 
constraints that I might like to match. That’s good because I couldn’t possibly 
imagine all the possible constraints classes for a class that is useful in many 
programs.  

• the problem of having to express a type so that it can be manipulated through a 
base class interface is eliminated; operations can be expressed colloquially. 

With the introduction of a dedicated language construct, match, we gain the possibility to 
express a wider range of constraints. For example, we might enable the programmer to 
express the distinction between a member function and a free-standing function to allow 
a wider range of requirements of arguments: 
 
 match Addable { // require free-standing functions 
  extern Addable operator+(Addable,Addable); 
  extern void trace(Addable); 



 }; 
 
 template<class T match Addable> void my_fct(const vector<T>&); 
 
 class X {  /* … */  }; 
 X operator+(X,X); 
 
 vector<X> vx; 
 // … 
 my_fct(vx); // ok: X has a + like Addable 
 
In addition, we might define match so that built-in types matched. For example: 
 
 vector<int> vi; 
 // … 
 my_fct(vi); // ok: int has a + like Addable 
 
The built-in type int could be defined to match by considering its + to have a suitable 
signature. 
 Naturally, this extra flexibility comes at the cost of some implementation 
complexity. The base-class approach described above could be entirely defined in terms 
of existing language rules. This function-match approach can’t. Similarly, the base-class 
approach has an obvious implementation model (abstract classes) whereas the function-
match approach could be implemented either by a vector of functions (like the base-class 
approach) or by per-specialization code replication (like the C++ template approach) for 
run-time performance. In principle, the choice of implementation techniques could be 
made on a per-specialization basis. 
 Unfortunately, in the context of C++, the function-match approach shares a major 
weakness with the base-class approach: When defining a function, a programmer has a 
range of implementation choices. Consider: 
 
 X operator+(X,X); 
 X operator+(const X&, const X&); 
 X& operator+(X&,X&); 
 const X X::operator+(const X); 
 X X::operator+(const X&); 
 X X::operator+(X) const; 
 
Basically, there are 3*4*4*4==192 ways of expressing a function taking two arguments 
and returning a value, once the basic argument types and return type has been decided 
upon. By considering volatile we get an even higher number. Naturally, only a few of 
these combinations are actually used, but enough are used – and used reasonably – that 
specifying the exact type of an operation is a serious barrier to the use of a template that 
constrains its arguments that way. Any language that provides more than one way of 
passing an argument or returning a value suffers a variant of this problem. 



 Thus, the function-mach approach to template argument constraints is more 
flexible, easier to use, require less foresight from class designers, and simplifies the 
generation of efficient code as compared with the base-class approach. In particular, the 
function-match approach does not require the designer of a potential template argument 
class to derive from the template’s constraint class. The complementary problems for the 
function-mach approach is that it requires novel language constructs, a new set of 
function compatibility rules, and more elaborate code generation strategies to reach 
traditional template performance. 
 Unfortunately, both approaches retain serious barriers to flexible use of templates 
in that they require an unrealistic degree of agreement between the template argument 
writer and the template writer. The fundamental problem is that both approaches are 
signature-based: The require the programmer to state how operations are implemented in 
terms of function signatures, rather than sticking to what is of interest to a programmer, 
namely what can be done with a template argument. 
 Consider a simple expression a*b+c. To use that in a template, signature-based 
approaches require the programmer to name the type of the intermediate result a*b. This 
is not always easy and can be constraining. For example: 
 
 match Mul { 
  Mul operator*(Mul); 
 }; 
 
 match Add { 
  Add operator+(Add); 
 }; 
 
 template<class A match  Mul, class B match Mul, class C match Add> 
 void f(A a, B b, C c) 
 { 
  // … 
  a*b+c; 
  // … 
 } 
 
Here we had to choose a return type for Mul and naturally we chose Mul. However, 
nowhere is it stated that a Mul must be a valid input to Add’s +; that is, that a Mul has to 
be convertible to an Add. Naturally, we might be able to specify that. For example: 
 
 match Add { 
  Add operator+(Add); 
 }; 
 
 match Mul { 
  Mul operator*(Mul); 
  operator Add(); // convert Mul to Add 
 }; 



