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Abstract
C++ templates are key to the design of current successful
mainstream libraries and systems. They are the basis of pro-
gramming techniques in diverse areas ranging from conven-
tional general-purpose programming to software for safety-
critical embedded systems. Current work on improving tem-
plates focuses on the notion of concepts (a type system for
templates), which promises significantly improved error di-
agnostics and increased expressive power such as concept-
based overloading and function template partial specializa-
tion. This paper presents C++ templates with an emphasis on
problems related to separate compilation. We consider the
problem of how to express concepts in a precise way that
is simple enough to be usable by ordinary programmers. In
doing so, we expose a few weakness of the current specifi-
cation of the C++ standard library and suggest a far more
precise and complete specification. We also present a sys-
tematic way of translating our proposed concept definitions,
based on use-patterns rather than function signatures, into
constraint sets that can serve as convenient basis for concept
checking in a compiler.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.3 [Logic
and Meanings of Programs]: Studies of Program Constructs

General Terms Languages, Design, Performance

Keywords C++ Templates, C++ Concepts, Type Systems,
Separate Compilation, Generic Programming

1. Introduction and overview
ISO Standard C++ [ISO03, Str00] directly supports generic
programming through the notion of template. Templates are
essential in C++ for capturing commonalities of abstractions
while retaining optimal performance. Those properties are
key to the success and the wide acceptance of the Stan-
dard Template Library [SL94]. Templates have also been used
to reduce abstraction penalties and code bloat in embed-
ded systems to an extent that is impractical in conventional
object-oriented systems [Str04]. There are two key reasons for
that. First, template instantiation combine information from

Copyright c© 2006 ACM. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in POPL’06 January 11–13, 2006,
Charleston, South Carolina, USA.

both definition and use contexts (§2.4). This means that full
information from both calling and called contexts (including
full type information) is made available to the code gener-
ator. Current code generators are adept at using this infor-
mation to minimize run time and/or code space. This con-
trasts to the usual case in object-oriented programming lan-
guages where the caller and the callee are completely sepa-
rated through an interface relying on indirect function calls.
Second, a C++ template is typically implicitly instantiated if
and only if it is used in a way that is essential to the pro-
gram semantics, automatically minimizing the footprint of
an application (§2.4). This contrasts to systems that require
the programmer to explicitly manage instantiation, such as
Ada [TDBP00] or System F [Gir72, Rey74].

The work described here is part of an effort to design
a type system — called concepts — for C++ types and val-
ues that can be used for template arguments as currently
successfully used. It is a critical design concern for “con-
cepts” that they should be usable by programmers who cur-
rently successfully use templates [SDR05a]. In some form or
other, concepts will be part of the revised ISO C++ standard,
C++0x [Str05]. This paper focuses on a specific problem: How
to express concept definitions in a way that is sufficiently
simple and flexible to be used, yet precise enough to be im-
plementable in current C++ compilers [DRS05a]. Our nota-
tion for concept definition is based on “use patterns” that
can be translated into a set of operation signatures suitable
for type checking. Basically, concepts are compile-time pred-
icates on types and values (e.g., integral constant values).
They can be combined with the usual logical operators (and,
or, not.)

This paper discusses concepts for C++ templates. How-
ever, the fundamental ideas generalize to a type system that
supports parametric polymorphism, supports some forms of
local type inference, and extends the notion of dependent
names (§2.2). Our contributions include the development of
a formal framework for specifying concepts, clarifications of
the C++ standard iterator library requirements, and a precise
formulation of iterator concepts. Concepts differ from type
classes [WB89, HHPJW96] which also act as predicates over
types. In particular, concepts cope with general overloading,
including use of the same name for functions of different
number of arguments and operations with argument types
that are not generic instances of each other (§6).

The remaining of the paper is structured as follows. We

1. examine the fundamental properties of templates, the
problems caused by those (§2) and the requirements on
possible solutions (§2.5);



2. introduce concepts (§3) based on “use patterns” and an
algorithm for generating constraints sets for template ar-
guments; apply it to simplified examples (§4);

3. apply our concepts to a known hard problem of signifi-
cant practical importance: The specification of the lowest
levels of the C++ standard iterator library, exposing some
weakness (§5);

4. survey recent related works (§6) and briefly explain the
differences between type classes and concepts;

5. outline several directions for future work and conclude
(§7).

2. The problem
The near-optimal performance offered by ISO C++ templates
comes at the price of very weak separation between template
definitions and their uses. In C++ source code, the complete
template definition is the only expression of the assumptions
it makes about its parameters. However, it is clearly desirable
to check a template definition independently of its uses, and
to check the uses independently of the definition (see §2.3).
To do that, we must concisely specify the assumptions sepa-
rately from the code in the template definition. In short, we
need a type system for template parameters. The holy grail
of concept design for C++ is a system that allows for perfect
separate checking of template definitions and uses, without
loss of expressive power or performance. That is, if the def-
inition of a template is sucessfully checked against the con-
cepts specified for its parameters and if arguments specified
in its uses are also successfully checked against those con-
cepts, then the resulting instantiation will type-check and all
information available will be used to generate optimal code.
Please note that separate checking without optimal code gen-
eration is trivial: Just use some form of abstract class, as is
often done explicitly in C++ and is the basis of the “generic”
language facilities of Java and C#. However, the cost of doing
so is to over-constrain solutions and to require unreasonable
foresight of designers. In the absence of whole-program op-
timization (which is infeasible for many important C++ ap-
plication domains), the abstract class approach also implies
the use of indirect function calls as opposed to the inlining
provided by templates.

2.1 Template basics

A template is a recipe from which a C++ translator generates
declarations. For example, the program fragment

template<typename T>
T square(T x) { return x * x; }

declares a family of functions indexed by a type parame-
ter. Like System F, a particular member of that family can
be referred to by applying the template name square to a
template-argument as in square<int>. We say that a tem-
plate specialization is requested for square with template-
argument list <int>. The process of creating a specialization
is called template instantiation, so a specialization is also col-
loquially known as an instantiation. A C++ compiler would
internally generate the moral equivalent of the function def-
inition

int square(int x) { return x * x; }

where the type argument int is substituted for the type pa-
rameter T. The resulting code is type-checked to ensure that
no type errors resulted from that substitution. Template in-
stantiation is done only once for a given specialization even

if the program contains multiple requests for that specializa-
tion.

Unlike programming languages like Ada or System F,
template-argument list can be omitted from a function tem-
plate instantiation request. Usually, the values for template-
parameters are deduced. For example, given the definition
above, the following is idiomatic C++:

double d = square(2.0);

The type-argument is deduced [Str00, ISO03] to be double.
It worths noting that, unlike programming languages like
Haskell [PJ03] or System F, C++ template parameters are not
restricted to types. For example, the program fragment

template<typename T, size_t N>
struct buffer {
T data[N];

};

declares a data type parameterized by an element type and a
buffer-size, which can be any positive compile-time integral
value.

2.2 Parameterization

Conceptually, the parameters of a template are specified in
two ways:

1. template-parameters — explicitly mentioned as parameters
in the template declaration; and

2. dependent names — inferred from the use of parameters in
the definition of the template.

