
_ ________________________________________________________________________________________________________________________________________________________________ _______________________________________

Appendix B
_ ________________________________________________________________________________________________________________________________________________________________ _______________________________________

Compatibility

You go ahead and follow your customs,
and I´ll follow mine.

– C. Napier

C/C++ compatibility — silent differences between C and C++ — C code that is not C++
— deprecated features — C++ code that is not C — coping with older C++ implementa-
tions — headers — the standard library — namespaces — allocation errors — templates
— for-statement initializers — advice — exercises.

B.1 Introduction

This appendix discusses the incompatibilities between C and C++ and between Standard C++ (as
defined by ISO/IEC 14882) and earlier versions of C++. The purpose is to document differences
that can cause problems for the programmer and point to ways of dealing with such problems.
Most compatibility problems surface when people try to upgrade a C program to a C++ program,
try to port a C++ program from one pre-standard version of C++ to another, or try to compile C++
using modern features with an older compiler. The aim here is not to drown you in the details of
every compatibility problem that ever surfaced in an implementation, but rather to list the most fre-
quently occurring problems and present their standard solutions.

When you look at compatibility issues, a key question to consider is the range of implementa-
tions under which a program needs to work. For learning C++, it makes sense to use the most com-
plete and helpful implementation. For delivering a product, a more conservative strategy might be
in order to maximize the number of systems on which the product can run. In the past, this has
been a reason (and sometimes just an excuse) to avoid C++ features deemed novel. However,
implementations are converging, so the need for portability across platforms is less cause for
extreme caution than it was a couple of years ago.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



816 Compatibility Appendix B

B.2 C/C++ Compatibility

With minor exceptions, C++ is a superset of C (meaning C89, defined by ISO/IEC 9899:1990).
Most differences stem from C++’s greater emphasis on type checking. Well-written C programs
tend to be C++ programs as well. A compiler can diagnose every difference between C++ and C.

B.2.1 ‘‘Silent’’ Differences

With a few exceptions, programs that are both C++ and C have the same meaning in both lan-
guages. Fortunately, these ‘‘silent differences’’ are rather obscure:

In C, the size of a character constant and of an enumeration equals s si iz ze eo of f(i in nt t). In C++,
s si iz ze eo of f(´a a´) equals s si iz ze eo of f(c ch ha ar r), and a C++ implementation is allowed to choose whatever size is
most appropriate for an enumeration (§4.8).

C++ provides the / / comments; C does not (although many C implementations provide them as
an extension). This difference can be used to construct programs that behave differently in the two
languages. For example:

i in nt t f f(i in nt t a a, i in nt t b b)
{

r re et tu ur rn n a a / /* pretty unlikely */ b
; /* unrealistic: semicolon on separate line to avoid syntax error */

}

C99 (meaning C as defined by ISO/IEC 9899:1999(E)), also provides / /.
A structure name declared in an inner scope can hide the name of an object, function, enumera-

tor, or type in an outer scope. For example:

i in nt t x x[9 99 9] ;
v vo oi id d f f()
{

s st tr ru uc ct t x x { i in nt t a a; };
s si iz ze eo of f(x x) ; /* size of the array in C, size of the struct in C++ */

}

B.2.2 C Code That Is Not C++

The C/C++ incompatibilities that cause most real problems are not subtle. Most are easily caught
by compilers. This section gives examples of C code that is not C++. Most are deemed poor style
or even obsolete in modern C.

In C, most functions can be called without a previous declaration. For example:

m ma ai in n() /* poor style C. Not C++ */
{

d do ou ub bl le e s sq q2 2 = s sq qr rt t(2 2) ; /* call undeclared function */
p pr ri in nt tf f("t th he e s sq qu ua ar re e r ro oo ot t o of f 2 2 i is s %g g\ \n n",s sq q2 2) ; /* call undeclared function */

}

Complete and consistent use of function declarations (function prototypes) is generally recom-
mended for C. Where that sensible advice is followed, and especially where C compilers provide

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



Section B.2.2 C Code That Is Not C++ 817

options to enforce it, C code conforms to the C++ rule. Where undeclared functions are called, you
have to know the functions and the rules for C pretty well to know whether you have made a mis-
take or introduced a portability problem. For example, the previous m ma ai in n() contains at least two
errors as a C program.

