
C++0x October 2009 Stroustrup

1

What is C++0x?

Bjarne Stroustrup

Abstract
This paper illustrates the power of C++ through some simple examples of C++0x code presented
in the context of their role in C++. My aim is to give an idea of the breath of the facilities and an
understanding of the aims of C++, rather than offering an in-depth understanding of any
individual feature. The list of language features and standard library facilities described is too
long mention here, but a major theme is the role of features as building blocks for elegant and
efficient software, especially software infrastructure components. The emphasis is on C++’s
facilities for building lightweight abstractions.

Introduction
What is C++0x? I don’t mean “How does C++0x differ from C++98?” I mean what kind of language is
C++0x? What kinds of programming are C++0x good for? In fact, I could drop the “0x” right here and
attack the fundamental question directly: What is C++? Or, if you feel pedantic, “What will C++ be once
we have the facilities offered by the upcoming standard?” This is not an innocent “just philosophical”
question. Consider how many programmers have been harmed by believing that “C++ is an object-
oriented language” and “religiously” built all code into huge class hierarchies, missing out on simpler,
more modular approaches and on generic programming. Of course C++ also supports OOP, but a simple
label – especially if supported by doctrinaire teaching – can do harm by overly narrowing a programmer’s
view of what can be considered reasonable code.

I will discuss the “what is?” question in the context of C++0x, the upcoming revision of the ISO C++
standard. The examples will emphasize what’s new in C++0x, but the “commentary” will emphasize their
place in the general C++ design philosophy. Despite “x” in “C++0x” becoming hexadecimal, I’ll use the
present tense because most features described are already available for exploratory or experimental use (if
not necessarily all in the same implementation). Also, for the benefit of people with an allergy to
philosophy, I will discuss ideas and facilities in the context of concrete code examples.

The rest of this paper is organized like this:

• Simplifying simple tasks
• Initialization
• Support for low-level programming
• Tools for writing classes
• Concurrency
• The sum of the language extensions

C++0x October 2009 Stroustrup

2

• Standard library components
• So, what does this add up to?

That is, I roughly proceed from the simple to the complex. If you want more examples, more details,
and/or more precision, see my online C++0x FAQ [Stroustrup], which contains references to the actual
proposals with the names of the people who did most of the work and to the draft standard itself [Becker,
2009].

Simplifying simple tasks
Much of what there is to like and dislike about a programming language are minor details; the kind of
minor design decisions, omissions, and mistakes that escape academic attention. For C++0x, quite a bit of
attention has been paid to “removing embarrassments” found in C++98 and simplifying and generalizing
rules for the use of the language and standard library.

Deducing a type, etc.
Consider:

 cout << sqrt(2);

Obviously, this should work, but it does not in C++98: The compiler couldn’t decide which of the several
overloads of sqrt() to pick. Now it can (there are now sufficient overloads to get a right answer), but what
if you want the value “right here” and not as an argument to an overloaded function or a template?

auto x = sqrt(2);

By using auto instead of a specific type, you tell the compiler that the type of x is the type of its
initializer. In this case, that happens to be double. In many templates, auto can save you from over-
specification and in some cases auto saves you from writing some long-winded type:

 for (auto p = v.begin(); p!=v.end(); ++p) cout <<*p;

Say that v was a vector<list<double,Myallocator<double>>> and that a suitable definition of
operator<<() for lists was available. In this case, I saved myself from writing something like

for (vector<list<double,Myallocator<double>>>::iterator p = v.begin();
p!=v.end();
++p)

cout <<*p;

I consider that improvement significant – even more so for a reader and a maintainer than for the original
programmer.

 “auto” is the oldest improvement in C++0x: I first implemented it in C with Classes in the winter of
1983/84, but was forced to take it out because of the obvious(?) C incompatibility. Please also note that I
did not say vector< list< double, Myallocator<double> > >. We can now do without those annoying
extra spaces.

C++0x October 2009 Stroustrup

3

Such “trivial improvements” can matter disproportionally. A tiny stone in a boot can spoil a whole day
and a tiny irregularity in a language can make a programmer’s day miserable. However, a programmer
cannot simply remove a language irregularity – at best it can be hidden behind an interface until a
standards committee gets around to the problem.

Range for loop
Let’s step up one level from the minute to the small. Why did we play around with iterators to print the
elements in that vector? We need the generality offered by iterators for many important loops, but in most
cases, we don’t care about details, we just want to do something to each element, so we can say:

 for (auto x : v) cout << x;

That’s not just shorter, but also a more precise specification of what we do. If we wanted to access
neighboring elements, iterate backwards, or whatever, we can do so (using the familiar and general for
loop), but with this “range for loop” we know that nothing complicated happens in the loop body as soon
as we see the header of the for-statement.

This range-for loop works for all ranges; that is, for every data structure that has a beginning and an end
so that you can iterate trough it in the conventional way. So it works for std::vector, std::list, std::array,
built-in arrays, etc.

Note the use of auto in that loop; I did not have to mention v’s type. That’s good because in generic
programs that type can be very hard to express. Consider:

 template<class C> print_all(const C& v)
 {

for (const auto& x : v) cout << x;
 }

This can be called with any “container” or “range” providing a begin() and an end(). Since C was
declared const and I don’t know the size of the elements, I decorated auto with const and &.

Initialization
Trying to make rules more general and to minimize spurious typing has a long tradition in C++ and most
other languages. I suspect it is a never-ending task, but of course the desire for uniformity of rules and
simple notation is not restricted to trivial examples. In particular, every irregularity is a source of
complexity, added learning time, and bugs (when you make the wrong choice among alternatives).
Irregularity also becomes a barrier to generic programming, which critically depends on identical notation
for a set of types. One area where uniformity and generality is seriously lacking in C++98 is initialization.
There is a bewildering variety of syntaxes ({…}, (…), =…, or default), semantics (e.g., copy or
construct), and applicability (can I use a {…} initializer for new? for a vector? Can I use a (…) initializer
for a local variable?). Some of this irregularity goes all the way back to the early days of C, but C++0x
manages to unify and generalize all of these mechanisms: You can use {…} initialization everywhere. For
example:

int v1 = 7;

C++0x October 2009 Stroustrup

4

int v2(7);
int v3 = { 7 }; // yes that’s legal C and C++98
int v4 {7}; // new for C++0x: initialize v4 with 7

int x1; // default x1 becomes 0 (unless x1 is a local variable)
int x2(); // oops a function declaration
int x3 = {}; // new for C++0x: give x3 the default int value (0)
int x4{}; // new for C++0x: give x4 the default int value (0)

What could be simpler than initializing an int? Yet, we see surprises and irregularities. This gets much
more interesting when we consider aggregates and containers:

 int a[] = { 1, 2, 3 };
 S s = { 1, 2, 3 }; // ok, maybe
 std::vector<int> v1 = { 1, 2, 3 }; // new in C++0x
 std::vector<int> v2 { 1, 2, 3 }; // new in C++0x

It always bothered me that we couldn’t handle v1 in C++. That violated the principle that user-defined
and built-in types should receive equivalent support (so why does my favorite container, vector, get
worse support than the perennial problem, array?). It also violated the principle that fundamental
operations should receive direct support (what’s more fundamental than initialization?).