In C++, a name cannot be used without a prior declara-
tion. This requires careful treatment of template definitions.
For example, in the context of the definition of the template
square, the symbol * has no visible declaration. However,
in the instantiation context of square<int>, the compiler can
resolve * to the (built-in) multiplication operator for int val-
ues. For a call square(complex(2.0)), * would be resolved
to the (user-defined) multiplication operator for complex val-
ues. We say that the symbol * is a dependent name in the def-
inition of square. That is, it is an implicit parameter of the
template definition. Had we wanted to, we could have made
the multiplication operations an explicit parameter like this:

template<typename Mul, typename T>
T square(T x) { return Mul()(x,x); }

Here, the sub-expression Mul() constructs a function object
(see [Str00, Chapter 18]) that implements the multiplication
operation over values of type T. The notion of dependent
names helps keep the number of explicit parameters man-
ageable.

2.3 Instantiations and checking

Only minimal semantics processing is done when a template
definition or a template use is first seen. Full semantics pro-
cessing is postponed to instantiation time (just before link
time), on a per instantiation basis. That implies that assump-
tions made on template arguments are not checked before
instantiation time. Consider

string hello = "Hello World";
square(hello);

The nonsensical use of a string as function-argument for
square is not caught at the point of use. Only at instantia-
tion time will the compiler discover that there is no suitable
declaration for *. This is a huge practical problem because
that instantiation may be caused by code written by a user



who wrote neither the definition of square nor the definition
of string. A programmer who did not know the definition of
square and string would have great difficulty understand-
ing error messages relating to their interaction (such as “ille-
gal operand for *”).

The existence of an operator symbol * is not sufficient to
ensure successful compilation for square. There must exist a
* that takes arguments of the appropriate types and that *
must be the unique best match under the C++ overload res-
olution rules [ISO03, Clause 13]. Furthermore, square takes
its argument by-value and returns its result by-value. That is,
it must be possible to copy objects of the deduced type. We
need a rigorous framework for describing a template defini-
tion’s requirements on its arguments. For space limitations
and various practical reasons, such a formalism is described
elsewhere [DRS05a].

Experience shows that successful compilation and linking
may not be the end to our problems. A successful build
only shows that the template instantiations were type correct
given the arguments we passed it. What about template-
argument types and values with which we didn’t try to use
it? The template definition may contain assumptions about
its arguments that held for the arguments we gave it, but
would fail for other, apparently reasonable, arguments. A
simplified version of a classical example is

template<typename FwdIter>
bool palindrome(FwdIter first, FwdIter last)
{
if (last <= first) return true; // the middle
if (*first != *last) return false; // a difference
return palindrome(++first, --last);

}

Here, we test whether a sequence, designated by a pair of
iterators to its first and last elements, is a palindrome. The
iterators are assumed to be of the forward iterator category (see
§2.6), i.e., they are assumed to support at least the opera-
tions *, != and ++. It is a widely used convention in the C++
community to use suggestive names such as FowardIterator
(or a briefer FwdIter) for the template-parameters to convey
assumptions. The definition of palindrome examines the se-
quence elements going from each end towards the middle.
We can test it with a vector, with a C-style array, and with
a string. In each case, our palindrome function template
will instantiate and run correctly. Unfortunately, putting that
palindrome into a library would be a time bomb: Not all se-
quences support -- and <=. For example, singly-linked lists
do not. Experts use elaborate systematic techniques to avoid
such problems. However, the fundamental problem is that a
template definition is not (by itself) a good specification of
its requirements on its parameters. We need to make those
requirements explicit and less ad hoc than the expression of
an algorithm. “Concepts” are such requirements.

2.4 Performance

“Preserving the performance of the current template tech-
niques” is a major requirement for templates with concepts.
Users of concepts should not only get better ways of express-
ing ideas and better error messages when they make mis-
takes. They should also get performance at least equal to
what is currently achieved using templates. After all, tem-
plates play a key role in C++ programming for performance
critical applications. This performance has three sources:

• elimination of function calls in favor of inlining;

• combining information from several contexts for better
optimization;

• avoiding generating code for unused functions.

The first point is not particular to templates but a general
feature of C++ inline functions. However, inlining is crucial
for fine-grained parameterization as is commonly used in
the STL and other libraries relying on generic programming
techniques. The performance in question is both run-time
and memory footprint. When used well, as described here
and used in major libraries, templates can simultaneously re-
duce both. The reduction in code size is especially important
because on modern processors a reduction in code size im-
plies a reduction in memory traffic and improved cache per-
formance.

As an example, let’s consider the function template
accumulate from the Standard Library:
template<typename FwdIter, typename T>
T accumulate(FwdIter first, FwdIter last, T init)
{

for (FwdIter cur = first; cur != last; ++cur)
init = init + *cur;

return init;
}

In other words, accumulate returns the sum of the elements
in its input sequence with its third argument (“the accumu-
lator”) as the initial value. We might call it like this:
vector<complex<double>> v;
// ...
complex<double> z = 0;
z = accumulate(v.begin(),v.end(),z);

To do its job, accumulate will use addition and as-
signment operators on elements of type complex<double>
and dereference vector<complex<double>> iterators. Adding
complex<double> values involves addition of double values.
To do this efficiently, all of these operations must be in-
lined. Both vector and complex are user-defined types; that
is, they and their operations are defined somewhere in the
C++ source code. Current C++ compilers handle this exam-
ple so that the only function call generated is the one of
accumulate. Access to vector members become simple load
machine operation, addition of complex values becomes two
floating-point add machine instructions, etc. To accomplish
this, the compiler needs access to the complete definition
of vector and complex. However, the result is a vast im-
provement (arguably optimal) over the naive approach of
generating a function call for each use of an operation on a
template parameter. Obviously, an add instruction executes
much faster than a function call containing an addition. Fur-
thermore, there is no function call preamble, passing of argu-
ments, etc., so the resulting code is also much smaller.

Further reduction in generated code size is achieved by
not emitting code for unused functions. The vector tem-
plate class has many member functions that are not used
by this example. Similarly, the complex class template has
many member function and non-member supporting func-
tions that are not used by this example. The C++ standard
guarantees that no code is emitted for those unused func-
tions.

To contrast, consider the more conventional case where
arguments are accessed through interfaces defined as indi-
rect function calls [Aug93, Str94]. Each operation then be-
comes a function call in the executable generated for user
code such as accumulate. Furthermore, it would be distinctly
non-trivial to avoid laying down code for unused (virtual)



member functions. It is beyond the ability of current C++
compilers and is likely to remain so for mainstream C++ pro-
grams where separate compilation and dynamic linking is
the norm. This problem is not unique to C++; it is rooted
in the fundamental difficulty of assessing which part of the
source code is used and which is not when any form of
run-time dispatch is in effect. Templates do not suffer this
problem because their specializations are resolved at compile
time.

This accumulate example is not quite perfect for illus-
trating the subtleties of generating object code from source
code found in different parts of a program: It does not rely
on implicit conversions or non-trivial overloading. However,
consider a variant where int values are accumulated in a
complex<double> object:

vector<int> v;
// ...
complex<double> s = 0;
s = accumulate(v.begin(),v.end(),s);

Here, the addition is done by converting the int value to a
double value and then adding that to the accumulator, s, us-
ing a + operator of a complex<double> and a double. That’s
basically a simple floating-point addition. The point is that
the + operator in accumulate depends on two template pa-
rameters and that it is the compiler’s job to pick the most
appropriate + based on all information about those two ar-
guments. It would have been possible to maintain a better
separation between the different contexts by always convert-
ing the element type to that of the accumulator. In this case,
doing so would have resulted in the creation of an addi-
tional complex<double> for each element and an addition of
two complex values. The code size and run time would have
more than doubled.