 
This is easier to do in the function-match approach than in the base-class approach. 
However, even here, we have to state not just that a Mul can be used as an operand to 
Add’s +, but how that is achieved. For example, maybe this would have been a better set 
of constraints: 
 
 match Add { 
  Add operator+(Add); 
 }; 
 
 match Mul : Add { 
  Mul operator*(Mul); 
 }; 
 
To make matters even worse, there is no fundamental reason to resolve a*b+c as 
Add(a*b)+c. Instead, we could choose (a*b)+Mul(c), which would require a completely 
different relationship between the concepts. 
 Fundamentally, the problem is that the concepts can no longer be independent. 
That is, we can express such requirements only by having the foresight to design sets of 
mutually dependent concepts. The base-class approach places a serious burden on 
template argument class writers: they must express their classes in terms of constraints 
base classes. Both signature-based approaches place another serious burden on template 
argument class writers: they must express their operations in terms of function types. 
Furthermore, both signature-based approaches place a further burden on writers of 
concepts (typically, the template writers): Concepts must be expressed in such a way that 
dependencies among argument types within the various template implementations are 
reflected in the constraints function signatures. 
 The net effect of these burdens is to limit combined use of independently-
developed templates, constraints, and classes. This leads to larger and more monolithic 
libraries that would more resemble class-hierarchy-based libraries than template-based 
libraries. 
 One obvious question “why don’t you just abandon concerns about compatibility 
of notation and define a syntax for the ideal semantics?” will be answered later. 
 

The usage-pattern approach 
A more direct and abstract approach to constraints checking is to simply state which 
operations should be available for a template argument and how they should be used. The 
detailed analysis of class hierarchies and function signatures can be postponed from the 
points of template definition and template use until the point of template instantiation 
(specialization) where complete information is needed for generating code. For example: 
 
 concept Element { 
  constraints(Element e1, Element e2) { 
   bool b =e1<e2; // Elements can be compared using < 
      // and the result can be used as a bool 



   swap(e1,e2);  // Elements can be swapped 
  } 
 }; 
 
 template<Element E> void sort(vector<E>& c) 
 { 
  // … 
  if (c[i]<c[j]) swap(c[i],c[j]); 
  // … 
 } 
 
 class Number { 
  int i; 
  // … 
 }; 
 
 bool operator<(Number,Number); 
 void swap(Number&,Number&); 
 
 Container<Number> vn; 
 // … 
 sort(vn); // ok: we can compare and swap Numbers 
 
 Container<int> vi; 
 // … 
 sort(vi); // ok: we can compare and swap ints 
 
This approach is based on usage patterns and has its origins in techniques for constraints 
checking used from the earliest days of templates [Stroustrup,1994]. In particular, its 
inspiration comes from constraints checks implemented in constructors. The syntax here 
preserves the function-like syntax for expressing a set of constraints as a way of 
introducing variables of the constrained type. Basically, a type matches a concept it the 
concept’s constraints function compiles for arguments of that type. A constraints 
function is never executed so it imposed no run-time overhead. A constraints function 
does not introduce any novel syntax; its code follows the usual language rules and 
anything that can be expressed in C++ can now be used as a constraint on a template 
parameter. 
 The use-pattern approach can also be seen as a further abstraction of the function-
match approach: The function-match approach was made more flexible than the base-
class approach by eliminating the need to explicitly naming the constraints classes in 
template argument classes. The use-pattern approach is made more flexible than the 
function-match approach by eliminating the need to mention function signatures in the 
constraint. This simplifies the expression of constraints and also provides a direct way of 
expressing relationships among constraints (see below). 
 Naturally, we can’t generate code without knowing the exact type of every object 
and the signature of every function. Use of concepts is not a substitute for type checking 



– complete type checking is necessary for code generation. Rather, use-pattern concepts 
is a complement to type checking that separates the concern of the programmer trying to 
provide flexible and general facilities (typically) in a library from the concerns of the 
code generator. Using concepts ensures that errors are caught much earlier in the 
compilation process than they are for unconstrained template arguments: If a template 
definition uses an operation not mentioned in its concepts, an error immediately occurs. If 
a template specialization is used where an argument doesn’t provide the operations 
required from its concept, an error immediately occurs. 
 We must consider two key questions: 

• can a use of a template pass concept checking, yet (later) fail type checking? 
• can a template definition pass concept checking, yet (later) fail type checking? 