When does S s = { 1, 2, 3 }; actually work? It works in C++98 iff S is a struct (or an array) with at least
three members that can be initialized by an int and iff S does not declare a constructor. That answer is too
long and depends on too many details about S. In C++0x, the answer boils down to “iff S can be
initialized by three integers.” In particular, that answer does not depend on how that initialization is done
(e.g. constructors or not). Also, the answer does not depend on exactly what kind of variable is being
initialized. Consider:

int a[] = { 1, 2, 3 };
void f1(const int(&)[3]); // reference to array
f1({1,2,3}); // new in C++0x
p1 = new int[]{1,2,3}; // new in C++0x

 S s = { 1, 2, 3 }; // ok, maybe
 void f2(S);
 f2({1,2,3}); // new in C++0x
 p2 = new S {1,2,3}; // new in C++0x

 std::vector<int> v2 { 1, 2, 3 }; // new in C++0x
 void f3(std::vector<int>);

f3({ 1, 2, 3 }); // new in C++0x
p3 = new std::vector{1,2,3}; // new in C++0x

C++0x October 2009 Stroustrup

5

Why didn’t I just say void f1(int[])? Well, compatibility is hard to deal with. That [] “decays” to * so
unfortunately void f1(int[]) is just another way of saying void f1(int*) and we can’t initialize a pointer
with a list. Array decay is the root of much evil.

I don’t have the time or space to go into details, but I hope you get the idea that something pretty dramatic
is going on here: We are not just adding yet another mechanism for initialization, C++0x provides a
single uniform mechanism for initializing objects of all types. For every type X, and wherever an
initialization with a value v makes sense, we can say X{v} and the resulting object of type X will have the
same value in all cases. For example:

 X x{v};
 X* p = new X{v};
 auto x2 = X{v}; // explicit conversion
 void f(X);
 f(X{v});
 f({v});
 struct C : X {

C() : X{v}, a{v} { }
X a;
// …

};

Have fun imagining how to do that using C++98 for all types you can think of (note that X might be a
container, v might be a list of values or empty). One of my favorites is where X is a char* and v is 7.

Support for low-level programming
There is a school of thought that all programming these days is “web services” and that “efficiency”
ceased to matter decades ago. If that’s your world, the lower reaches of C++ are unlikely to be of much
interest. However, most computers these days are embedded, processors are not getting any faster (in fact
many are getting slower as multi-cores become the norm), and all those web-services and high-level
applications have to be supported by efficient and compact infrastructure components. So, C++0x has
facilities to make C++ a better language for low-level systems programming (and for programming
aiming for efficiency in general).

At the bottom of everything in a computer is memory. Working directly with physical memory is
unpleasant and error prone. In fact, if it wasn’t for the C++0x memory model (see below) it would be
impossible for humans to write code at the traditional “C language level.” Here I’m concerned about how
to get from the world of ints, arrays, and pointers to the first level of abstraction.

Plain Old data and layout
Consider

struct S1 {
int a, b;

C++0x October 2009 Stroustrup

6

};

struct S2 {

S2(int aa, int bb) : a{aa}, b{bb} { }
S2() { } // leave a an b uninitialized
int a,b;

};

S1 and S2 are “standard-layout classes” with nice guarantees for layout, objects can be copied by
memcpy() and shared with C code. They can even be initialized by the same {…} initializer syntax. In
C++98, that wasn’t so. They required different initialization syntaxes and only S1 had the nice
guarantees, but S2 simply wasn’t a POD (the C++98 term for “guaranteed well-behaved layout”).

Obviously, this improvement shouldn’t be oversold as “major,” but constructors are really nice to have
and you could already define ordinary member functions for a POD. This can make a difference when
you are close to the hardware and/or need to interoperate with C or Fortran code. For example,
complex<double> is a standard-layout class in C++0x, but it wasn’t in C++98.

Unions
Like structs, C++98 unions had restrictions that made them hard to use together with the abstraction
mechanisms, making low-level programming unnecessarily tedious. In particular, if a class had a
constructor, a destructor, or a user-defined copy operation, it could not be a member of a union. Now, I’m
no great fan of unions because of their misuses in higher-level software, but since we have them in the
language and need them for some “close to the Iron” tasks, the restrictions on them should reflect reality.
In particular, there is no problem with a member having a destructor; the real problem is that if it has one
it must be invoked iff it is the member used when the union is destroyed (iff the union is ever destroyed).
So the C++0x rules for a union are:

• No virtual functions (as ever)
• No references (as ever)
• No bases (as ever)
• If a union has a member with a user-defined constructor, copy, or destructor then that special

function is “deleted;” that is, it cannot be used for an object of the union type.

This implies that we can have a complex<double> as a union member. It also implies that if we want to
have members with user-defined copy operations and destructors, we have to implement some kind of
variant type (or be very careful about how we use the objects of the unions or the compiler will catch us).
For example:

class Widget { // Three alternative implementations represented as a union
private:
 enum class Tag { point, number, text } type; // discriminant

 union { // compact representation
 point p; // point has constructor
 int i;

C++0x October 2009 Stroustrup

7

 string s; // string has default constructor, copy operations, and destructor
 };

 // ...

 Widget& operator=(const Widget& w) // necessary because of the string union member
 {
 if (type==Tag::text && w.type==Tag::text) {
 s = w.s; // usual string assignment
 return *this;
 }

 if (type==Tag::text) s.~string(); // destroy (explicitly!)

 switch (type=w.type) {
 case Tag::point: p = w.p; break; // normal copy
 case Tag::number: i = w.i; break;
 case Tag::text: new(&s)(w.s); break; // placement new
 }
 return *this;
 }
};

I’m still not a great fan of unions. It often takes too much cleverness to use them right. However, I don’t
doubt that they have their uses and C++0x serves their users better than C++98.

Did you notice the “enum class” notation above? An enum class is an enum where the enumerators have
class scope and where there is no implicit conversion to int. I used a class enum (a “strongly typed
enum”) here, so that I could use tag names without worrying about name. Also, not the use of Tag::, in
C++0x we can qualify an enumerator with the name of its enumeration for clarity or disambiguation.

General constant expressions
Compile-time evaluation can be a major saver of run time and space. C++98 offers support for some
pretty fancy template meta-programming. However, the basic constant expression evaluation facilities are
somewhat impoverished: We can do only integer arithmetic, cannot use user-defined types, and can’t
even call a function. C++0x takes care of that by a mechanism called constexpr:

• We can use floating-point in constant expressions
• We can call simple functions (“constexpr functions”) in constant expressions
• We can use simple user-defined types (“literal types”) in constant expressions
• We can request that an expression must be evaluated at compile time

For example:

 enum Flags { good=0, fail=1, bad=2, eof=4 };

 constexpr int operator|(Flags f1, Flags f2) { return Flags(f1|f2); }

 void f(Flags x)

C++0x October 2009 Stroustrup

8

 {
 switch (x) {
 case bad: /* ... */ break;
 case eof: /* ... */ break;
 case bad|eof: /* ... */ break;
 default: /* ... */ break;
 }
 }

Here constexpr says that the function must be of a simple form so that it can be evaluated at compile time
when given constant expressions as arguments. That “simple form” is a single return statement, so we
don’t do loops or declare variables in a constexpr function, but since we do have recursion the sky is the
limit. For example, I have seen a very useful integer square root constexpr function.

In addition to be able to evaluate expressions at compile time, we want to be able to require expressions
to be evaluated at compile time; constexpr in front of a variable definition does that (and implies const):

 constexpr int x1 = bad|eof; // ok

 void f(Flags f3)
 {
 constexpr int x2 = bad|f3; // error: can't evaluate at compile time
 const int x3 = bad|f3; // ok: but evaluated at run time
 // …
 }

Typically we want the compile-time evaluation guarantee for one of two reasons:

• For values we want to use in constant expressions (e.g. case labels, template arguments, or array
bounds)

• For variables in namespace scope that want don’t want run-time initialized (e.g. because we want
to place them in read-only storage).