We would not expect to see this last example directly
in source code. If we saw it, we would consider it poorly
written. However, equivalent code is common as the result
of nested abstractions. It is especially important to generate
good code in such cases because not doing so would be to
discourage abstraction.

Please note that these optimizations are common place.
Large amounts of real-world software depend on them. Con-
sequently, improved type checking, as promised through the
use of concepts, must not come at the expense of these opti-
mizations.

2.5 A more realistic example

The square and palindrome examples are very simplistic
cases where the assumptions can be stated on individual
template-parameters in isolation. However, reality is more
complicated than that. Consider fill from the Standard Li-
brary:

template<typename FwdIter, typename T>
void fill(FwdIter first, FwdIter last, const T& t)
{

for (FwdIter cur = first; cur != last; ++cur)
*cur = t;

}

In this definition, the symbols !=, ++, * and = are dependent
names. A call fill(p, q, v) will assign v to each element of
the sequence defined by the interval [p,q).

The ISO C++ rules for successful instantiation of that tem-
plate require that values ι and τ for the type parameters
FwdIter and T must fulfill the following assumptions:

1. Objects of type ι must be copy-initializable, so that they
can be used as function arguments in calls to fill.

2. Two such objects must be equality comparable in the
sense that the expression cur != last must be valid and
its value convertible to the boolean type bool.

3. An expression of type ι must support the pre-increment
operation.

4. The expression *cur = t must be valid (which implies
that every sub-expression must also be valid).

For example, the following program fragment

vector<double> v(42);
fill(v.begin(), v.end(), 7);

constitutes a valid use of fill and the corresponding instan-
tiation is type correct: The (deduced) template-arguments are
iterator type for vector<double> and int, respectively, and
all the constraints are satisfied. On the other hand, the func-
tion call in the fragment

int i = 0;
int j = 39;
fill(i, j, 43);

passes type checking, but produces errors during instantia-
tion: The deduced type for the first template-argument, int,
does not support the dereference operation (unary *). To di-
agnose that error, we need both the argument types (here,
the built-in type int) and the body of the template defini-
tion (not just its declaration). This is the kind of error that we
want immediately caught and reported at the point of call.

Finally consider, this fragment:

struct Generator {
Generator(int);
operator double();
// ...

};

vector<int> v(42);
fill(v.begin(), v.end(), Generator(25));

This is valid. The result of Generator(25) can be converted
to a double value (user-defined conversion) which can be
converted to the int value (built-in conversion).

It follows that our type system must include a way to state
assumptions on combinations of template-parameters. Such
combinations often involve implicit user-defined and built-
in conversions. Here is our current best bet for a convenient
and compatible syntax:

template<Forward_iterator Iter, class T>
where Assignable<Iter::value_type,T>

void fill(Iter first, Iter last, const T& t);

Forward_iterator and Assignable are concepts, i.e. compile-
time predicates on types. For example, the boolean-
valued expression Assignable<double,int> is true as
we can assign an int value to a double object but
Assignable<double,string> is false as we cannot assign a
string value to a double object.

The checking of the use of fill proceeds as follows:

1. Deduce values ι and τ for the type parameters Iter and T
from a call fill(p, q, v).

2. Concept check; that is, evaluate Forward_iterator<ι>
and Assignable<ι::value_type, τ>.

3. If the concept check succeeds, then type check the call.



Our problem now becomes how to provide a way to define
such predicates. Everybody’s first idea for that is to specify a
concept as a set of operations with signatures. However, we
found that specifying such complete sets of operations was
feasible only for small examples or given incredible amounts
of time and patience [SDR03a, SDR03b, DRS05a, DRS05b].
Producing the complete list of operations — complete with
conversions, overloads, etc. — is distinctly non-trivial for
real-world examples. For example, consider a few ways that
an addition operator for a type X might be defined:

+ // built-in operation for X
X operator+(X,X);
X operator+(const X&, const X&);
X X::operator+(const X&) const;
X X::operator+(X);
const X& X::operator+(const X&);
const N& operator+(const& N, const N&); // X converts to N
X operator+(X, N); // N converts to X

In real-world code, conventions vary for operators, such as
+, and often the variation reflects reasonable design choices.
Conventions vary even more for named functions. Neverthe-
less, an algorithm written as a simple template function can
just use + and rely on optimal code (without spurious con-
versions and indirections) being generated for each kind of
definition of +.

When several operations are used in combination, a com-
binatorial explosion of possibilities can occur. For exam-
ple, the resolution of the simple and common expression
*p++ = v involves 3 explicit operations, each of which can
be specified with a variety of signatures. In addition, it’s
easy to imagine auxiliary type being introduced for the sub-
expressions p++, and *p++. Furthermore, each of the opera-
tions ++, *, and = may require a conversion operator to bring
its argument(s) to the required type(s). In all, we may have
to use 2 auxiliary types and 3 + 4 operations (or 3 + 3 ∗ 4 op-
erations if we count built-in conversions and user-defined
conversions separately in each possible conversion), each of
which we would have to explicitly specify if we used a prim-
itive signature-based approach.

2.6 An iterator concept for fill

We must distinguish between the internal form and external
form of a language. The internal language is usually biased
toward implementations whereas the external language is di-
rected towards programmers for use in source program. In
this context, the external form of the concept system must
be simple and flexible enough to cope with millions of lines
of existing code in the hands of hundreds of thousands of
programmers. On the other hand, the internal form must
be precise and straightforward enough for use in compilers
(including being retrofitted into existing compilers). One so-
lution is to define a special language for defining “abstract
signatures” [DR02, SDR03a, SGG+05]. Another solution, the
one we describe here, is to generate sets of “primitive opera-
tions” with signatures from a notationally simpler and more
abstract language, that we call “use patterns”. In the use pat-
tern approach, *p++=v is the user’s notation for requiring the
caller to (somehow, usually indirectly) supply a set of types
and operations to type-safely compile expressions similar to
*p++=v.

Before digging into technical difficulties of precise and
concise concept definitions, let us illustrate the general idea
with the concept Mutable_fwd defined below. This is a “first
attempt” that will only serve fill, but it will get us started
and provide a basis for refinements (see §4 and §5). The con-

cept definition must express assumptions needed to sepa-
rately check the definition of the template fill.

concept Mutable_fwd<typename Iter, typename T> {
Var<Iter> p; // a variable of type Iter.
Var<const T> v; // a variable of type const T.

Iter q = p; // an Iter must be copy-able

bool b = (p != q); // must support ‘‘!=’’ operation,
// and the resulting expression
// must be convertible to ‘‘bool’’

++p; // must support pre-increment, no
// requirements on the result type

*p = v; // must be able to dereference p,
// and assign a ‘‘const T’’ to the
// result of that dereference; no
// requirements on the result type

};

A concept definition is introduced with the keyword
concept, followed by the concept-name, the declarations of
the parameters for the concept (in template-parameter list
notation, to emphasize the compile-time nature of concepts.)
The set of assumptions, represented by a concept, are ex-
pressed as ordinary — if somewhat stylized — C++.