The key strength of the signature-based approaches is that for those, the answer to these 
two questions is obviously “no”. For usage-pattern concepts, the answers are “no” and 
“yes, but no invalid specialization is ever attempted by the compiler”. This implies that a 
user of a template gets immediate feedback on any error, and that the template definer 
gets some, but not perfect, feedback about potential errors. Basically, 

• at the point of specialization (use), a type check of a usage-pattern happens – the 
concept is compared to a type 

• at the point of template definition, the definition’s use of template arguments is 
checked against the usage-patterns of those arguments’ concept – every operation 
must be specified by a concept 

The exception to this complete checking is a use of a traditional template parameter 
specified only as class (or equivalently typename). Arguments to parameters cannot be 
checked until the template definition and all its arguments are available. 
 Consider how we might implement the checking of a template definition. For 
example: 
 
 template<Value_type && Addable T> 
 T add(const T& a, const T& b) 
 { 
  return a+b; 
 } 
 
In the definition of add(), we use two operations + and copy. These are clearly provided 
by the concepts. However, we have not explicitly specified that the result of + must be 
usable as the as the source of the initialization of a T. Therefore, if that template 
definition is allowed, a specialization might fail. For example: 
 
 struct Odd { 
  void operator+(Odd); 
 }; 
 
 Odd x,y; 
 Odd z = add(x,y); // passes concept check, fails type check 
    // can’t initialize an Odd with void 
 



Fortunately, that template definition would not compile. The problem occurred because 
the specification of the template’s requirements was incomplete: the result of adding two 
Ts is not necessarily a T or something that can be assigned to a T. One key difference 
between concepts – even usage-pattern concepts – and constraints classes is that a 
template definition is constrained to use only the operations specified for its argument in 
their concepts. If that’s not desired, we can fall back on the usual unconstrained class 
template arguments (possibly supported by constraints classes). For compatibility 
reasons, and possibly to avoid some complicated uses of concepts, banning unconstrained 
template parameters is not an option for C++. 
 So, how might we repair the example above? Somehow, we must add the 
requirement that the result of + can be used to initialize a T. One obvious solution is to 
define a new concept: 
 
 concept Add {   // We can copy and add Adds 
  constraints(Add x) { Add y = x; x = y; x = x+y; Add xx = x+y; } 
 }; 
 
 template<Add T> 
 T add(const T& a, const T& b) 
 { 
  return a+b; 
 } 
 
Below, we’ll see how we can build new concepts out of existing ones so as to avoid 
restating requirements. 
 A compiler can easily detect that a template uses an operation that isn’t specified 
in its concepts. After all, the basic checking consists of checking each operation against 
the set of operations specified. However, since no types are specified at the point of 
definition of a template, complete type checking is impossible. In particular, it is not 
possible to generate code from a template to be called directly from points of use relying 
on a vector of functions representing the operations on each argument type. At most, 
some semi-compiled form of the template can be produced. 
 Now consider a use of a template. At that point, the compiler has available both 
the concepts representing all the operations that a template uses and the argument types. 
The compiler can check both that every required operation is provided and that every use 
specified in the concept type checks. Thus, a successful concept check implies a 
successful type check (much) later. In particular, the attempt to add two Odds, add(x,y) 
is caught immediately. 
 

Concept composition 
A complete technical description of concepts is left to a companion paper 
[Stroustrup,2003d]. However, the sections below shows how the problems described 
above and a few more advanced cases can be handled using usage-pattern-based 
concepts. One major question about usage-pattern concepts is how easy it is to express 
large classes of requirements elegantly. Only experience can tell, but by providing the 



known composition mechanisms of C++ we provide a proven degree of flexibility to 
concepts. 
 