This also works for objects for which the constructors are simple enough to be constexpr and expressions
involving such objects:

 struct Point {
 int x,y;
 constexpr Point(int xx, int yy) : x{xx}, y{yy} { }
 };

 constexpr Point origo { 0,0 };
 constexpr int z { origo.x };

 constexpr Point a[] { Point{0,0}, Point{1,1}, Point{2,2} };
 constexpr int x { a[1].x }; // x becomes 1

Who needs this? Why isn’t “good old const” good enough? Or conversely, as one academic in all
seriousness asked, “Why don’t you just provide a full compile-time interpreter?” I think the answers to
the first two questions are interesting and relate to general principles. Think: what do people do when

C++0x October 2009 Stroustrup

9

they have only “good old const”? They hit the limits of const and proceed to use macros for examples
like the Flags one. In other words, they fall back on typeless programming and the most error-prone
abstraction mechanism we know. The result is bugs. Similarly, in the absence of compile-time user-
defined types, people revert to a pre-classes style of programming which obscures the logic of what they
are doing. Again, the result is bugs.

I observed two other phenomena:

• Some people were willing to go to extremes of cleverness to simulate compile-time expression
evaluation: Template instantiation is Turing complete, but you do have to write rather
“interesting” code to take advantage of that in many cases. Like most workarounds, it’s much
more work (for programmers and compilers) than a specific language feature and with the
complexity comes bugs and learning time.

• Some people (mostly in the embedded systems industry) have little patience with Turing
completeness or clever programming techniques. On the other hand, they have a serious need to
use ROM, so special-purpose, proprietary facilities start to appear.

The constexpr design is interesting in that it addresses some serious performance and correctness needs
by doing nothing but selectively easing restrictions. There is not a single new semantic rule here: it
simply allows more of C++ to be used at compile time.

Narrowing
Maybe you noticed that I used {} initialization consistently. Maybe, you also thought that I was uglifying
code and was overenamored by a novel feature? That happens, of course, but I don’t think that is the case
here. Consider:

int x1 = 64000;
int x2 { 64000 };

We can have a nice friendly discussion about the aesthetics of those two definitions and you might even
point out that the {} version requires one more keystroke than the = one. However, there is one significant
difference between those two forms that makes me chose {}. The {} version doesn’t allow narrowing and I
failed to tell you that the two definitions were written for a machine with 16-bit ints. That means that the
value of x1 could be very surprising, whereas the definition of x2 causes a compile-time error.

When you use {} initializers, no narrowing conversions are allowed:
• No narrowing integral conversions (e.g., no int-to-char conversion)
• No floating-to-integral conversions (e.g. no double-to-int or double-to-bool conversion)
• When an initializer is a constant expression the actual value is checked, rather than the type (e.g.

char c {'x'}; is ok because 'x' fits in a char)
This directly addresses a source of nasty errors that has persisted since the dawn of C.

Tools for writing classes
Most of what is good, efficient, and effective about C++ involves designing, implementing, and using
classes. Thus, anything that is good for classes is good for C++ programmers. People often look for
“major features” and “solutions,” but I think of language features as building blocks: If you have the right
set of building blocks, you can apply them in combination to provide “solutions.” In particular, we need
simple and powerful “building blocks” to provide general or application-specific abstractions in the form
of classes and libraries. Thus, “little features” that are unimportant in themselves may have a major
impact as one of a set of interrelated features. When designed well, the sum is indeed greater than the

C++0x October 2009 Stroustrup

10

parts. Here, I will just give three examples: initializer-list constructors, inheriting constructors, and move
semantics.

Initializer list constructors
How did we manage to get a std::vector to accept a list of elements as its initializer? For example:

 vector<int> v0 {}; // no elements
vector<int> v1 { 1 }; // one element
vector<int> v2 { 1,2 }; // two elements
vector<int> v3 { 1,2,3}; // three elements
vector<int> v4 { 1, 2, 3, 4, 5, a, b, c, d, x+y, y*z, f(1,d) }; // many elements

That’s done by providing vector with an “initializer-list constructor”:

 template<class T> class vector {
 vector(std::initializer_list<T> a) // initializer-list constructor
 {
 reserve(a.size());
 uninitialized_copy(a.begin(),a.end(),v.begin());
 }
 // …
 };

Whenever the compiler sees a { …} initializer for a vector, it invokes the initializer constructor (only if
type checking succeeds, of course). The initializer_list class is known to the compiler and whenever we
write a {…} list that list will (if possible) be represented as an initializer_list and passed to the user’s
code. For example:

void f(int,initializer_list<int>,int);
f(1,{1,2,3,4,5},1);

Of course it is nice to have a simple and type safe replacement for the stdargs macros, but the serious
point here is that C++ is moving closer to its stated ideal of uniform support of built-in types and user-
defined types [Stroustrup,1994]. In C++98, we could not build a container (e.g., vector) that was as
convenient to use as a built-in array; now we can.

Inheriting constructors
In C++98, we can derive a class from another, inheriting the members. Unfortunately, we can’t inherit the
constructors because if a derived class adds members needing construction or virtual function (requiring a
different virtual function table) then its base constructors are simply wrong. This restriction – like most
restrictions – can be a real bother; that is, the restriction is a barrier to elegant and effective use of the
language. My favorite example is a range checked vector:

 template<class T> class Vec : public std::vector<T> {
 public:

C++0x October 2009 Stroustrup

11

 using vector<T>::vector; // use the constructors from the base class
 T& operator[](size_type i) { return this->at(i); }
 const T& operator[](size_type i) const { return this->at(i); }
 };

The solution, to provide an explicit way of “lifting up” constructors from the base, is identical to the way
we (even in C++98) bring functions from a base class into the overload set of a derived class:

 struct B {
 void f(int);
 void f(double);
 };

 struct D : B {
 using B::f; // “import” f()s from B
 void f(complex<double>); // add an f() to the overload set
 };

 D x;
 x.f(1); // B::f(int);
 x.f({1.3,3.14}); // D::f(complex<double>);

Thus, this language extension is really a generalization and will in most contexts simplify the learning of
use of C++. Note also the use of the {…} initialization mechanism in that last example: Of the
alternatives, only f(complex<double>) can be initialized with a pair of doubles, so the {…} notation is
unambiguous.

Move semantics
Consider

template<class T> void swap(T& a, T& b)
{

T tmp = a; // copy a into tmp
a = b; // copy b into b
b = tmp; // copy tmp into b

}
But I didn’t want to copy anything, I wanted to swap! Why do I have to make three copies? What if T is
something big and expensive to copy? This is a simple and not unrealistic example of the problem with
copy: After each copy operation, we have two copies of the copied value and often that’s not really what
we wanted because we never again use the original. We need a way of saying that we just want to move a
value!

In C++0x, we can define “move constructors” and “move assignments” to move rather than copy their
argument:

 template<class T> class vector {

C++0x October 2009 Stroustrup

12

 // ...
 vector(const vector&); // copy constructor
 vector(vector&&); // move constructor
 vector& operator=(const vector&); // copy assignment
 vector& operator=(vector&&); // move assignment
 };

The “&&” means “rvalue reference.” An rvalue reference is a reference that can bind to an rvalue. The
point about an rvalue here is that we may assume that it will never be used again after we are finished
with it. The obvious implementation is for the vector move constructor it therefore to grab the
representation of its source and to leave its source as the empty vector. That is often far more efficient
than making a copy. When there is a choice, that is, if we try to initialize or assign from an rvalue, the
move constructor (or move assignment) is preferred over the copy constructor (or copy assignment). For
example:

 vector<int> make_rand(int s)

{
vector<int> res(s);
for (auto& x : res) x = rand_int();
return res;

}
 vector<int> v { make_rand(10000) };

 void print_rand(int s)

{

for (auto x : make_rand(s)) cout << x << '\n';

 }

Obviously (once you become used to thinking about moves), no vector is copied in this example. If you
have ever wanted to efficiently return a large object from a function without messing with free store
management, you see the point.