Mutable_fwd is a binary predicate that expects types as
arguments, corresponding to the type parameters Iter and
T. The notation “Var<Iter> p;” introduces the name p for
a variable of type Iter. We could not just write “Iter p;”
because that would imply default initialization — and we
need not require that an Iter supports default initialization.
The declaration of q states that it must be possible to copy-
initialize a variable of type Iter. The declaration of b states
that the symbol != is required and the resulting expression
must be implicitly convertible to bool. We also require pre-
increment, but impose no requirement on the type of the re-
sult (except that it must be valid C++ type). The last line is
interesting because it states a requirement involving both pa-
rameter types: It must be possible to dereference an expres-
sion of type Iter and to assign a const T to the result.

During checking of a template definition guarded by the
concept Mutable_fwd, the compiler makes sure that all syntax
trees it creates respect the type assumptions listed above. We
can use this to check the definition of fill:

template<typename Iter, typename T>
where Mutable_fwd<Iter, T>

void fill(Iter first, Iter last, const T& t)
{

for (Iter cur; cur != last; ++cur)
*cur = t;

}

As expected, this definition concept checks. The reasons are:

1. An Iter is copy-initializable, therefore it can serve as a
function parameter — in other words, the declarations for
first and last are well-formed.

2. The declaration for t is well-formed, because the type
parameter T is assumed to be an object type according to
the concept Mutable_fwd.

3. Since two Iters are comparable and the result is implic-
itly convertible to a bool, it is valid to write the expression
cur!=last in the second part of the for-loop header.

4. Pre-increment is part of the assumptions.



5. Since a reference of type const T& is indistinguishable
from a variable of type const T in expression contexts,
it follows that it is legitimate to use the reference t in the
assignment expression *cur=t.

It can be argued that this long justification is unnecessary
since we have abstracted the expressions so that the con-
cept Mutable_fwd gives us exactly the code we want to write.
It is nevertheless instructive to go through those triviali-
ties before everything gets obscured by the technicalities. In
particular, please note the use of implicit conversion, copy-
initialization and substitution of reference for variables.

Using the concept Mutable_fwd (only and not also the
definition of fill), we can check uses of fill. For example:

vector<double> v(42);
fill(v.begin(), v.end(), 7);

First, the compiler deduces vector<double>::iterator for
the type parameter Iter and int for T. Then it goes on check-
ing for the satisfiability of the predicate Mutable_fwd with the
argument list <vector<double>::iterator,int>, which suc-
ceeds with the appropriate operations.

Specifying requirements as use patterns has a long story
in C++ programming [Str94] and adopted in the ISO C++
standard. However, such usage has been informal and con-
ventional, we promote it to a formally defined and auto-
mated mechanism supported by language constructs. From
use patterns, we derive sets of primitive, easy to use in check-
ing, constraints that template arguments must fulfill. Note
that this difficult step is already done by C++ compilers as
part of template instantiations.

2.7 Iterator concepts

Throughout this paper, we draw examples from the theory of
iterators [SL94, Aus98, Str00, ISO03]. We emphasize that the
iterator classification is just one example (albeit important
one for programming in C++ using the Standard Library).
Other sources of inspiration include the theory of mathemat-
ical structures in computer algebra [JS92].

The C++ standard library contains a classification of it-
erators, which are divided into five major categories: input
iterators, output iterators, forward iterators, bidirectional itera-
tors and random access iterators. See [Str00, Chapter 19] and
[ISO03, Clause 24] for detailed exposition. We base our dis-
cussion on a particularly simple, yet difficult example from
that classification. However, to follow the discussion here,
the reader needs only a few key observations: An input it-
erator is a data-source abstraction and an output iterator is
a data-sink abstraction. Each provides an operation called ++
to advance to the next element of a sequence. A forward itera-
tor supports the notion of multi-pass algorithms (in particu-
lar, it is copyable) and an input iterator does not. A forward
iterator that is mutable fulfills both input and output iterator
assumptions. Iterators are pervasive in performance-critical
code and optimal performance is expected. This implies that
we can’t impose significant overheads, such as a function call
per operation, on iterators.

3. A concept system
The “use pattern”-based concept system presented here is
based on the observation that a C++ expression, such as
*p++, as it appears in a template is far more abstract, general,
and readable than the set of operations and auxiliary types
needed to implement it. Similarly, we can represent type
predicates (concepts) as C++ code. C++ compilers typically

represent template definitions as parse trees. Using identical
compiler techniques, we can convert concepts to parse trees
as well. Given that, we can implement concept checking as
abstract tree matching. A convenient way of implementing
this matching is to generate and compare sets of required
functions and types (called “constraint sets”, see §3.4) from
templates and concepts definitions.

A concept definition is a set of abstract syntax tree equa-
tions with type assumptions. Concepts serves two purposes:

1. In template definitions, concepts act as typing judgment
rules. If an abstract syntax tree depends on template pa-
rameters and cannot be resolved by the surrounding typ-
ing environment, then it must appear in the guarding con-
cept bodies. Such dependent abstract syntax trees are im-
plicit parameters of the concepts and will be resolved by
concept checking at use sites.

2. In template uses, concepts act as set of predicates that the
template-arguments must satisfy. Concept checking re-
solves implicit parameters at instantiation points.

So, if the set of concepts for a template definition specifies
too few operations, the compilation of the template will fail
concept checking: The template is under-constrained. Con-
versely, if the set of concepts for a template definition speci-
fies more operations than needed, some otherwise legitimate
uses may also fail concept checking: The template is over-
constrained. By “otherwise legitimate” here, we mean that
type checking would have succeeded in the absence of con-
cept checking.

3.1 Concept definition

The concrete syntax for a concept definition is

concept ConceptName<P> where G { B };

It is a triple 〈P,G,B〉 where:

• P is a list of explicit concept-parameters, with ex-
actly the same declaration syntax as same for template-
parameters. In particular, non-type concept-parameters
are considered compile-time values (as the case in the cur-
rent template system) in the scope of a concept definition.

• G is the “guard.” It is a logical formula, made of compile-
time expressions combined with the usual logical opera-
tors. The where-clause is optional. It usually expresses ad-
ditional assumptions on combinations of the parameters
P.

• B is the body of the concept. It is a sequence of simple dec-
larations and expression-statements that enunciate syn-
tax and type equations between the concept-parameters.

For example, here is a concept that captures the notion
of small object type relative to some maximum size (also a
parameter to the concept):

concept Small<typename T, int N>
where sizeof (T) <= N

{ };

Small’s body is empty: the only “interesting” information
is in the where-clause. More complicated concepts will in-
volve constraints on individual arguments and in the body.
A guard involves only compile-time expressions. In particu-
lar, a sizeof-expression is a compile-time value, and the non-
type concept-parameter N is a compile-time expression.