In C, a function declared without specifying any argument types can take any number of argu-
ments of any type at all. Such use is deemed obsolescent in Standard C, but it is not uncommon:

v vo oi id d f f() ; /* argument types not mentioned */

v vo oi id d g g()
{

f f(2 2) ; /* poor style C. Not C++ */
}

In C, functions can be defined using a syntax that optionally specifies argument types after the list
of arguments:

v vo oi id d f f(a a,p p,c c) c ch ha ar r *p p; c ch ha ar r c c; { /* ... */ } /* C. Not C++ */

Such definitions must be rewritten:

v vo oi id d f f(i in nt t a a, c ch ha ar r* p p, c ch ha ar r c c) { /* ... */ }

In C and in pre-standard versions of C++, the type specifier defaults to i in nt t. For example:

c co on ns st t a a = 7 7; /* In C, type int assumed. Not C++ */

C99 disallows ‘‘implicit i in nt t,’’ just as in C++.
C allows the definition of s st tr ru uc ct ts in return type and argument type declarations. For example:

s st tr ru uc ct t S S { i in nt t x x,y y; } f f() ; /* C. Not C++ */
v vo oi id d g g(s st tr ru uc ct t S S { i in nt t x x,y y; } y y) ; /* C. Not C++ */

The C++ rules for defining types make such declarations useless, and they are not allowed.
In C, integers can be assigned to variables of enumeration type:

e en nu um m D Di ir re ec ct ti io on n { u up p, d do ow wn n };
e en nu um m D Di ir re ec ct ti io on n d d = 1 1; /* error: int assigned to Direction; ok in C */

C++ provides many more keywords than C does. If one of these appears as an identifier in a C pro-
gram, that program must be modified to make it a C++ program:

_ __________________________________________________________________________
C++ Keywords That Are Not C Keywords_ ___________________________________________________________________________ __________________________________________________________________________

a an nd d a an nd d_ _e eq q a as sm m b bi it ta an nd d b bi it to or r b bo oo ol l
c ca at tc ch h c cl la as ss s c co om mp pl l c co on ns st t_ _c ca as st t d de el le et te e d dy yn na am mi ic c_ _c ca as st t
e ex xp pl li ic ci it t e ex xp po or rt t f fa al ls se e f fr ri ie en nd d i in nl li in ne e m mu ut ta ab bl le e
n na am me es sp pa ac ce e n ne ew w n no ot t n no ot t_ _e eq q o op pe er ra at to or r o or r
o or r_ _e eq q p pr ri iv va at te e p pr ro ot te ec ct te ed d p pu ub bl li ic c r re ei in nt te er rp pr re et t_ _c ca as st t s st ta at ti ic c_ _c ca as st t
t te em mp pl la at te e t th hi is s t th hr ro ow w t tr ru ue e t tr ry y t ty yp pe ei id d
t ty yp pe en na am me e u us si in ng g v vi ir rt tu ua al l w wc ch ha ar r_ _t t x xo or r x xo or r_ _e eq q_ __________________________________________________________________________ 






















The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



818 Compatibility Appendix B

In C, some of the C++ keywords are macros defined in standard headers:
_ ______________________________________________________________

C++ Keywords That Are C Macros_ _______________________________________________________________ ______________________________________________________________
a an nd d a an nd d_ _e eq q b bi it ta an nd d b bi it to or r b bo oo ol l c co om mp pl l f fa al ls se e
n no ot t n no ot t_ _e eq q o or r o or r_ _e eq q t tr ru ue e w wc ch ha ar r_ _t t x xo or r x xo or r_ _e eq q_ ______________________________________________________________ 