So what about swap()? The C++0x standard library provides:

 template<class T>
 void swap(T& a, T& b) // “perfect swap” (almost)
 {
 T tmp = std::move(a);
 a = std::move(b);
 b = std::move(tmp);
 }

The standard library function move(x) means “you may treat x as an rvalue.” Rvalue references can also
be used to provide perfect forwarding: A template function std::forward() supports that. Consider a

C++0x October 2009 Stroustrup

13

“factory function” that given an argument has to create an object of a type and return a unique_ptr to the
created object:

template <class T, class A1> std::unique_ptr<T> factory(A1&& a1)
{
 return std::unique_ptr<T>{new T{std::forward<A1>{a1}}};
}

unique_ptr p1 { factory<vector<string>>{100}) }

A unique_ptr is a standard-library “smart pointer” that can be used to represent exclusive ownership; it is
a superior alternative to std::shared_ptr in many (most?) cases.

One way to look at rvalue references is that C++ had a pressing need to support move semantics: Getting
large values out of functions was at best inelegant or inefficient, transferring ownership by using shared
pointers was logically wrong, and some forms of generic programming cause people to write a lot of
forwarding functions that in principle implies zero run-time costs but in reality were expensive.
Sometimes move vs. copy is a simple optimization and sometimes it is a key design decision, so a design
must support both. The result was rvalue references, which supports the name binding rules that allows us
to define std::move(), std::forward(), and the rules for copy and move constructors and assignments.

User-defined literals
For each built-in type we have corresponding literals:

 'a' '\n' // char
1 345 // int

 345u // unsigned
 1.2f // float
 1.2 12.345e-7 // double
 "Hello, world!" // C-style string

However, C++98 does not offer an equivalent mechanism for user-defined types:

1+2i // complex
 "Really!"s // std::string
 103F 39.5c // Temperature

123.4567891234df // decimal floating point
123s // seconds
101010111000101b // binary
1234567890123456789012345678901234567890x // extended-precision

Not providing literals for user-defined types is clear violation of the principle that user-defined and built-
in types should receive equivalent support. I don’t see how C++ could have survived without user-defined
literals! Well, I do: inlined constructors is a pretty good substitute and constexpr constructors would be
even better, but why not simply give people the notation they ask for?

C++0x October 2009 Stroustrup

14

C++0x supports “user-defined literals” through the notion of literal operators that map literals with a
given suffix into a desired type. For example:

 constexpr complex<double> operator"" i(long double d) // imaginary literal
 {
 return {0,d}; // complex is a literal type
 }

 std::string operator "" s(const char* p, size_t n) // std::string literal
 {
 return string{p,n}; // requires free store allocation
 }

Note the use of constexpr to enable compile-time evaluation; complex<double> is a literal type. The
syntax is operator"" to say that a literal operator is being defined followed by the name of the function,
which is the suffix to be recognized. Given those literal operators, we can write:

 template<class T> void f(const T&);
 f("Hello"); // pass pointer to char*
 f("Hello"s); // pass (5-character) std::string object
 f("Hello\n"s); // pass (6-character) std::string object

 auto z = 2+3.14i; // 2+complex<double>(0,3.14)

The basic (implementation) idea is that after parsing what could be a literal, the compiler always checks
for a suffix. The user-defined literal mechanism simple allows the user to specify a new suffix and what is
to be done with the literal before it. It is not possible to redefine the meaning of a built-in literal suffix or
invent new syntax for literals. In this, user-defined literals are identical to user-defined operators.

A literal operator can request to get its (preceding) literal passed “cooked” (with the value it would have
had if the new suffix hadn't been defined) or “raw” (the string of characters exactly as typed.

To get an “uncooked” string, simply request a const char* argument:

 Bignum operator"" x(const char* p)
 {
 return Bignum(p);
 }

 void f(Bignum);
 f(1234567890123456789012345678901234567890x);

Here the C-style string "1234567890123456789012345678901234567890" is passed to operator"" x().
Note that we did not have to explicitly put those digits into a string, though we could have:

 f("1234567890123456789012345678901234567890"x);

Note that “literal” does not mean “efficient” or “compile-time evaluated.” If you need run-time
performance, you can design for that, but “user-defined literals” is – in the best C++ tradition – a very
general mechanism.

C++0x October 2009 Stroustrup

15

The sum of language extensions
When you add it all up, C++0x offers are many new language facilities. The C++0x FAQ list them:

• __cplusplus
• alignments
• attributes
• atomic operations
• auto (type deduction from initializer)
• C99 features
• enum class (scoped and strongly typed enums)
• copying and rethrowing exceptions
• constant expressions (generalized and guaranteed; constexpr)
• decltype
• default template parameters for function
• defaulted and deleted functions (control of defaults)
• delegating constructors
• Dynamic Initialization and Destruction with Concurrency
• explicit conversion operators
• extended friend syntax
• extended integer types
• extern templates
• for statement; see range for statement
• generalized SFINAE rules
• in-class member initializers
• inherited constructors
• initializer lists (uniform and general initialization)
• lambdas
• local classes as template arguments
• long long integers (at least 64 bits)
• memory model
• move semantics; see rvalue references
• Namespace Associations (Strong using)
• Preventing narrowing
• null pointer (nullptr)
• PODs (generalized)
• range for statement
• raw string literals
• right-angle brackets
• rvalue references
• static (compile-time) assertions (static_assert)
• suffix return type syntax (extended function declaration syntax)
• template alias

http://www.research.att.com/~bs/C++0xFAQ.html#0x�
http://www.research.att.com/~bs/C++0xFAQ.html#align�
http://www.research.att.com/~bs/C++0xFAQ.html#attributes�
http://www.research.att.com/~bs/C++0xFAQ.html#atomics�
http://www.research.att.com/~bs/C++0xFAQ.html#auto�
http://www.research.att.com/~bs/C++0xFAQ.html#C99�
http://www.research.att.com/~bs/C++0xFAQ.html#enum�
http://www.research.att.com/~bs/C++0xFAQ.html#rethrow�
http://www.research.att.com/~bs/C++0xFAQ.html#constexpr�
http://www.research.att.com/~bs/C++0xFAQ.html#decltype�
http://www.research.att.com/~bs/C++0xFAQ.html#default�
http://www.research.att.com/~bs/C++0xFAQ.html#delegating-ctor�
http://www.research.att.com/~bs/C++0xFAQ.html#dynamic-init�
http://www.research.att.com/~bs/C++0xFAQ.html#explicit-convertion�
http://www.research.att.com/~bs/C++0xFAQ.html#extended-int�
http://www.research.att.com/~bs/C++0xFAQ.html#extern-templates�
http://www.research.att.com/~bs/C++0xFAQ.html#for�
http://www.research.att.com/~bs/C++0xFAQ.html#member-init�
http://www.research.att.com/~bs/C++0xFAQ.html#inheriting�
http://www.research.att.com/~bs/C++0xFAQ.html#init-list�
http://www.research.att.com/~bs/C++0xFAQ.html#lambda�
http://www.research.att.com/~bs/C++0xFAQ.html#local-classes�
http://www.research.att.com/~bs/C++0xFAQ.html#long-long�
http://www.research.att.com/~bs/C++0xFAQ.html#XXX�
http://www.research.att.com/~bs/C++0xFAQ.html#rval�
http://www.research.att.com/~bs/C++0xFAQ.html#strong-using�
http://www.research.att.com/~bs/C++0xFAQ.html#narrowing�
http://www.research.att.com/~bs/C++0xFAQ.html#nullptr�
http://www.research.att.com/~bs/C++0xFAQ.html#PODs�
http://www.research.att.com/~bs/C++0xFAQ.html#for�
http://www.research.att.com/~bs/C++0xFAQ.html#raw-strings�
http://www.research.att.com/~bs/C++0xFAQ.html#brackets�
http://www.research.att.com/~bs/C++0xFAQ.html#rval�
http://www.research.att.com/~bs/C++0xFAQ.html#static_assert�
http://www.research.att.com/~bs/C++0xFAQ.html#suffix-return�
http://www.research.att.com/~bs/C++0xFAQ.html#template-alias�

C++0x October 2009 Stroustrup

16

• template typedef; see template alias
• thread-local storage (thread_local)
• unicode characters
• Uniform initialization syntax and semantics
• unions (generalized)
• user-defined literals
• variadic templates

Fortunately most are minor and much work has been spent to ensure that they work in combination. The
sum is greater than its parts.