A concept is a compile-time predicate. Therefore concepts
can be combined with the logical operators and used in



where-clauses. As a short cut, concepts usable as unary pred-
icates can also be used as the type of template-parameter. For
example:

concept C<typename X>
where C1<X> && C2<X>

{ };

is equivalent to

concept C<C1 X>
where C2<X>

{ };

which again is equivalent to

concept C<C1&&C2 X>
{ };

A template type parameter introduced with the keyword
typename is unconstrained. That is, any type can be used
as an argument. Code involving such parameters cannot be
concept checked. This “loophole” leaves existing code using
templates valid, with its meaning unchanged. This compati-
bility feature is essential for the adoption of concepts into the
C++ standard. There also appears to be uses for such com-
pletely unconstrained types in template meta-programming
where properties of an argument are sometimes not needed
until deep in a sequence of instantiations

3.2 Explicit check request

Programmers can explicitly ask the compiler to check con-
formance of a specific combination of types and values with
respect to a concept. The syntax for that is either

assert Concept<argument-list>;

or

assert Concept<argument-list> with {
declaration sequence

};

The first form is primarily used for checking whether
a concept-argument list satisfies a concept. The program is
considered in error if concept checking fails with those argu-
ments. Otherwise, the translation of the program is carried
on. For example, the explicit check

assert Mutable_fwd<double*, int>;

succeeds and the following values are deduced for the im-
plicit parameters:

1. CopyInitialize is the built-in copy operator for values of
type double*, and built-in copy operator for bool values;

2. Convert is the identity conversion on double*, and on the
built-in conversion operator from int and double;

3. != is built-in inequality comparison operator for double*
values;

4. prefix ++ is the usual built-in pre-increment operator on
pointers to double;

5. unary * is built-in dereference operator on double*;

6. and = is built-in assignment operator on double.

The second form of explicit check request is used in situ-
ations where it is necessary to “rewrite” syntax for the check
to succeed. For example, the pointer type int* does not have
members so it is necessary to map the abstract requirement
of member syntax to something appropriate when checking
for random access iterator properties:

assert Random_access<int*> with {
int*::value_type = int; // init*’s value_type is int

};

More generally, an explicit concept conformance assertion
can be written for a family of types and values using one of

assert template<parameter-list> where G
Concept<argument-list>;

assert template<parameter-list> where G
Concept<argument-list> with {

declaration sequence
};

In either case, the where-clause is optional, just like in a tem-
plate or concept declaration. For instance, instead of trying to
request explicit check Random_access<T*> for pointer type T*
individually for each type T, it is better to write the assertion
in a template form

assert template<typename T> Random_access<T*> with {
T*::value_type = T; // T*’s value type is T

};

With that assertion, when the compiler needs to evaluate
Random_access<A*> for a given type argument A it first (in-
ternally) generates the equivalent of

assert Random_access<A*> with {
A*::value_type = A;

};

then evaluate that assertion, like in a non-template case. In
particular, the program is erroneous if the generated asser-
tion fails.

3.3 Implicit check request

Implicit checking of concepts typically happens in situations
where an implicit instantiation is requested for a function
template and the declaration is guarded by concepts like in

fill(v.begin(), v.end(), 42);

assuming the declaration of fill from §2.6. If concept check-
ing fails for the deduced template-arguments then the func-
tion is disregarded; this failure is considered an error only if
no declaration of the function can match the use.

For example, consider a situation where a function f
needs to allocate a temporary object for its internal work. If
the object is small we can allocate it in f’s activation record
(e.g., execution stack). That is usually far more efficient than
allocation from free store. What constitutes “small” is deter-
mined by the program’s need, execution environment, and
other implementation considerations. We can define f as
overloaded on the size of its argument type:

const int max_size = 256; // implementation-defined
// declare two variants of f().
template<typename T> where Small<T, max_size>
void f(const T&); // #1

template<typename T> where !Small<T, max_size>
void f(const T&); // #2
int main()
{

buffer<char, 32> sbuf;
f(small_buf); // call #1
buffer<char, 1024> lbuf;
f(lbuf); // call #2

}

The function f is overloaded because where-clauses are part
of function template signatures. The construction of overload
set is very similar to the way implicit instantiation of function



template works in C++. The difference here is that we have
added an additional step for concept check, before overload
resolution proceeds.

3.4 From concepts to constraints sets

How is a concept definition — assumptions written in very
abstract forms — turned into notations or requirements suit-
able for checking with conventional compiler technology?

A concept definition 〈P,G,B〉 is further processed and re-
fined into a quadruple 〈Pexp,Pimpl,G,C〉 for the purpose of
concept checking. The components are determined as fol-
lows:

1. A set of explicit parameter declarations Pexp as P in the
definition, where properties implied by each nominated
concept are assumed to hold for the corresponding pa-
rameter.

2. A list Pimpl of dependent names.

3. A guard G, as in the definition. This predicate is assumed
to be true during the definition of the concept body and
checking of template definition.

4. A sequence of constraint equations C derived from the
body B of the concept definition. The constraints are con-
structed reading “backwards” the static type rules of ISO
C++.

Let’s illustrate the general idea with the definition of
Mutable_fwd from §2.6. The set of explicit parameters and
implicit parameters are Pexp = {Iter,T} and

Pimpl = {CopyInitialize,Convert,!=,prefix ++,unary *,=},

respectively. The symbol CopyInitialize and Convert are not
explicitly mentioned; they are implied and overloaded at
several places in the concept definition as detailed below.
The implicit parameters are resolved (through name lookup)
when deducing the values for the explicit parameters. In
the definition of fill, the compiler assumes that the set of
parameters is Pexp ∪Pimpl. The constraint set generated from
the body of Mutable_fwd was surveyed in §2.6 and is now
detailed as follows:

1. The declaration “Var<Iter> p”, introducing p as the
name of a variable, requires Iter to be an object type.

2. Similarly, the declaration “Var<const T> v” generates the
constraint that const T, hence T, is an object type.

3. The declaration Iter q = p; uses the C++ syntax of
copy-initialization; consequently it generates the copy-
initialization constraint. We denote that operation by
CopyInitialize. It is dependent on the concept parameter
Iter, therefore it is added to the list of dependent names.

4. The declaration bool b = (p != q) also generates a
copy-initialization constraint. The type of the initializer in
that declaration depends on a concept-parameter; there-
fore the CopyInitialize symbol required is also added to the
dependent name list.
The initializer requires the existence of a symbol !=,
which in this case is also a dependent name. Further-
more, the argument types of != need not be Iter. We only
need that both operands be convertible to the types ex-
pected by !=. Consequently, we generate the correspond-
ing implicit conversion constraints. Implicit conversion
is denoted by the symbol Convert. The implicit conver-
sions needed for both operands depend on a concept-

parameter, so Convert is added to the list of dependent
names.

5. The pre-increment expression ++p requires the existence
of a prefix ++ operator, added to the dependent name
list. That expression also generates an implicit conversion
constraint, that converts an expression of type Iter to the
argument type of the pre-increment operator.

6. Finally, the expression *p = v requires the dereference
operator and the assignment operators (added to the de-
pendent name list). It also generates three implicit conver-
sion constraints: One to convert unary p to the argument
type of *, and two for converting *p and v to the argument
types of =.

Please note that checking for copy-initialization and implicit
conversion are simple operations done in C++ compilers.

3.5 Concept checking

When checking for the satisfiability of predicates at the tem-
plate use site with typing environment Γ, the program trans-
lator recursively applies the following steps:

1. Substitute the concept-arguments for the concept-
parameters P in the environment Γ, the concept guard G
and body B.

2. If the guard evaluates to false, then concept check fails.

3. Look up the dependent names in the environment Γ. If
lookup fails for a name, then concept check fails.

4. The result of name lookup for dependent names add ad-
ditional equations for constraints variables introduced for
symbols in function calls. Solve those equations through
overload resolution. If overload resolution fails, then con-
cept check fails.

When concept check succeeds, it should produce

1. a new typing environment;

2. a substitution, mapping dependent names to actual dec-
larations;

3. and set of rewrite rules necessary for implicit conversions
as required.