This implies that in C they can be tested using #i if fd de ef f, redefined, etc.
In C, a global data object may be declared several times in a single translation unit without

using the e ex xt te er rn n specifier. As long as at most one such declaration provides an initializer, the
object is considered defined only once. For example:

i in nt t i i; i in nt t i i; /* defines or declares a single integer ‘i’; not C++ */

In C++, an entity must be defined exactly once; §9.2.3.
In C++, a class may not have the same name as a t ty yp pe ed de ef f declared to refer to a different type in

the same scope; §5.7.
In C, a v vo oi id d* may be used as the right-hand operand of an assignment to or initialization of a

variable of any pointer type; in C++ it may not (§5.6). For example:

v vo oi id d f f(i in nt t n n)
{

i in nt t* p p = m ma al ll lo oc c(n n*s si iz ze eo of f(i in nt t)) ; /* not C++. In C++, allocate using ‘new’ */
}

C allows transfer of control to a labeled-statement (§A.6) to bypass an initialization; C++ does not.
In C, a global c co on ns st t by default has external linkage; in C++ it does not and must be initialized,

unless explicitly declared e ex xt te er rn n (§5.4).
In C, names of nested structures are placed in the same scope as the structure in which they are

nested. For example:

s st tr ru uc ct t S S {
s st tr ru uc ct t T T { /* ... */ };
/ / ...

};

s st tr ru uc ct t T T x x; /* ok in C meaning ‘S::T x;’. Not C++ */

In C, an array can be initialized by an initializer that has more elements than the array requires. For
example:

c ch ha ar r v v[5 5] = "O Os sc ca ar r"; /* ok in C, the terminating 0 is not used. Not C++ */

B.2.3 Deprecated Features

By deprecating a feature, the standards committee expresses the wish that the feature would go
away. However, the committee does not have a mandate to remove a heavily used feature – how-
ever redundant or dangerous it may be. Thus, a deprecation is a strong hint to the users to avoid the
feature.

The keyword s st ta at ti ic c, which usually means ‘‘statically allocated,’’ can be used to indicate that a
function or an object is local to a translation unit. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



Section B.2.3 Deprecated Features 819

/ / file1:
s st ta at ti ic c i in nt t g gl lo ob b;

/ / file2:
s st ta at ti ic c i in nt t g gl lo ob b;

This program genuinely has two integers called g gl lo ob b. Each g gl lo ob b is used exclusively by functions
defined in its translation unit.

The use of s st ta at ti ic c to indicate ‘‘local to translation unit’’ is deprecated in C++. Use unnamed
namespaces instead (§8.2.5.1).

The implicit conversion of a string literal to a (non-c co on ns st t) c ch ha ar r* is deprecated. Use named
arrays of c ch ha ar r or avoid assignment of string literals to c ch ha ar r*s (§5.2.2).

C-style casts should have been deprecated when the new-style casts were introduced. Program-
mers should seriously consider banning C-style casts from their own programs. Where explicit
type conversion is necessary, s st ta at ti ic c_ _c ca as st t, r re ei in nt te er rp pr re et t_ _c ca as st t, c co on ns st t_ _c ca as st t, or a combination of these
can do what a C-style cast can. The new-style casts should be preferred because they are more
explicit and more visible (§6.2.7).

B.2.4 C++ Code That Is Not C

This section lists facilities offered by C++ but not by C. The features are sorted by purpose. How-
ever, many classifications are possible and most features serve multiple purposes, so this classifica-
tion should not be taken too seriously.