Like inheriting constructors, some of the new features address fairly specific and localized problems (e.g.
raw literals for simpler expression of regular expressions, nullptr for people who are upset by 0 as the
notation for the null pointer, and enum classes for stronger type-checked enumerations with scoped
enumerators). Other features, like general and uniform initialization, aim to support more general
programming techniques (e.g. decltype, variadic templates, and template aliases for the support of
generic programming). The most ambitious new support for generic programming, concepts, didn’t make
it into C++0x (see [Stroustrup,2009]).

When exploring those new features (my C++0x FAQ is a good starting point), I encourage you to focus
on how they work in conjunction with old and new language features and libraries. I think of these
language features as “building bricks” (my home town is about an hour’s drive from the Lego factory)
and few make much sense when considered in isolation.

Concurrency and memory model
Concurrency has been the next big thing for about 50 years, but concurrency is no longer just for people
with multi-million dollar equipment budgets. For example, my cell phone (programmed in C++ of course)
is a multi-core. We don’t just have to be able to do concurrent programming in C++ (as we have
“forever”), we need a standard for doing so and help to get concurrent code general and portable.
Unfortunately, there is not just one model for concurrency and just one way of writing concurrent code,
so standardization implies serious design choices.

Concurrency occurs at several levels in a system, the lowest level visible to software is the level of
individual memory accesses. With multiple processors (“cores”) sharing a memory hierarchy of caches,
this can get quite “interesting.” This is the level addressed by the memory model. The next level up is the
systems level where computations are represented by threads. Above that can be general or application-
specific models of concurrency and parallel computation.

The general approach of C++0x is to specify the memory model, to provide primitive operations for
dealing with concurrency, and to provide language guarantees so that concurrency mechanism, such as
threads, can be provided as libraries. The aim is to enable support for a variety of models of concurrency,
rather than building one particular one into the language.

http://www.research.att.com/~bs/C++0xFAQ.html#template-alias�
http://www.research.att.com/~bs/C++0xFAQ.html#thread-local�
http://www.research.att.com/~bs/C++0xFAQ.html#unicode�
http://www.research.att.com/~bs/C++0xFAQ.html#uniform-init�
http://www.research.att.com/~bs/C++0xFAQ.html#unions�
http://www.research.att.com/~bs/C++0xFAQ.html#UD-literals�
http://www.research.att.com/~bs/C++0xFAQ.html#variadic-templates�

C++0x October 2009 Stroustrup

17

The memory model
The memory model is a treaty between the machine architects and the compiler writers to ensure that
most programmers do not have to think about the details of modern computer hardware. Without a
memory model, few things related to threading, locking, and lock-free programming would make sense.

The key guarantee is: Two threads of execution can update and access separate memory locations without
interfering with each other. To see why that guarantee is non-trivial, consider:

 // thread 1:
 char c;
 c = 1;
 int x = c;

 // thread 2:
 char b;
 b = 1;
 int y = b;

For greater realism, I could have used separate compilation (within each thread) to ensure that the
compiler/optimizer won't simply ignore c and b and directly initialize x and y with 1. What are the
possible values of x and y? According to C++0x, the only correct answer is the obvious one: 1 and 1. The
reason that’s interesting is that if you take a conventional good pre-concurrency C or C++ compiler, the
possible answers are 0 and 0, 1 and 0, 0 and 1, and 1 and 1. This has been observed “in the wild.” How?
A linker might allocate c and b in the same word – nothing in the C or C++ 1990s standards says
otherwise. In that, C and C++ resemble all languages not designed with real concurrent hardware in mind.
However, most modern processors cannot read or write a single character, a processor must read or write
a whole word, so the assignment to c really is “read the word containing c, replace the c part, and write
the word back again.” Since the assignment to b is similarly implemented, there are plenty of
opportunities for the two threads to clobber each other even though the threads do not (according to their
source text) share data!

So naturally, C++0x guarantees that such problems do not occur for “separate memory locations.” In this
example, b and c will (if necessary on a given machine) be allocated in different words. Note that
different bitfields within a single word are not considered separate memory locations, so don't share
structs with bitfields among threads without some form of locking. Apart from that caveat, the C++
memory model is simply “as everyone would expect.”

Fortunately, we have already adapted to modern times and every current C++ compiler (that I know of)
gives the one right answer and has done so for years. After all, C++ has been used for serious systems
programming of concurrent systems “forever.”

Threads, locks, and atomics
In my opinion, letting a bunch of threads loose in a shared address space and adding a few locks to try to
ensure that the threads don’t stump on each other is just about the worst possible way of managing
concurrency. Unfortunately, it is also by far the most common model and deeply embedded in modern
systems. To remain a systems programming language, C++ must support that style of programming, and
support it well, so C++0x does. If you know Posix threads or boost threads, you have a first-order

C++0x October 2009 Stroustrup

18

approximation of what C++0x offers at the most basic level. To simplify the use of this fundamental (and
flawed) model of concurrency, C++0x also offers

• thread local storage (identified by the keyword thread_local)
• mutexes
• locks
• conditions variables
• a set of atomic types for lock-free programming and the implementation of other concurrency

facilities
• a notion of fine grain time duration

In my opinion lock-free programming is a necessity, but should be reserved for people who find juggling
naked sharp swords too tame [Dechev,2009]. Importantly, the whole language and standard library has
been re-specified (down to the last memory read or write) so that the effects of concurrency are well-
specified – though of course not well defined: the result of a data race is not and should not be well
defined (it should be prevented by the library or applications programmer).

As luck would have it, Anthony Williams has a paper “Multi-threading in C++0x” in the current issue of
Overload [Williams, 2009], so I don’t have to go into details. Instead, I will give an example of a way for
the programmer to rise above the messy threads-plus-lock level of concurrent programming:

template<class T, class V> struct Accum { // function object type for computing sums
 T* b;
 T* e;
 V val;
 Accum(T* bb, T* ee, const V& v) : b{bb}, e{ee}, val{vv} {}
 V operator() () { return std::accumulate(b,e,val); }
};

void comp(vector<double>& v)
 // spawn many tasks if v is large enough
{
 if (v.size()<10000) return std::accumulate(v.begin(),v.end(),0.0);

auto f0 {async(Accum{v.data(), v.data()+v.size()/4, 0.0})};
auto f1 {async(Accum{v.data()+v.size()/4, v.data()+v.size()/2, 0.0})};
auto f2 {async(Accum{v.data()+v.size()/2, v.data()+v.size()*3/4], 0.0})};
auto f3 {async(Accum{v.data()+v.size()*3/4, v.data()+v.size(), 0.0})};

return f0.get()+f1.get()+f2.get()+f3.get();

}

This is a very simple-minded use of concurrency (note the “magic number”), but note the absence of
explicit threads, locks, buffers, etc. The type of the f-variables are determined by the return type of the
standard-library function async() which called a future. If necessary, get() on a future waits for a

C++0x October 2009 Stroustrup

19

std::thread to finish. Here, it is async()’s job to spawn threads as needed and the future’s job to join()
the appropriate threads (i.e., wait for the completion of threads) . “Simple” is the most important aspect
of the async()/future design; futures can also be used with threads in general, but don’t even think of
using async() to launch tasks that do I/O, manipulate mutexes, or in other ways interact with other tasks.
The idea behind async() is the same as the idea behind the range-for statement: Provide a simple way to
handle the simplest, rather common, case and leave the more complex examples to the fully general
mechanism.