Simple concepts 
A simple concept just specifies a usage pattern that a type must match to be an argument 
for a template parameter specified by the concept. For example: 
 
 concept Value_type { 
  constraints(Value_type a) 
  { 
   Value_type b = a;  // copy initialization 
   a = b;    // copy assignment 
   Value_type v[] = { a }; // not reference 
  } 
 }; 
 
That is, a Value_type is any type with object that can be copied by initialization or 
assignment. The only new syntax introduced is the concept keyword (used exactly like 
class) and the constraints pseudo-function. The only new semantics is the use of type 
checking of a constraints pseudo-function to determine whether or not a type matches a 
concept. For example: 
 
 template<Value_type V> void swap(V a, V b) 
 { 
  V tmp = a; 
  a = b; 
  b = a; 
 } 
 
 class Glob { 
 private: 
  void operator=(Glob&); // prevent copying 
  // … 
 }; 
  
 void f() 
 { 
  int a; 
  int b; 
  swap(a,b); // ok: we can copy ints 
  Glob x; 
  Glob y; 
  swap(x,y); // error: we can’t copy Globs 
 } 
 



Note how the concept name Value_type fits seamlessly and naturally into the template 
definition syntax. Another pleasant aspect of usage-patterns based concepts is that a use 
tends to be much shorter to express than the list of function declarations needed in a 
signature-based alternative. It is also easy to express that a free-standing function is 
needed: 
 
 concept Std_printable { 
  constraints(Std_printable x, std::ostream& os) 
  { 
   os << x; 
  } 
 }; 
 
 concept X_printable { 
  constraints(X_printable x) 
  { 
   xprint(x); 
  } 
 }; 
 
 void xprint(const Glob&); 
 
 template<Std_printable T> void f(const T& ); 
 template<X_printable T> void f(const T& ); 
 
 void f(string s, Glob g) 
 { 
  f(s); // calls the f() taking an Std_printable 
  f(g); // calls the f() taking an X_printable 
 } 
 
A concept is checked at each point of instantiation relying on the set of functions 
available at the point of use. 
 Overload resolution is as for template functions of unconstrained arguments, 
except that the concepts can eliminate functions before they become candidates for 
overload resolution. 
 With concepts, overloading of class templates becomes feasible. It is an error to 
try to instantiate a class for which there is not exactly one match (unless the ambiguity is 
resolved by inheritance rules). 
 

Concept composition 
The operators && (and), || (or), and ! (not) can be used to combine concepts for a 
template argument. For example: 
 
 template<Std_printable && value_type T> class X { /* … */ }; 



 
 template<Std_printable || X_printable T> class Y { /* … */ }; 
 
 template<Std_printable && !X_printable T> class Z { /* … */ }; 
 
 template<!Std_printable && X_printable T> class Z { /* … */ }; 
 
That is &&, ||, and ! act as declarator operators for template arguments allowing the 
programmer some control over selection of template definitions based on template 
arguments. 
 A template parameter specified with the traditional class accepts every type, so 
such parameters can be used to handle cases where no more specific match was found. 
For example, consider a slightly oversimplified definition of a pointer: 
 
 concept Pointer { 
  constraints(Pointer p) 
  { 
   void* q = p; // just conventional pointers to objects 
   Pointer pp = p; p = pp; 
   ++p; --p; p++; p--; p+1; p-1; 
   *p; 
  } 
 }; 
 
 template<Pointer P> void f(P a) { /* … */ }; 
 template<class X> void f(X a) { /* … */ }; 
 
 void fct(int a, int* p) 
 { 
  f(a); // use the general X 
  f(p); // use the Pointer X 
 } 
 
Thus, the traditional template<class T> fits into the concept mechanism as the most 
general (least constrained) case. 
 

Parameterized and derived concepts 
Since a concept models a set of types, the usual ways of composing new types out of 
existing ones, such as parameterization and derivation, naturally apply to concepts. For 
example, consider the standard library requirements for iterators. 
 
 template<Value_type V> concept Forward_iterator { 
  constraints(Forward_iterator p) 
  { 
   Forward_iterator q = p; p = q; // we can copy iterators 



   V v = *p; q = &v;  // the iterator points to the value type 
   p++; ++p;    // we can increment an iterator 
  } 
 } 
 
A concept template is a concept generator. That is, a specialization of a concept 
template, such as Forward_iterator<int> is a concept. A Forward_iterator is 
parameterized by the iterator’s Value_type. Such parameterization will be a major way 
of composing concepts out of other concepts. 
 
 template<Forward_iterator<Value_type> Iter> 
   Iter find (Iter  first, Iter last); 
 
 int a[7]; 
 // ... 
 int* p = find(a,a+7); 
 