– Features primarily for notational convenience:
[1] / / comments (§2.3); added to C99
[2] Support for restricted character sets (§C.3.1); partially added to C99
[3] Support for extended character sets (§C.3.3); added to C99
[4] Non-constant initializers for objects in s st ta at ti ic c storage (§9.4.1)
[5] c co on ns st t in constant expressions (§5.4, §C.5)
[6] Declarations as statements (§6.3.1); added to C99
[7] Declarations in for-statement initializers (§6.3.3); added to C99
[8] Declarations in conditions (§6.3.2.1)
[9] Structure names need not be prefixed by s st tr ru uc ct t (§5.7)

– Features primarily for strengthening the type system:
[1] Function argument type checking (§7.1); later added to C (§B.2.2)
[2] Type-safe linkage (§9.2, §9.2.3)
[3] Free store management using n ne ew w and d de el le et te e (§6.2.6, §10.4.5, §15.6)
[4] c co on ns st t (§5.4, §5.4.1); later added to C
[5] The Boolean type b bo oo ol l (§4.2); partially added to C99
[6] New cast syntax (§6.2.7)

– Facilities for user-defined types:
[1] Classes (Chapter 10)
[2] Member functions (§10.2.1) and member classes (§11.12)
[3] Constructors and destructors (§10.2.3, §10.4.1)
[4] Derived classes (Chapter 12, Chapter 15)

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



820 Compatibility Appendix B

[5] v vi ir rt tu ua al l functions and abstract classes (§12.2.6, §12.3)
[6] Public/protected/private access control (§10.2.2, §15.3, §C.11)
[7] f fr ri ie en nd ds (§11.5)
[8] Pointers to members (§15.5, §C.12)
[9] s st ta at ti ic c members (§10.2.4)
[10] m mu ut ta ab bl le e members (§10.2.7.2)
[11] Operator overloading (Chapter 11)
[12] References (§5.5)

– Features primarily for program organization (in addition to classes):
[1] Templates (Chapter 13, §C.13)
[2] Inline functions (§7.1.1); added to C99
[3] Default arguments (§7.5)
[4] Function overloading (§7.4)
[5] Namespaces (§8.2)
[6] Explicit scope qualification (operator : :; §4.9.4)
[7] Exception handling (§8.3, Chapter 14)
[8] Run-time Type Identification (§15.4)

The keywords added by C++ (§B.2.2) can be used to spot most C++-specific facilities. However,
some facilities, such as function overloading and c co on ns st ts in constant expressions, are not identified
by a keyword. In addition to the features listed, the C++ library (§16.1.2) is mostly C++ specific.

The _ __ _c cp pl lu us sp pl lu us s macro can be used to determine whether a program is being processed by a C
or a C++ compiler (§9.2.4).

B.3 Coping with Older C++ Implementations

C++ has been in constant use since 1983 (§1.4). Since then, several versions have been defined and
many separately developed implementations have emerged. The fundamental aim of the standards
effort was to ensure that implementers and users would have a single definition of C++ to work
from. Until that definition becomes pervasive in the C++ community, however, we have to deal
with the fact that not every implementation provides every feature described in this book.

It is unfortunately not uncommon for people to take their first serious look at C++ using a five-
year-old implementation. The typical reason is that such implementations are widely available and
free. Given a choice, no self-respecting professional would touch such an antique. For a novice,
older implementations come with serious hidden costs. The lack of language features and library
support means that the novice must struggle with problems that have been eliminated in newer
implementations. Using a feature-poor older implementation also warps the novice’s programming
style and gives a biased view of what C++ is. The best subset of C++ to initially learn is not the set
of low-level facilities (and not the common C and C++ subset; §1.2). In particular, I recommend
relying on the standard library and on templates to ease learning and to get a good initial impres-
sion of what C++ programming can be.

The first commercial release of C++ was in late 1985. The language was defined by the first
edition of this book. At that point, C++ did not offer multiple inheritance, templates, run-time type
information, exceptions, or namespaces. Today, I see no reason to use an implementation that

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



Section B.3 Coping with Older C++ Implementations 821

doesn’t provide at least some of these features. I added multiple inheritance, templates, and excep-
tions to the definition of C++ in 1989. However, early support for templates and exceptions was
uneven and often poor. If you find problems with templates or exceptions in an older implementa-
tion, consider an immediate upgrade.

In general, it is wise to use an implementation that conforms to the standard wherever possible
and to minimize the reliance on implementation-defined and undefined aspects of the language.
Design as if the full language were available and then use whatever workarounds are needed. This
leads to better organized and more maintainable programs than designing for the lowest-common-
denominator subset of C++. Also, be careful to use implementation-specific language extensions
only when absolutely necessary.