That triple is then used to produce instantiations from tem-
plate. Only after concept checking succeeds, is type checking
carried on. A nontrivial step here is to ensure that if the def-
inition of the template is concept-correct, then the substitu-
tions and rewrites resulting from concept and type checking
of its uses will be well-formed in the new typing environ-
ment.

3.6 Associated types and values

An associated type or value is the value of a constraint vari-
able, or an implicit parameter. They need not be named. For
example, in the concept Mutable_fwd the type of the expres-
sion *p is an associated type. It is colloquially known as the
value type of the iterator Iter. It is associated to Mutable_fwd,
but it is not an explicit parameter. Associated types and
values are essential in composing independently developed
concepts. They help bridge the gap between different con-
cepts. For example, in the theory of iterators (as briefly out-
lined in §5) the value type of an iterator plays a key rôle in the
expression of where-clauses of function templates. For math-
ematical concepts like group, ring or field, the units of the re-
spective structures are associated values. Uses of associated



types are presented in §5, where standard iterator concepts
are discussed.

4. fill and associates revisited
Having outlined a framework for discussing concept defini-
tion and template checking; we now turn to the examples
considered in §2.5 and §2.6.

4.1 The Assignable and Movable puzzle

The notion of iterator expressed as Mutable_fwd is a simpli-
fied version of the notion of forward iterator used by the C++
Standard Library. Unfortunately, it is oversimplified so that
we can’t use it for other algorithms where the C++ standard
requires a forward iterator. Consider another (slightly sim-
plified version) of the standard function copy:

template<typename Iter>
where Mutable_fwd<Iter, Iter::value_type>

void copy(Iter first, Iter last, Iter out)
{

for (Iter cur = first; cur != last; ++cur, ++out)
*out = *cur;

}

The value_type is Iter’s associated type, the type of the
element that the iterator refers to. However, copy fails to
concept-check because we did not include the assump-
tion that we could read from an iterator that meets the
Mutable_fwd properties. We can compensate by adding a
read operation:

concept Mutable_fwd<typename Iter, typename T> {
Var<Iter> p; // placeholder for variable of type Iter.
Var<const T> v;
Var<T> v2;
// ... as before ...
*p = v; // we can write to *p
v2 = *p; // we can read from *p

};

With this version of Mutable_fwd, we slightly over-
constrained fill (because fill never reads from elements
of its sequence) but that is probably acceptable as the C++
Standard Library does the same. Unfortunately, we also over-
constrained copy in a way that is unacceptable. Consider:

auto_ptr<Resource> v[10];
auto_ptr<Resource> w[10];
// ...
copy(v, v + 10, w);

An auto_ptr holds a pointer to a value and implements own-
ership semantics for that value. That is, instead of making a
duplicate auto_ptr, assignment makes the target of the as-
signment the owner and invalidates the source. To do that
invalidation, the assignment operation on auto_ptr writes
to its source. Looking at Mutable_fwd (§2.6) we see that this
won’t work. Mutable_fwd requires only read access to the
source of an assignment (v is const). That may be reason-
able, but that it is not what the standard requires and not
what is needed to cope with auto_ptr. We can try to fix that
by requiring write access to the source of an assign:

concept Mutable_fwd<typename Iter, typename T> {
Var<Iter> p; // a variable of type Iter.
Var<T> v; // note, no ‘‘const’’ here.
Var<T> v2;
// ... as before ...
*p = v; // we can write plain ‘‘T’’ to *p
v2 = *p; // we can read from *p

};

Unfortunately, this is even worse: With that definition of
Mutable_fwd, every type T that defines only an assignment
taking a const T& now fail concept checking as an element
accessed through a Mutable_fwd — and that is most types.
Fundamentally, what we see here is that it is hard to pre-
cisely specify concepts so that we get both perfect separate
checking of template arguments and the flexibility we are
used to given the semi-formal specification of the standard it-
erators, containers and algorithms. Rather than patching, we
will start by making the fundamental distinction between de-
structive assignments and non-destructive assignments and
then build upon those.

4.1.1 Unary iterator predicates

To match the Standard Library requirements, we need a
unary predicate to define a forward iterator. We do that by
making the second template-parameter, the element type,
implicit:

concept Forward_iterator<typename Iter> {
Var<Iter> p; // a variable of type Iter.
typename Iter::value_type // must have a named member

// associated type value_type.

Iter q = p; // an Iter must be copy-able

bool b = (p != q); // must support ‘‘==’’ and ‘‘!=’’
b = (p == q); // operations, and the resulting

// expressions must be convertible
// to ‘‘bool’’.

++p; // must support pre- and
p++; // post-increment operations, no

// assumption on the result type
};

Here we have eliminated any requirements on the element
type beyond the fact that it must exist and we can refer to it
as value_type. That solves our problem deciding what kind
of access we need to the value_type object by leaving that
to the where-clause. In general, the use of associated types,
such as value_type simplify the expression of generic pro-
grams [GJL+03].

4.1.2 Assignable

We can define what we mean for a value of type U to be
assignable to an object of type T:

concept Assignable<class T, class U = T> {
Var<T> a;
Var<const U> b;
a = b; // non-destructive assignment

};

The assignment operator just reads its right hand side with-
out modifying it — it can’t modify because it takes a const
operand. Usually, we also need the semantics invariant that,
after assignment, the values a and b are equivalent (in some
sense). That is what the C++ Standard Library requires.
However, even though concepts could be designed to ex-
press semantics notions we haven’t (yet) defined a syntax
for expressing semantics for our concepts. The C++ standard
makes the assumption that the type of an assignment to T is
T&. We do not need that extra assumption, so we don’t in-
clude it in Assignable.

To contrast and complement, we define destructive as-
signment (often called “a move”) like this:

concept Movable<class T, class U = T> {
Var<T> a;



Var<U> b;
a = b; // potentially-destructive assignment

};

Given the concepts Forward_iterator, Assignable and
Movable, we can declare the templates fill and copy as

template<Forward_iterator Iter, class T>
where Assignable<Iter::value_type, T>

void fill(Iter first, Iter last, const T& t);

template<Forward_iterator Iter>
where Assignable<Iter::value_type>

|| Movable<Iter::value_type>
Out copy(Iter first, Iter last, Iter out);

With these declarations, both the definitions of fill and copy
will concept check. Their uses will succeed in all valid cases
and a fill with an auto_ptr as its third argument will fail.
In other words, we have a system that allows us to spec-
ify key C++ standard library components. Please note how
the where-clauses in the function declarations complement
the general concepts Asslignable and Movable by tieing the
template-parameters together for the purpose of enforcing
specific requirements of each function.

5. Standard iterator concepts
In this section, we define concepts for the most difficult part
of the C++ Standard Library iterator hierarchy: input iterator,
output iterator, and forward iterator. The C++ standard says:
“Forward iterators satisfy all the requirements of the input
and output iterators and can be used wherever either kind
is specified”. The first half of that statement is not actually
true, but it is close enough for the second half to hold in all
reasonable cases given experienced Standard Library imple-
menters with common sense. However, a type system cannot
work for reasonable cases only, and compilers (enforcing a
type system) are not noted for their common sense.

As part of a complete solution, we need to formally define

1. how one moves and compares iterators (++, +, ==, etc.);

2. whether one can write to the iterator (*p = x);

3. whether one can read from an iterator (x = *p);

4. whether the assignment (or copy-initialization) used is
destructive (the auto_ptr mess);

5. whether one can use a multi-pass algorithm (visiting an
element twice; impossible for an input iterator or an out-
put iterator.)