How can we build Random_access_iterator from a Forward_iterator? (ignoring other 
iterators for this discussion). The obvious answer is concept inheritance; 
 
 template<Value_type V> 
 concept Random_access_iterator : Forward_iterator<V> { 
  constraints(Random_access_iterator p) { --p; p--; p+1; p[1]; p-1; } 
 }; 
 
That is, to specify the requirements for a Random_access_iterator we simply add the 
additions to the requirements for a Forward_iterator. Now we can overload a template 
function based on its template argument concepts. As with ordinary function overloading, 
the most specific (most derived) concept is chosen. For example: 
 
 template<class T> void poke(T); 
 template<Forward_iterator<Value_type> T> void poke(T); 
 template<Random_access_iterator<Value_type> T> void poke(T); 
 
 poke(2); // call the general poke() 
 int* p; 
 poke(p); // call poke(Random_access_iterator) 
 
 template<Value_type T> class I { // some iterator template 
 public: 
  I& operator++(); 
  I operator++(int); 
  // no + defined, so I isn’t a Random_access_iterator 
  // … 
  }; 
 
 poke(i); // call poke(Forward_iterator) 



 
Random_access_iterator is said to be more constraining than Forward_iterator 
because fewer types match Random_access_iterator than mach Forward_iterator. The 
least constraining concept (for a template type argument) is the traditional and special 
class that matches every type. Apart from class, the least constraining concept is 
 
 concept Noop { 
  constraints() { } 
 }; 
 
Every type matches Noop, but is useless for most purposes because a template can 
perform no operation on an argument declared to be a Noop. 
 

Constraints involving multiple arguments 
Parameterization also allows us to express constraints involving more than one template 
argument. For example, we can express the general form of addition: 
 
 template<class L, class R> concept Add {  
  constraints(L x, R y) { x+y; } 
 }; 
 
The result of applying arguments to a templated concept, such as Add, is a concept, so 
we might use Add like this: 
 
 template<Value_type T, Add<T,T> Res> 
 Res add(const T& a, const T& b) 
 { 
  return a+b; 
 } 
 
This is logical and solves the problem of how to refer to the type of a+b. However, it’s 
“odd” in that the add() template suddenly acquired another template parameter which can 
always be deduced from T. Furthermore, the declaration of add() is (still) 
incomplete/illegal in that it fails to state that one Add<T,T> (say a+b) can be assigned to 
another. Let’s solve the second problem first: 
 
 template<Value_type L, Value_type R> concept Assign { 
  constraints(R x) { 
   L y = x; // initialization 
   y = x;  // assignment 
   L yy[] = { x }; // not reference 
  } 
 }; 
 
 template<Value_type T, Assign<T,Add<T,T>> Res> 



 Res add(const T& a, const T& b) 
 { 
  return a+b; 
 } 
 
In other words, Res is any type of which you can add two values and assign the result to a 
variable of that same type. As it happens, Res is also guaranteed to be T for every T that 
passes concept checking. Basically, Assign<T,Add<T,T>> is used as a predicate for T 
and the name Res isn’t needed. We get a clearer syntax if we separate that predicate from 
the template argument lists: 
 
 template<Value_type T> where Assign<T,Add<T,T>> 
 T add(const T& a, const T& b) 
 { 
  return a+b; 
 } 
 
 
That is, after a template argument list we can add a where clause specifying a constraint 
on the argument type(s) without adding logically spurious template arguments. What 
happens is that when you specialize a templated concept, the result is a concept; if that 
specialization isn’t valid, the template instantiation of which it is a part fails. Such 
specialization is usually done to match a templated type. However, here we just form that 
concept, and if that specialization is valid, the where clause succeeds; if not, the whole 
template instantiation is deemed to have failed. In other words, we use a templated 
concept as a predicate for its argument types in much the same way constraints template 
classes are currently used. 
 We can now generalize add() to handle different left-hand and right-hand 
argument types: 
 
 template<Value_type L, Value_type R> where Assign<L,Add<L,R>> 
 L add(const L& a, const R& b) 
 { 
  return a+b; 
 } 
 
We could generalized add() to have it’s return type as a template argument. Naturally, 
that argument would be constrained as above:  
 
 template<Value_type L, Value_type R, Add<L,R> Res> 
  where Assign<Res,Res> 
 Res add(const L& a, const R& b) 
 { 
  return a+b; 
 } 
 