B.3.1 Headers

Traditionally, every header file had a .h h suffix. Thus, C++ implementations provided headers such
as <m ma ap p.h h> and <i io os st tr re ea am m.h h>. For compatibility, most still do.

When the standards committee needed headers for redefined versions of standard libraries and
for newly added library facilities, naming those headers became a problem. Using the old .h h
names would have caused compatibility problems. The solution was to drop the .h h suffix in stan-
dard header names. The suffix is redundant anyway because the < > notation indicates that a stan-
dard header is being named.

Thus, the standard library provides non-suffixed headers, such as <i io os st tr re ea am m> and <m ma ap p>. The
declarations in those files are placed in namespace s st td d. Older headers place their declarations in the
global namespace and use a .h h suffix. Consider:

#i in nc cl lu ud de e<i io os st tr re ea am m>

i in nt t m ma ai in n()
{

s st td d: :c co ou ut t << "H He el ll lo o, w wo or rl ld d!\ \n n";
}

If this fails to compile on an implementation, try the more traditional version:

#i in nc cl lu ud de e<i io os st tr re ea am m.h h>

i in nt t m ma ai in n()
{

c co ou ut t << "H He el ll lo o, w wo or rl ld d!\ \n n";
}

Some of the most serious portability problems occur because of incompatible headers. The stan-
dard headers are only a minor contributor to this. Often, a program depends on a large number of
headers that are not present on all systems, on a large number of declarations that don’t appear in
the same headers on all systems, and on declarations that appear to be standard (because they are
found in headers with standard names) but are not part of any standard.

There are no fully-satisfactory approaches to dealing with portability in the face of inconsistent
headers. A general idea is to avoid direct dependencies on inconsistent headers and localize the
remaining dependencies. That is, we try to achieve portability through indirection and localization.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



822 Compatibility Appendix B

For example, if declarations that we need are provided in different headers in different systems, we
may choose to #i in nc cl lu ud de e an application specific header that in turn #i in nc cl lu ud de es the appropriate
header(s) for each system. Similarly, if some functionality is provided in slightly different forms
on different systems, we may choose to access that functionality through application-specific inter-
face classes and functions.

B.3.2 The Standard Library

Naturally, pre-standard-C++ implementations may lack parts of the standard library. Most will
have iostreams, non-templated c co om mp pl le ex x, a different s st tr ri in ng g class, and the C standard library. How-
ever, some may lack m ma ap p, l li is st t, v va al la ar rr ra ay y, etc. In such cases, use the – typically proprietary –
libraries available in a way that will allow conversion when your implementation gets upgraded to
the standard. It is usually better to use a non-standard s st tr ri in ng g, l li is st t, and m ma ap p than to revert to C-style
programming in the absence of these standard library classes. Also, good implementations of the
STL part of the standard library (Chapter 16, Chapter 17, Chapter 18, Chapter 19) are available free
for downloading.

Early implementations of the standard library were incomplete. For example, some had con-
tainers that didn’t support allocators and others required allocators to be explicitly specified for
each class. Similar problems occurred for other ‘‘policy arguments,’’ such as comparison criteria.
For example:

l li is st t<i in nt t> l li i; / / ok, but some implementations require an allocator
l li is st t<i in nt t,a al ll lo oc ca at to or r<i in nt t> > l li i2 2; / / ok, but some implementations don’t implement allocators

m ma ap p<s st tr ri in ng g,R Re ec co or rd d> m m1 1; / / ok, but some implementations require a less-operation
m ma ap p<s st tr ri in ng g,R Re ec co or rd d,l le es ss s<s st tr ri in ng g> > m m2 2;

Use whichever version an implementation accepts. Eventually, the implementations will accept all.
Early C++ implementations provided i is st tr rs st tr re ea am m and o os st tr rs st tr re ea am m defined in <s st tr rs st tr re ea am m.h h>

instead of i is st tr ri in ng gs st tr re ea am m and o os st tr ri in ng gs st tr re ea am m defined in <s ss st tr re ea am m>. The s st tr rs st tr re ea am ms operated
directly on a c ch ha ar r[] (see §21.10[26]).