Please note that future and async() is just one example of how to write concurrent programs above the
messy threads-plus-lock level. I hope to see many libraries supporting a variety of models, some of which
might become candidates for C++1x. Unlike every other feature presented here, async() has not yet been
voted into C++0x . That’s expected to happen in October, but no man’s life, liberty, or programming
language is safe while the committee is in session (apologies to Mark Twain). [It was voted in.]

Standard Library Improvements
At the outset of the work on C++0x, I stated my ideal as “being careful, deliberate, conservative and
skeptic” about language extensions, but “opportunistic and ambitious” about new standard libraries
[Stroustrup,2002] . At first glance, the opposite happened, but when you count pages in the standard you
find that the language sections grew by about 27% and the library sections by about 100%, so maybe it
would be wrong to complain too loudly about lack of new standard library components. The most obvious
improvements to the standard library are the added library components:

• Concurrency ABI:
o thread
o mutexes, locks, atomic types,
o simple asynchronous value exchange: future, shared_future, atomic_future, and

promise
o simple asynchronous launcher: async()

• Containers:
o Hashed containers: unordered_map, unordered_multimap, unordered_set,

unordered_multiset
o Fixed sized array: array
o Singly-linked list: forward_list

• Regular expressions: regex
• Random numbers
• Time utilities: duration and time_point
• Compile-time rational arithmetic: ratio
• Resource management pointers: unique_ptr, shared_ptr, and weak_ptr
• Utility components: bind(), function, tuple
• Metaprogramming and type traits
• Garbage collection ABI

C++0x October 2009 Stroustrup

20

Whatever project you do, one or more of these libraries should help. As usual for C++, the standard
libraries tend to be utility components rather than complete solutions to end-user problems. That makes
them more widely useful.

Another set of library improvements are “below the surface” in that they are improvements to existing
library components rather than new components. For example, the C++0x vector is more flexible and
more efficient than the C++98 vector. As usual, the standard library is the first test of new language
features: If a language feature can’t be used to improve the standard library, what is it good for?

More containers
So, C++0x gets hash tables (unordered_map, etc.), a singly-linked list (forward_list), and a fixed-sized
container (array). What’s the big deal and why the funny names? The “big deal” is simply that we have
standard versions, available in every C++0x implementation (and in major C++ implementations today),
rather than having to build, borrow, or buy our own. That’s what standardization is supposed to do for us.
Also, since “everybody” has written their own version (proving that the new components are widely
useful), the standard could not use the “obvious” names: there were simply too many incompatible
hash_maps and slists “out there,” so new names had to be found: “unordered” indicates that you can’t
iterate over an unordered_map in a predictable order defined by <; an unordered_map uses a hash
function rather than a comparison to organize elements. Similarly, it is a defining characteristic of a
forward_list (a singly linked list) that you can iterate through it forwards (using a forward iterator), but
not (in any realistic way) backwards.

The most important point about forward_list is that it is more compact (and has slightly more efficient
operations) than list (a doubly-linked list): An empty forward_list is one word and a link has only a one-
word overhead. There is no size() operation, so the implementation doesn’t have to keep track of the size
in an extra word or (absurdly) count the number of elements each time you innocently ask.

The point of unordered_map and its cousins is runtime performance. With a good hash function, lookup
is amortized O(1) as compared to map’s O(log(N)), which isn’t bad for smaller containers. Yes, the
committee cares about performance.

Built-in arrays have two major problems: They implicitly “decay” to pointers at the slightest provocation
and once that has happened their size is “lost” and must be “managed” by the programmer. A huge
fraction of C and C++ bugs have this as their root cause. The standard-library array is most of what the
built-in array is without those two problems. Consider:

 array<int,6> a { 1, 2, 3 };
 a[3] { 4 };
 int x { a[5] }; // x becomes 0 because default elements are zero initialized
 int* p1 { a }; // error: std::array doesn't implicitly convert to a pointer
 int* p2 { a.data() }; // ok: get pointer to first element

Unfortunately you cannot deduce the length of an array from an initializer list:

 array<int> a3 { 1, 2, 3 }; // error: size unknown/missing

C++0x October 2009 Stroustrup

21

That’s about the only real advantage left for built-in arrays over std::array.

The standard array's features make it attractive for embedded systems programming (and similar
constrained, performance-critical, or safety-critical tasks). It is a sequence container so it provides the
usual member types and functions (just like vector). In particular, std::array knows its end() and size()
so that “buffer overflow” and other out-of-range access problems are easily avoided. Consider:

 template<class C, class V> typename C::const_iterator find(const C& a, V val)
 {
 return find(a.begin(), a.end(), val);
 }

 array<int,10> a10;
 array<double,1000> a1000;
 vector<int> v;
 // ...
 auto answer = find(a10,42);
 auto cold = find(a1000,-274.15);
 if (find(v,666)==v.end()) cout << "See no evil";

Incidentally, have you ever been annoyed by having to write things like typename C::const_iterator? In
C++0x, the compiler can deduce the return type of a simple function from its return-statement, so you
can simplify:

template<class C, class V> [] find(const C& a, V val)
 {
 return find(a.begin(), a.end(), val);
 }

You can read [] as “function;” [] is a new notation to explicitly state that a function is being declared.
[Mark Twain strikes again: This has now become uncertain if that last example can be written that way or
should be slightly different. It is the last such question.]

Better containers
I suspect that the new containers will attract the most attention, but the “minor improvements” to the
existing containers (and other standard library components) are likely to be the more important.

Initializer lists
The most visible improvement is the use of initializer-list constructors to allow a container to take an
initializer list as its argument:

 vector<string> vs = { "Hello", ", ", "World!", "\n" };
 for (auto s : vs) cout << s;

C++0x October 2009 Stroustrup

22

This is shorter, clearer, and potentially more efficient than building the vector up element by element. It
gets particularly interesting when used for nested structures:

vector<pair<string,Phone_number>> phone_book= {
{ "Donald Duck", 2015551234 },
{"Mike Doonesbury", 9794566089 },
{ "Kell Dewclaw", 1123581321 }

};

As an added benefit, we get the protection from narrowing from the { }-notation, so that if any of those
integer values do not fit into Phone_number’s representation of them (say, a 32-bit int), the example
won’t compile.

Move operators
Containers now have move constructors and move assignments (in addition to the traditional copy
operations). The most important implication of this is that we can efficiently return a container from a
function:

 vector<int> make_random(int n)
 {
 vector<int> ref(n);
 for(auto x& : ref) x = rand_int(); // some random number generator
 return ref;
 }

 vector<int> v = make_random(10000);
 for (auto x : make_random(1000000)) cout << x << '\n';

The point here is that – despite appearances – no vector is copied. In C++98, this make_random() is a
performance problem waiting to happen; in C++0x it is an elegant direct solution to a classic problem,
Consider the usual workarounds: Try to rewrite make_random() to return a free-store-allocated vector
and you have to deal with memory management. Rewrite make_random() to pass the vector to be filled
as an argument and you have far less obvious code (plus an added opportunity for making an error).