This shows how a where clause can be used to add constraints to even a single argument. 
Equivalently, we could write: 
 
 template<Value_type L, Value_type R, Add<L,R> && Value_type Res> 
 Res add(const L& a, const R& b) 
 { 
  return a+b; 
 } 
 
Finally, we might like to have the return type deduced. We might try 
 
 template<Value_type L, Value_type R> 
 Add<L,R> add(const L& a, const R& b); 
 
However, that will not work because Add<L,R> is a concept, not a type. All we said was 
that the add()’s return type must be some type that matches Add<L,R> and that’s not a 
sufficiently specific for a declaration. Using the decltype/auto proposal [Järvi,2003] and 
its generalization to use concepts [Stroustrup,2003b], we could write: 
 
 template<Value_type L, Value_type R> 
 Add<L,R> add(const T& a, const R& b) 
 { 
  return a+b; 
 } 
 
Alternatively, we could express the return type using decltype: 
 
 template<Value_type L, Value_type R> 
 Add<L,R> add(const T& a, const R& b) ->decltype(a+b); 
 
Finally, we can handle the a*b+c example without specifying the type of the temporary: 
 
 template<class L, class R> concept Mul { 
  constraints( L a, R b) { a*b; } 
 }; 
 
 template<class L, class R> concept Add { 
  constraints( L a, R b) { a+b; } 
 }; 
 
 template<class A, class B, class C> where Add<Mul<A,B>,C>  
 void f(A a, B b, C c) 
 { 
  // … 
  a*b+c; 
  // … 



 } 
 
Note  that here no constraints are placed on the argument types except that they must 
interoperate as specified. For example, as long as we want to maintain complete 
generality we cannot require those types to be Value_types because * and + might do 
their work without making copies. 
 

Associated Types 
For many kinds of generic programming it is important to be able to express types related 
to some other type. For example, how can we state that the iterator type associated with a 
container really needs to be an iterator? For example: 
 

template<Forward_iterator I> void is_forward_iterator(I i) { } 
 
template<Value_type V> concept Container { 
 constraints(Container c) { 
  c.begin(); // a standard container must have a begin() 
    // and begin() returns an iterator 
  is_forward_iterator(c.begin()); 
  // … 
 } 
}; 

 
This technique relies on the “helper function” is_forward_iterator() that compiles if and 
only if its argument is a Forward_iterator. It would be possible to simplify this test by 
introducing special syntax, but that isn’t necessary, and the workaround doesn’t seem 
onerous. 
 

Non-type template arguments 
In addition to type arguments, a template can have non-type arguments. For example: 
 
 template<class T, int N> class Buffer { /* … */ }; 
 
Naturally, we’d like concepts to cover non-type arguments as well as combinations of 
type arguments and non-type arguments. Unfortunately, this requires an extension of the 
concept idea to handle values. Consider how we might generalize concept to allow us to 
write: 
 
 template<Odd_int N> class X { /* … */ }; 
 
Here, we’d like and instantiation X<n> to succeed from odd values, but not for even 
ones. To do that, we clearly have to do a calculation involving N producing a Boolean 
indicating success or failure. For example: 
 



 concept Odd_int { 
  bool constraints() { return Odd_int%2; } 
 }; 
 
This is a direct parallel to the “usual” concepts for types. The name of the concept is used 
to represent the template argument. “Usually”, that’s a type; here, it’s a value. “Usually”, 
constraints() is a pseudo function that needs not be evaluated. Here, it must be evaluated 
at compile time, with a value true meaning that instantiation might succeed (if no other 
errors are found). Given that, we get 
 
 X<7> a; // ok 
 X<8> b; // error: 8 is not an Odd_int 
 
Consider a more realistic example involving a where clause: 
 
 template<int n, int m> concept LE { 
  bool constraints() { return n <= m; } 
 }; 
 
 template<Value_type T, int N> where LE<sizeof(T)*N,1024> class Buffer { 
  // …  
 }; 
 
 Buffer<int,64> b1;  // ok (assuming sizeof(int)<=16) 
 Buffer<double,200> b2; // error (assuming sizeof(double)==8) 
 
This sketch of a design for concepts for non-type arguments is presented primarily for 
completeness. Whichever syntax or semantics are chosen for concepts must include non-
type arguments in a consistent way. 
 