The streams in pre-standard-C++ implementations were not parameterized. In particular, the
templates with the b ba as si ic c_ _ prefix are new in the standard, and the b ba as si ic c_ _i io os s class used to be called
i io os s. Curiously enough, i io os st ta at te e used to be called i io o_ _s st ta at te e.

B.3.3 Namespaces

If your implementation does not support namespaces, use source files to express the logical struc-
ture of the program (Chapter 9). Similarly, use header files to express interfaces that you provide
for implementations or that are shared with C.

In the absence of namespaces, use s st ta at ti ic c to compensate for the lack of unnamed namespaces.
Also use an identifying prefix to global names to distinguish your names from those of other parts
of the code. For example:

/ / for use on pre-namespace implementations:

c cl la as ss s b bs s_ _s st tr ri in ng g { /* ... */ }; / / Bjarne’s string
t ty yp pe ed de ef f i in nt t b bs s_ _b bo oo ol l; / / Bjarne’s Boolean type

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



Section B.3.3 Namespaces 823

c cl la as ss s j jo oe e_ _s st tr ri in ng g; / / Joe’s string
e en nu um m j jo oe e_ _b bo oo ol l { j jo oe e_ _f fa al ls se e, j jo oe e_ _t tr ru ue e }; / / Joe’s bool

Be careful when choosing a prefix. Existing C and C++ libraries are littered with such prefixes.

B.3.4 Allocation Errors

In pre-exception-handling-C++, operator n ne ew w returned 0 0 to indicate allocation failure. Standard
C++’s n ne ew w throws b ba ad d_ _a al ll lo oc c by default.

In general, it is best to convert to the standard. In this case, this means modify the code to catch
b ba ad d_ _a al ll lo oc c rather than test for 0 0. In either case, coping with memory exhaustion beyond giving an
error message is hard on many systems.

However, when converting from testing 0 0 to catching b ba ad d_ _a al ll lo oc c is impractical, you can some-
times modify the program to revert to the pre-exception-handling behavior. If no _ _n ne ew w_ _h ha an nd dl le er r is
installed, using the n no ot th hr ro ow w allocator will cause a 0 0 to be returned in case of allocation failure:

X X* p p1 1 = n ne ew w X X; / / throws bad_alloc if no memory
X X* p p2 2 = n ne ew w(n no ot th hr ro ow w) X X; / / returns 0 if no memory

B.3.5 Templates

The standard introduced new template features and clarified the rules for several existing ones.
If your implementation doesn’t support partial specialization, use a separate name for the tem-

plate that would otherwise have been a specialization. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s p pl li is st t : p pr ri iv va at te e l li is st t<v vo oi id d*> { / / should have been list<T*>
/ / ...

};

If your implementation doesn’t support member templates, some techniques become infeasible. In
particular, member templates allow the programmer to specify construction and conversion with a
flexibility that cannot be matched without them (§13.6.2). Sometimes, providing a nonmember
function that constructs an object is an alternative. Consider:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s X X {
/ / ...
t te em mp pl la at te e<c cl la as ss s A A> X X(c co on ns st t A A& a a) ;

};

In the absence of member templates, we must restrict ourselves to specific types:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s X X {
/ / ...
X X(c co on ns st t A A1 1& a a) ;
X X(c co on ns st t A A2 2& a a) ;
/ / ...