The C++ standard, and countless successful applications,
reduce that to the simple programmers’ rules of thumb:

1. one can read from an input iterator;

2. one can write to an output iterator;

3. a forward iterator is both an input iterator and an output
iterator

4. the rest is detail that one can look up if needed.

Users who have written successful — and type safe — ap-
plications based on this (over) simplification of the current
rules would not accept an “improved” system that required
them to understand significantly different rules and to write
more code, just to do the same work. In other words, just pa-
rameterizing an iterator concept by all sources of variability
would not do the job. Users cannot be asked to explicitly se-
lect their iterators from a set of more than a dozen iterator

categories. The ideal solution would be one where what the
programmers thought was true (but isn’t) is, and where all
reasonable code compiles. This is almost possible, but only
almost. In particular, we cannot avoid where-clauses to ex-
press requirements on combinations of template parameters.

We will not explain the problems of the current iterator re-
quirements in detail. That would be tedious and pointless as
many of the weaknesses are well understood in the C++ im-
plementor and language lawyer community, are being cor-
rected, and don’t actually affect applications builders. They
include:

1. The lack of distinction between destructive and non-
destructive assignments.

2. A failure to consistently require iterators to be copy con-
structible.

3. A failure to point out that a forward iterator to a const
value type isn’t an output iterator.

4. Problems with composability of requirements: Specifying
that *p = v must work for an output iterator p and that
and v = *q must work for an input iterator q, but fail-
ing to note that this does not imply that *p = *q must
work even when p and q have the same value types.
(The reason is that both *p = v and v = *q may require
a user-defined conversion so that *p = *q could require
two user-defined conversions, and that’s disallowed by
the C++ rules for implicit conversion.)

Some of these problems were first discovered as part of our
effort to find a practical and formal specification of the Stan-
dard Library facilities.

First we define a few supporting concepts. Some deal with
basic access issues:

concept Copy_constructible<typename T> {
Var<T> a;
T b = a; // copy construction
T c(a); // direct copy construction

};

concept Assignable<typename T, typename U = T> {
Var<T> a;
Var<const U> b;
a = b; // copy (non-destructive read)

};

concept Movable<typename T, typename U = T> {
Var<T> a;
Var<U> b;
a = b; // potentially-destructive read

};

concept Equality_comparable<typename T, typename U = T> {
Var<T> a;
Var<U> b;
bool eq = (a == b);
bool neq = (a != b);

};

concept Arrow<typename T> {
// built-in

};

Arrow<typename T> is a built-in predicate expressing the
curious Standard Library requirement for iterators that if
(*p).m is legal then p->m is legal. Note that Arrow<P> is true
for all C++ built-in pointer types and for all standard con-
forming user-defined (“smart”) pointer types. It has been ob-



served that, for a given m, it may be possible possible to ex-
press the “arrow assumption” using ! and (short-circuit) ||:

concept Just_star_dot_m<typename T> {
Var<T> p;
(*p).m;

};
concept Just_arrow_m<typename T> {
Var<T> p;
p->m;

};
concept Arrow_m<tpename T>

where !Just_star_dot_m<T> || Just_arrow_m<T>
{ };

However, we have no way of abstracting over m; that is the
main reason why Arrow is a built-in predicate.

The notion of a Trivial_iterator specifies what is com-
mon for all iterators (not much):
concept Trivial_iterator<Copy_constructible Iter> {
typename Iter::value_type;

Var<Iter> p;
Iter& q = ++p; // usable as
const Iter& q2 = p++; // converts to

};

Initializing a const reference means “converts to” and ini-
tializing a non-const reference means “usable as” (according
to the C++ standard). Note that this use of references ensures
that inheritance is taken into account. We don’t feel an urgent
need to invent new notation for that.

We can now define an input iterator as a trivial iterator
that we can increment, compare, assign to, use -> on, and
read from:
concept Input_iterator<Trivial_iterator Iter>

where Equality_comparable<Iter>
&& Assignable<Iter>
&& Arrow<Iter> {

Integer difference_type; // the type of distance between
// two input iterators

Var<Iter> p;
const Iter::value_type& v = *p; // converts to
const Iter::value_type& v2 = *p++; // converts to

};

This is much more succinct than the “input iterator re-
quirements” in the C++ standard [ISO03, §24.1.1], more pre-
cise, and also more correct. For example, the standard forgot
part of the Copy_constructible requirement, but fortunately,
none of the implementations did or this example (from the
standard) wouldn’t have compiled:
template<class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first, InputIterator last,

OutputIterator out);

We discovered this when defining the concepts.
Note that the Input_iterator concept does not say what

type is returned by *. In particular, it does not say that the
result type of *p is p’s value_type; it could be a proxy type
that implicitly converted to value_type. Eliminating the pos-
sibility of a proxy here would not only over-constrain the
problem, it would also break real optimized code. One of
the beauties of using use patterns compared to signatures is
that we don’t have to be explicit about possible intermediate
types.

We do not assume that the result of dereferencing an input
iterator is an lvalue; thus, we do not require (or allow) de-
structive reads from an input iterator. For example, auto_ptr
is not an acceptable value type for an input iterator. If we

want to read an auto_ptr from an input iterator, we need to
say so in some where-clause.

The difference_type is the type used to express the num-
ber of elements between two iterators. It is defined using the
concept Integer to require it to be a signed integer type.

For output iterator, we had to explicitly cope with the pos-
sibility of destructive assignment, so first we define concepts
to express that:
concept Output_assign<Trivial_iterator Out, typename T> {
Var<Out> p;
Var<const T> v;
*p = v;
*p++ = v;

};

concept Output_move<Trivial_iterator Out, typename T> {
Var<Out> p;
Var<T> v;
*p = v;
*p++ = v;

};

Given those we can define Output_iterator as a
Trivial_iterator that one can write to:
concept Output_iterator<Trivial_iterator Out>

where Output_assign<Out,Out::value_type>
|| Output_move<Out,Out::value_type>

{ };

This does not in itself solve all problems with using output
iterators. The reason is that our analysis shows that most
problems with specifying iterators and the iterator hierarchy
relates to specifying exactly when and how one can write
to an output iterator. Furthermore, most of the troublesome
variations and alternatives directly reflect algorithms and
relationship between the value written and the iterator. Such
issues are best dealt with in the algorithms’ where-clauses.
This definition of Output_iterator simply takes care of the
minimal case where an algorithm simply assigns a value to
an output iterator.

Note that an output iterator isn’t Equality_comparable or
Assignable. That’s not our interpretation but a requirement
that the Standard Library imposes for good reasons. Output
iterators are an oddity, but a useful oddity that directly re-
flects the nature of output.