Improved push operations
My favorite container operation is push_back() that allows a container to grow gracefully:

 vector<pair<string,int>> vp;
 string s;
 int i;
 while(cin>>s>>i) vp.push_back({s,i});

This will construct a pair<string,int> out of s and i and move it into vp. Note: “move” not “copy.” There
is a push_back version that takes an rvalue reference argument so that we can take advantage of string's
move constructor. Note also the use of the {}-list syntax to avoid verbosity.

C++0x October 2009 Stroustrup

23

Emplace operations
The push_back() using a move constructor is far more efficient than the traditional copy-based one in
important cases, but in extreme cases we can go further. Why copy/move anything? Why not make space
in the vector and then construct the desired value in that space? Operations that do that are called
“emplace” (meaning “putting in place”). For example emplace_back():

 vector<pair<string,int>> vp;
 string s;
 int i;
 while(cin>>s>>i) vp.emplace_back(s,i);

An emplace function takes a variadic template (see the C++0xFAQ) argument and uses that to construct
an object of the desired type in place. Whether the emplace_back() really is more efficient than the
push_back() depends on types involved and the implementation (of the library and of variadic
templates). In this case, there doesn’t seem to be a performance difference. As ever, if you think it might
matter, measure. Otherwise, choose based on aesthetics: vp.push_back({s,i}) or vp.emplace_back(s,i).
For now, I prefer the push_back() version because I can see that an object is being composed, but that
might change over time. For new facilities, it is not immediately obvious which styles and which
combinations will be the more effective and more maintainable.

Scoped allocators
Containers can now hold “real allocation objects” (with state) and use those to control nested/scoped
allocation (e.g. allocation of elements in a container). A rather sneaky problem can occur when using
containers and user-defined allocators: Should an element’s free-store allocated sub-objects be in the
same allocation area as its container? For example, if you use Your_allocator for Your_string to
allocate its elements and I use My_allocator to allocate elements of My_vector then which allocator
should be used for string elements in My_vector<Your_string>? The solution is to tell a container when
to pass an allocator to an element. For example, assuming that I have an allocator My_alloc and I want a
vector that uses My_alloc for both the vector element and string element allocations. First, I must make
a version of string that accepts My_alloc objects:

 using xstring = basic_string< // a string with my allocator
 char,
 char_traits<char>,
 My_alloc<char>
 >;

This use of using is new in C++0x. It is basically a variant of typedef that allows us to define an alias
with the name being defined coming up front where we can see it.

Next, I must make a version of vector that accepts those xstrings, accepts a My_alloc object, and passes
that object on to the xstring:

 using svec = vector< // a string with a scoped allocator
 xstring,
 scoped_allocator_adaptor<My_alloc<xstring>>
 >;

C++0x October 2009 Stroustrup

24

The standard library “adaptor” (“wrapper type”) scoped_allocator_adaptor is used to indicate that
xstring also should use My_alloc. Note that the adaptor can (trivially) convert My_alloc<xstring> to the
My_alloc<char> that xstring needs.

Finally, we can make a vector of xstrings that uses an allocator of type My_alloc<xstring>:

 svec v {scoped_allocator_adaptor(My_alloc<xstring>{my_arena1})};

Now v is a vector of strings using My_alloc to allocate memory from my_arena1 for both strings and
characters in strings.

Why would anyone go to all that bother with allocation? Well, if you have millions of objects and hard
real-time requirements on your performance, you can get rather keen on the cost of allocation and
deallocation and concerned about the locality of objects. In such cases, having objects and their
subobjects in one place can be essential – for example, you may dramatically improve performance by
simply “blowing away” a whole allocation arena by a single cheap operation rather than deleting the
objects one by one.

Resource management pointers
Resource management is an important part of every non-trivial program. Destructors and the techniques
relying on them (notably RAII) are key to most effective resource management strategies. C++0x adds a
garbage collection ABI to our toolset, but that must not be seen as a panacea: The question is how to
combine destructor-based management of general resources (such as locks, file handles, etc.) with the
simple collection of unreferenced objects. This involves non-trivial challenges: for example, destructor-
based reasoning is essentially local, scoped, and typed whereas garbage collection is based on non-local
reasoning with little use of types (beyond knowing where the pointers are).

Since the mid 1980s, C++ programmers have used counted pointers of various forms to bridge that gap.
Indeed, reference-counted objects were the original form of garbage collection (in Lisp) and are still the
standard in several languages. They are supported by the standard library shared_ptr which provides
shared ownership and weak_ptr which can be used to address the nasty problems that circular references
causes for reference-counted pointers. All shared_ptrs for an object share responsibility for the object
and the object is deleted when its last shared_ptr is destroyed. The simplest example simply provides
exception safety:

void f(int i)
{
 X* p = new X;
 shared_ptr<X> sp(new X);
 if (i<99) throw Z(); // maybe throw an exception
 delete p;
 // sp’s destructor implicitly deletes sp’s object
}

Here the object pointed to by p is leaked if an exception is thrown, but the object pointed to by sp is not.
However, I am in general suspicious about “shared ownership” which is far too often simply a sign of

C++0x October 2009 Stroustrup

25

weak design and made necessary by a lack of understanding of a system. Consider a common use of a
shared_ptr:

shared_ptr<X> make_X(int i)
{
 // check i, etc.
 return shared_ptr<X>(new X(i));
}

void f(int i)
{
 vector<shared_ptr<X>> v;
 v.push_back(make_X(i));
 v.push_back(make_X(j));
 // …
}

Here we use shared_ptr for three things:

• Getting a large object out of a function without copying
• Passing an object from place to place by passing a pointer to it without worrying who eventually

needs to destroy it
• Having an owner of the object at all times so that the code is exception-safe (using RAII).

However, we didn’t actually share that object in any real sense, we just passed it along in a reasonably
efficient and exception-safe manner. The shared_ptr implementation keeps a use count to keep track of
which is the last shared_ptr to an object. If we looked carefully, we’d see that the use count bob up and
down between 1 and 2 as the object is passed along before the count finally goes to 0. If we moved the
pointer around instead of making copies, the count would always be 1 until its object finally needed to be
destroyed. That is, we didn’t need that count! What we saw has been called “false sharing.”

C++0x provides a better alternative to shared_ptr for the many examples where no true sharing is
needed, unique_ptr:

• The unique_ptr (defined in <memory>) provides the semantics of strict ownership.
o owns the object it holds a pointer to
o can be moved but not copied
o stores a pointer to an object and deletes that object when it is itself destroyed (such as

when leaving block scope).
• The uses of unique_ptr include

o providing exception safety for dynamically allocated memory,
o Passing ownership of dynamically allocated memory to a function,
o returning dynamically allocated memory from a function.
o storing pointers in containers

• “What auto_ptr should have been” (but that we couldn't write in C++98)

Obviously, unique_ptr relies critically on rvalue references and move semantics. We can rewrite the
shared_ptr examples above using unique_ptr. For example:

C++0x October 2009 Stroustrup

26

unique_ptr<X> make_X(int i)
{
 // check i, etc.
 return unique_ptr<X>(new X(i));
}

void f(int i)
{
 vector<unique_ptr<X>> v;
 v.push_back(make_X(i));
 v.push_back(make_X(j));
 // …
}

The logic is inherently simpler and a unique_ptr is represented by a simple built-in pointer and the
overhead of using one compared to a built-in pointer are miniscule. In particular, unique_ptr does not
offer any form of dynamic checking and requires no auxiliary data structures. That can be important in a
concurrent system where updating the count for a shared pointer can be relatively costly.