};

Most early implementations generated definitions for all member functions defined within a tem-
plate class when that template class was instantiated. This could lead to errors in unused member

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



824 Compatibility Appendix B

functions (§C.13.9.1). The solution is to place the definition of the member functions after the
class declaration. For example, rather than

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s C Co on nt ta ai in ne er r {
/ / ...

p pu ub bl li ic c:
v vo oi id d s so or rt t() { /* use < */ } / / in-class definition

};

c cl la as ss s G Gl lo ob b { /* no < for Glob */ };

C Co on nt ta ai in ne er r<G Gl lo ob b> c cg g; / / some pre-standard implementations try to define Container<Glob>::sort()

use

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s C Co on nt ta ai in ne er r {
/ / ...

p pu ub bl li ic c:
v vo oi id d s so or rt t() ;

};

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d C Co on nt ta ai in ne er r<T T>: :s so or rt t() { /* use < */ } / / out-of-class definition

c cl la as ss s G Gl lo ob b { /* no < for Glob */ };

C Co on nt ta ai in ne er r<G Gl lo ob b> c cg g; / / no problem as long as cg.sort() isn’t called

Early implementations of C++ did not handle the use of members defined later in a class. For
example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r {
p pu ub bl li ic c:

T T& o op pe er ra at to or r[](s si iz ze e_ _t t i i) { r re et tu ur rn n v v[i i] ; } / / v declared below
/ / ...

p pr ri iv va at te e:
T T* v v; / / oops: not found!
s si iz ze e_ _t t s sz z;

};

In such cases, either sort the member declarations to avoid the problem or place the definition of
the member function after the class declaration.

Some pre-standard-C++ implementations do not accept default arguments for templates
(§13.4.1). In that case, every template parameter must be given an explicit argument. For example:

t te em mp pl la at te e<c cl la as ss s K Ke ey y, c cl la as ss s T T, c cl la as ss s L LT T = l le es ss s<T T> > c cl la as ss s m ma ap p {
/ / ...

};

m ma ap p<s st tr ri in ng g,i in nt t> m m; / / Oops: default template arguments not implemented
m ma ap p< s st tr ri in ng g,i in nt t,l le es ss s<s st tr ri in ng g> > m m2 2; / / workaround: be explicit

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



Section B.3.6 For-Statement Initializers 825

B.3.6 For-Statement Initializers

Consider:

v vo oi id d f f(v ve ec ct to or r<c ch ha ar r>& v v, i in nt t m m)
{

f fo or r (i in nt t i i= 0 0; i i<v v.s si iz ze e() && i i<=m m; ++i i) c co ou ut t << v v[i i] ;

i if f (i i == m m) { / / error: i referred to after end of for-statement
/ / ...

}
}

Such code used to work because in the original definition of C++, the scope of the controlled vari-
able extended to the end of the scope in which the for-statement appears. If you find such code,
simply declare the controlled variable before the for-statement:

v vo oi id d f f2 2(v ve ec ct to or r<c ch ha ar r>& v v, i in nt t m m)
{

i in nt t i i= 0 0; / / i needed after the loop
f fo or r (; i i<v v.s si iz ze e() && i i<=m m; ++i i) c co ou ut t << v v[i i] ;

i if f (i i == m m) {
/ / ...

}
}

B.4 Advice

[1] For learning C++, use the most up-to-date and complete implementation of Standard C++ that
you can get access to; §B.3.

[2] The common subset of C and C++ is not the best initial subset of C++ to learn; §1.6, §B.3.
[3] For production code, remember that not every C++ implementation is completely up-to-date.

Before using a major new feature in production code, try it out by writing small programs to
test the standards conformance and performance of the implementations you plan to use; for
example, see §8.5[6-7], §16.5[10], §B.5[7].

[4] Avoid deprecated features such as global s st ta at ti ic cs; also avoid C-style casts; §6.2.7, §B.2.3.
[5] ‘‘implicit i in nt t’’ has been banned, so explicitly specify the type of every function, variable,

c co on ns st t, etc.; §B.2.2.
[6] When converting a C program to C++, first make sure that function declarations (prototypes)

and standard headers are used consistently; §B.2.2.
[7] When converting a C program to C++, rename variables that are C++ keywords; §B.2.2.
[8] When converting a C program to C++, cast the result of m ma al ll lo oc c() to the proper type or change

all uses of m ma al ll lo oc c() to uses of n ne ew w; §B.2.2.
[9] When converting from m ma al ll lo oc c() and f fr re ee e() to n ne ew w and d de el le et te e, consider using v ve ec ct to or r,

p pu us sh h_ _b ba ac ck k() , and r re es se er rv ve e() instead of r re ea al ll lo oc c(); §3.8, §16.3.5.
[10] When converting a C program to C++, remember that there are no implicit conversions from

i in nt ts to enumerations; use explicit type conversion where necessary; §4.8.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.