Syntax 
The syntax  for usage-based concepts was chosen to require minimal changes to existing 
C++ concepts and syntax. It uses the constraints “pseudo function” to introduce names. 
For example 
 
 concept Element { 
  constraints(Element e1, Element e2) { 
   bool b = e1<e2; // Elements can be compared using < 
   swap(e1,e2);  // Elements can be swapped 
  } 
 }; 
 
The name constraints might be considered misleading: from the point of view of a user it 
names constraints, but from the point of view of the template provider it names the 
operations offered. Ideally, we would not use any name at all. We could consider 



cleaning up the syntax by eliminating the redundant constraints() and the added set of 
parentheses that go with it. That would make the concept body more like a function body. 
For example: 
 
 concept Element { 
  extern Element e1; 
  extern Element e2; 
  bool b = e1<e2; // Elements can be compared using < 
  swap(e1,e2);  // Elements can be swapped 
 }; 
 
Note that we’d have to use extern or some other workaround to introduce variables 
without making an unwarranted assumption that every Element type must have a default 
constructor. If we want to eliminate constraints() without relying on some workaround, 
we need to introduce some novel syntax to introduce names. For example: 
 
 concept Element { 
  uninitialized Element e1; 
  uninitialized Element e2; 
  bool b = e1<e2; // Elements can be compared using < 
  swap(e1,e2);  // Elements can be swapped 
 }; 
 
or 
 
 concept Element(Element e1, Element e2) { 
  bool b = e1<e2; // Elements can be compared using < 
  swap(e1,e2);  // Elements can be swapped 
 }; 
 
or even 
 
 concept Element(e1,e2) { 
  bool b = e1<e2; // Elements can be compared using < 
  swap(e1,e2);  // Elements can be swapped 
 }; 
 
However, there is too much unique syntax in C++ already and Element isn’t really 
parameterized. 
 Any syntax chosen for concepts must be general enough to support non-type 
arguments as well as type argument. 
 

The pseudo-signature approach 
Using signatures to express concepts led to a problem with similar, but different, 
signatures and to overconstraining template argument types. We could express concepts 



in terms of something that was a bit like signatures, but didn’t lead to overconstraining. 
That would bypass the implementation concerns inherent in function signatures. For 
example: 
 
 concept Element { 
  <(Element,Element) -> bool 
  swap(Element,Element) -> void 
 }; 
 
The “odd” (but logical) syntax is used to indicate a new and different semantics. The idea 
is that for a type to match Element it must provide a < operator and function that in some 
way takes two element and a swap() that in some way takes two Elements. For example: 
 
 class X { 
 public: 
  void swap(X&); 
  // … 
 }; 
 
 bool operator<(const X&, X); 
 
These declarations make X an Element, and given 
 
 void swap(int&,int&); 
 
int is an Element. 
 To avoid overconstraining return types, we need to introduce a placeholder 
meaning “whenever the return type is”. For example: 
 
 concept Mul { 
  *(Mul,Mul) -> deduced 
 }; 
 
For 1*1 the deduced type will be int, for 1.0F*1.0F the deduced type will be double. 
 Basically, such “pseudo signatures” can express what usage-pattern can (and vise 
versa). Thus, the two approaches can be seen as different syntactic representations of the 
same idea. The advantage of the usage-pattern approach is that it minimizes the set of 
new syntax and appears to lead to more compact concept definitions. To complete the 
pseudo-signature approach, we’d have to invent syntax to express subtype relationships. 
 

Conclusions 
The unconstrained template arguments provided by ISO Standard C++ provides 
noticeably advantages in terms of flexibility and run-time efficiency. However, they also 
lead to serious implementation complexity due to lack of separation between the template 
definition context and the template argument context. Furthermore, the lack of template 



argument constraints leads to poor error diagnostics and an inability to use usual type-
based techniques, such as overloading for templates. Constraining template arguments in 
terms of base classes or function signatures carries a high cost in lack of flexibility and 
performance. This paper discusses these problems and presents an alternative, usage-
pattern concepts, which preserve the generality and abstractness of unconstrained 
template arguments while allowing a precise, complete, and useful specification of 
template arguments. 
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