Regular expressions
The absence of a standard regular expression library for C++ has led many to believe that they have to use
a “scripting language” to get effective text manipulation. This impression is further enhanced because that
a lack of standard also confounds teaching. Since C++0x finally does provide a regular expression library
(a derivative of the boost::regex library), this is now changing. In a sense it has already changed because I
use regex to illustrate text manipulation in my new programming textbook [Stroustrup,2008]. I think
regex is likely to become the most important new library in terms of direct impact on users – the rest of
the new library components have more of the flavor of foundation libraries. To give a taste of the style of
the regex library, let’s define and print a pattern:

regex pat (R"[\w{2}\s*\d{5}(-\d{4})?]"); // ZIP code pattern XXddddd-dddd and variants
cout << "pattern: " << pat << '\n';

People who have used regular expressions in just about any language will find \w{2}\s*\d{5}(-\d{4})?
familiar. It specifies a pattern starting with two letters \w{2} optionally followed by some space \s*
followed by five digits \d{5} and optionally followed by a dash and four digits -\d{4}. If you have not
seen regular expressions before, this may be a good time to learn about them. I can of course recommend
my book, but there is no shortage of regular expression tutorials on the web, including the one for
boost::regex [Maddock,2009].

People who have used regular expressions in C or C++ notice something strange about that pattern: it is
not littered with extra backslashes to conform to the usual string literal rules. A string literal preceded by
R and bracketed by a [] pair is a raw string literal. If you prefer, you can of course use a “good old string
literal:” "\\w{2}\\s*\\d{5}(-\\d{4})?" rather than R"[\w{2}\s*\d{5}(-\d{4})?]", but for more complex
patterns the escaping can become “quite interesting.” The raw string literals were introduced primarily to

C++0x October 2009 Stroustrup

27

counteract problems experienced with using escape characters in applications with lots of literal strings,
such as text processing using regular expressions. The "[…]" bracketing is there to allow plain double
quotes in a raw string. If you want a]" in a raw string you can have that too, but you’ll have to look up
the detailed rules for raw string bracketing (e.g. in the C++0x FAQ).

The simplest way of using a pattern is to search for it in a stream:

int lineno = 0;
string line; // input buffer
while (getline(in,line)) {
 ++lineno;
 smatch matches; // matched strings go here
 if (regex_search(line, matches, pat)) // search for pat in line

cout << lineno << ": " << matches[0] << '\n';
}

The regex_search(line, matches, pat) searches the line for anything that matches the regular expression
stored in pat and if it finds any matches, it stores them in matches. Naturally, if no match was found,
regex_search(line, matches, pat) returns false.

The matches variable is of type smatch. The “s” stands for “sub”. Basically, a smatch is a vector of sub-
matches. The first element, here matches[0], is the complete match.

So what does this all add up to?
C++0x feels like a new language – just as C++98 felt like a new language relative to earlier C++. In
particular, C++0x does not feel like a new layer of features on top of an older layer or a random collection
of tools thrown together in a bag. Why not? It is important to articulate why that is or many might miss
something important, just as many were so hung up on OOP that they missed the point of generic
programming in C++98. Of course C++ is a general purpose programming language in the sense that it is
Turing complete and not restricted to any particular execution environment. But what, specifically, is it
good for? Unfortunately, I do not have a snazzy new buzzword that succinctly represents what is unique
about C++. However, let me try:

• C++ is a language for building software infrastructure.
• C++ is a language for applications with large systems programming parts.
• C++ is a language for building and using libraries.
• C++ is a language for resource-constrained systems.
• C++ is a language for efficiently expressing abstractions.
• C++ is a language for general and efficient algorithms.
• C++ is a language for general and compact data structures.
• C++ is a lightweight abstraction language.

C++0x October 2009 Stroustrup

28

In particular, it is all of those. In my mind, the first (“building software infrastructure”) points to C++’s
unique strengths and the last (“lightweight abstraction”) covers the essential reasons for that.

It is important to find simple, accurate, and comprehensible ways to characterize C++0x. The alternative
is to submit to inaccurate and hostile characterizations, often presenting C++ roughly as it was in 1985.
But whichever way we describe C++0x, it is still everything C++ ever was – and more. Importantly, I
don’t think that “more” is achieved at the cost of greater surface complexity: Generalization and new
features can save programmers from heading into “dark corners.”

C++0x is not a proprietary language closely integrated with a huge development and execution
infrastructure. Instead, C++ offers a “tool kit” (“building block”) approach that can deliver greater
flexibility, superior portability, and a greater range of application areas and platforms. And – of course
and essentially – C++ offers stability over decades.

Acknowledgements
The credit for C++0x goes to the people who worked on it. That primarily means the members of WG21.
It would not be sensible to list all who contributed here, but have a look at the references in my C++0x
FAQ: There, I take care to list names. Thanks to Niels Dekker, Steve Love, Alisdair Meredith, and Roger
Orr for finding bugs in early drafts of this paper and to Anthony Williams for saving me from describing
threads and locks.

References
[Becker,2009] Pete Becker (editor): Working Draft, Standard for Programming Language C++.
[N2914=09-0104] 2009-06-22. Note: The working paper gets revised after each standards meeting.

[Dechev,2009] Damian Dechev and Bjarne Stroustrup: Reliable and Efficient Concurrent
Synchronization for Embedded Real-Time Software. Proc. 3rd IEEE International Conference on Space
Mission Challenges for Information Technology (IEEE SMC-IT). July 2009.
http://www.research.att.com/~bs/smc_it2009.pdf

[Maddock,2009] John Maddock: Boost.Regex documentation
http://www.boost.org/doc/libs/1_40_0/libs/regex/doc/html/index.html

[Stroustrup,2009] Bjarne Stroustrup: C++0x FAQ. www.research.att.com/~bs/C++0xFAQ.html . Note:
this FAQ contains references to the original proposals, thus acknowledging their authors.

[Stroustrup,2002] Bjarne Stroustrup: Possible Directions of C++0x. ACCU keynote 2002. Note: No
C++0x does not provide all I asked for then, but that’s a different story.

[Stroustrup,2009a] Bjarne Stroustrup: Concepts and the future of C++ interview by Danny Kalev for
DevX. August 2009. http://www.devx.com/cplus/Article/42448.

[Stroustrup,2009b] Bjarne Stroustrup: The C++0x “Remove concepts” Decision. Dr. Dobbs; July 2009.
http://www.ddj.com/cpp/218600111 and Overload 92; August 2009.

http://www.research.att.com/~bs/C++0xFAQ.html�
http://www.devx.com/cplus/Article/42448�
http://www.ddj.com/cpp/218600111�

C++0x October 2009 Stroustrup

29

[Stroustrup,1994] Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley. 1994.

[Stroustrup,2008] Bjarne Stroustrup: Programming: Principles and Practice using C++. Addison-
Wesley. 2008.

[Williams,2009] Anthony Williams: Multi-threading in C++0x. Overload 93; October 2009.

	What is C++0x?
	Bjarne Stroustrup
	Abstract
	Introduction
	Simplifying simple tasks
	Deducing a type, etc.
	Range for loop
	Initialization

	Support for low-level programming
	Plain Old data and layout
	Unions
	General constant expressions
	Narrowing

	Tools for writing classes
	Initializer list constructors
	Inheriting constructors
	Move semantics
	User-defined literals

	The sum of language extensions
	Concurrency and memory model
	The memory model
	Threads, locks, and atomics

	Standard Library Improvements
	More containers
	Better containers
	Move operators
	Improved push operations
	Emplace operations
	Scoped allocators

	Resource management pointers
	Regular expressions

	So what does this all add up to?
	Acknowledgements
	References