826 Compatibility Appendix B

[11] A facility defined in namespace s st td d is defined in a header without a suffix (e.g. s st td d: :c co ou ut t is
declared in <i io os st tr re ea am m>). Older implementations have standard library facilities in the global
namespace and declared in headers with a .h h suffix (e.g. : :c co ou ut t declared in <i io os st tr re ea am m.h h>);
§9.2.2, §B.3.1.

[12] If older code tests the result of n ne ew w against 0 0, it must be modified to catch b ba ad d_ _a al ll lo oc c or to use
n ne ew w(n no ot th hr ro ow w); §B.3.4.

[13] If your implementation doesn’t support default template arguments, provide arguments explic-
itly; t ty yp pe ed de ef fs can often be used to avoid repetition of template arguments (similar to the way
the typedef s st tr ri in ng g saves you from saying b ba as si ic c_ _s st tr ri in ng g< c ch ha ar r, c ch ha ar r_ _t tr ra ai it ts s<c ch ha ar r>,
a al ll lo oc ca at to or r<c ch ha ar r> >); §B.3.5.

[14] Use <s st tr ri in ng g> to get s st td d: :s st tr ri in ng g (<s st tr ri in ng g.h h> holds the C-style string functions); §9.2.2,
§B.3.1.

[15] For each standard C header <X X.h h> that places names in the global namespace, the header
<c cX X> places the names in namespace s st td d; §B.3.1.

[16] Many systems have a "S St tr ri in ng g.h h" header defining a string type. Note that such strings differ
from the standard library s st tr ri in ng g.

[17] Prefer standard facilities to non-standard ones; §20.1, §B.3, §C.2.
[18] Use e ex xt te er rn n "C C" when declaring C functions; §9.2.4.

B.5 Exercises

1. (∗2.5) Take a C program and convert it to a C++ program; list the kinds of non-C++ constructs
used and determine if they are valid ANSI C constructs. First convert the program to strict
ANSI C (adding prototypes, etc.), then to C++. Estimate the time it would take to convert a
100,000 line C program to C++.

2. (∗2.5) Write a program to help convert C programs to C++ by renaming variables that are C++
keywords, replacing calls of m ma al ll lo oc c() by uses of n ne ew w, etc. Hint: don’t try to do a perfect job.

3. (∗2) Replace all uses of m ma al ll lo oc c() in a C-style C++ program (maybe a recently converted C pro-
gram) to uses of n ne ew w. Hint: §B.4[8-9].

4. (∗2.5) Minimize the use of macros, global variables, uninitialized variables, and casts in a C-
style C++ program (maybe a recently converted C program).

5. (∗3) Take a C++ program that is the result of a crude conversion from C and critique it as a C++
program considering locality of information, abstraction, readability, extensibility, and potential
for reuse of parts. Make one significant change to the program based on that critique.

6. (∗2) Take a small (say, 500 line) C++ program and convert it to C. Compare the original with
the result for size and probable maintainability.

7. (∗3) Write a small set of test programs to determine whether a C++ implementation has ‘‘the
latest’’ standard features. For example, what is the scope of a variable defined in a f fo or r-
s st ta at te em me en nt t initializer? (§B.3.6), are default template arguments supported? (§B.3.5), are member
templates supported? (§13.6.2), and is argument-based lookup supported? (§8.2.6). Hint:
§B.2.4.

8. (∗2.5) Take a C++ program that use <X X.h h> headers and convert it to using <X X> and <c cX X>
headers. Minimize the use of using-directives.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.