To help writing where-clauses for output iterators, we pro-
vide a helper concept reflecting the most common use in-
volving another type, copying from another iterator:
concept Output_from_input<Output_iterator Out,

Input_iterator In> {
Var<Out> p;
Var<In> q;
*p = *q;
*p++ = *q++;

};

The C++ standard explicitly defines a forward iterator as
something that meets all the requirements of an input itera-
tor and an output iterator. In addition, it adds assumptions
needed to support multi-pass algorithms:

concept Forward_iterator<Input_iterator Iter>
where Output_iterator<Iter> {

Iter p; // default constructible
Iter::value_type& t = *p; // usable as
Iter::value_type& t2 = *p++; // usable as

};

So, how does this specification of the Standard Library re-
quirements fare vis-à-vis our Assignable-and-Movable puz-



zle (§4.1)? For simple assignments (*p = v) an output iterator
simply works for both ordinary and destructive assignments.
The real (not simplified) copy copies from a sequence defined
by a pair of input iterators to a sequence defined by an output
iterator. To define that, we need to deal with the relationship
between the value types of the two iterator types:

concept Move_from_input<Output_iterator Out,
Input_iterator In>

where Output_from_input<Out, In> {
Var<In> q;
In::value_type& v = *q;

};

template<Input_iterator In, Output_iterator Out>
where Output_from_input<Out, In>

|| Move_from_input<Out, In>
Out copy(In first, In last, Out out)
{

for (In cur = first; cur != last; ++cur, ++out)
*out = *cur;

}

The Move_from_input differs from Output_from_input
only in requiring that the input iterator refer to a value that
one could possible modify.

The implementation for copy remains the same as ever.
The code for copy remains as good as ever. All we have done
is to get perfect separate checking and some new opportuni-
ties for overloading.

We value the iterator requirements as a pretty extreme
real-world challenge to any system aimed at specifying re-
quirements for template arguments.

6. Related work
6.1 Siek’s proposal

Jeremy Siek et al. [SGG+05] proposed a somewhat different
concept system for C++. After discussions in the C++ stan-
dards committee, that system was modified [GSW+05] to
handle many key issues discussed in the “use pattern based
concepts” proposal [SDR05a]. In that system, a concept defi-
nition itself consists of sequence of operations with so-called
pseudo-signatures. When concept checking template defini-
tions, the pseudo-signatures act like the exact type of the op-
erations. When concept checking a template use, wrapper
functions are implicitly generated to implement conversions
between the exact type of the declarations as found in the use
context and the signature of the operations as assumed by the
concept definition. That constitutes a huge departure from
C++ semantics, which implies that parts of a program can be
led to believe that some functions exist when, in fact, they do
not. It is uncertain whether such forwarding functions can be
consistently eliminated to allow optimal and consistent use
of overloaded versions of a function. There are other differ-
ences between this system and ours, such as an absence of
the or and not operators for concepts.

A similar, but slightly more abstract variant of the pseudo-
signature idea called “abstract signatures”, was presented
and analyzed in [Str03] and [SDR05a]. We rejected that in
favor of the use pattern notation because it was too ver-
bose and because it would introduce a whole new declara-
tion syntax with associated special semantics into an already
crowded syntactic universe.

There is a close relationship between concepts, as de-
scribed here, and constraints classes [Str]. This allows us to
test concepts by transcribing them into constraints classes
and explicitly insert them into code.

6.2 Type classes

It has been claimed that concepts as envisioned for C++0x are
just Haskell’s type classes. In fact, “overloading” in Haskell
is limited compared to C++’s notion of overloading. In C++,
overloading is exclusively a compile-time notion: Two func-
tions are said overloaded if they have different signatures;
there is no requirement of generic instance relationship be-
tween them. For example, C++ allows programs like
int min(int, int); // #1
template<typename T> T min(T, T); // #2
int min(int, int, int); // #3
// ...
int x = min(1, 2); // call #1
int y = min(’a’, ’b’); // call #2
int z = min(1, 2, 3); // call #3

An overload set can contain function templates as well as
“ordinary” functions. Haskell overloading is expressible in
C++ as a combination of overriding and template specializa-
tion. Note that in C++, selection among overridden virtual
functions takes place at run-time whereas overloading takes
place at compile time. When all Haskell instance declarations
for a given type class are available in a module, the type
class construct and instance declarations correspond closely
to C++’s notion of template partial or full specialization —
this morally is what happens when the dictionaries, in the
dictionary passing style translation [WB89], are optimized
away. Given this close correspondence between Haskell type
classes and C++ template specialization, it would not be sur-
prising at all that a large body of C++ type traits techniques
can be translated to Haskell type class techniques, and vice
versa. Indeed, there are recent proposals [CKPJM05, CKPJ05]
to add associated types to Haskell.

When instance declarations for a given type class are
spread over several modules, information about the class
members usually cross modules through indirect function
calls (as do C++ virtual function calls). In that case, type
classes closely correspond to parameterized abstract classes
and virtual function overriding. A more detailed account
is provided in the “use pattern based concept” proposal
[SDR05a, Appendix B]. The problems addressed by type
classes are more limited than those addressed by concepts.

The contexts of Haskell instance declarations are addi-
tional features absent from current C++. These are among the
simplest contructs expressible with concepts where assump-
tions can be expressed individually on template-parameters
in isolation.

As general predicates, concepts can be combined with the
logical operators (and, or, not). An obvious place where the
ability to write such logical formula is useful is in the where-
clauses of template declarations as extensively illustrated.

6.3 Qualified types

In his PhD thesis [Jon94], Mark Jones introduced the notion
of qualified types as a general framework to approach con-
strained type systems as studied by Stefan Kaes [Kae88],
and Philip Wadler and Stephen Blott [WB89] that form the
basis of Haskell’s type classes. Jones’ framework is general
enough to account for Haskell’s type classes, sub-typing and
extensible records. It was later generalized to constructor
classes and type classes with functional dependencies. How-
ever, Jones’ system strives at describing systems where con-
straints are expressed purely at the type level. As we have
seen, that is not accurate enough for C++ templates. Further-
more, Jones’ framework seems to be more appropriate for
type systems with overriding or specialization semantics than



with general overloading and type scheme as found in C++.
Finally, while Jones’ qualified types are formally type with
predicates, the predicates cannot be directly used in formula
involving logical connectors as in the concept system pre-
sented in this paper; and use of compile-time integer values
is not included in the theory of qualified types.

7. Conclusion and future work
In this paper, we have defined a framework for specify-
ing a concept system for checking C++ templates. This sys-
tem, unlike conventional signature-based or object-oriented
style type system, is powerful enough to express simply, con-
cisely and accurately the C++ Standard Library notions and
requirements. This formulation of concepts enables perfect
checking of template definitions and uses in isolation with-
out adverse effects on the performance of generated code. In
the process, we uncovered several weaknesses in the current
informal formulation of the Standard Library requirements.
We have a complete typed abstract syntax tree representation
for C++, including concepts, that will become a testbed for
further work [SDR05b]. Future directions for work include:

• Complete our formalism for ISO C++. It is capable of
handling proposed extensions that affect its type system
including concepts.

• Explore various assumptions [SDR05a] on the overload
resolution operator to provide a complete proof of the
“fundamental theorem”:

Theorem 1 (Soundness) If a template definition concept
checks and if its uses both concept check and type check then
its instantiations for those uses also type check.

We have a draft of that proof, but it is too long to fit in the
margin here. That might require restrictions on template
partial specializations as discussed in [SDR05a].

• Complete a concept checker based on abstract syntax
trees.

• Experiment with the use of concepts to specify the STL
and other domains, such as the theory of mathematical
structures in Computer Algebra [JS92].

• The work reported in this paper focuses on the static
semantics of concepts, but concepts also have dynamic
semantics components that will be subject of future work.

Together with our colleagues in the ISO C++ standards com-
mittee, we will analyze the various ideas for concepts and
synthesize a concept system for C++0x.
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