3

A Tour of the Standard Library

Why waste time learning
when ignorance is instantaneous?
—Hobbes

Standard libraries — output — strings — input — vectors — range checking — lists —
maps — container overview — algorithms — iterators — |/O iterators — traversals and
predicates — algorithms using member functions — algorithm overview — complex
numbers — vector arithmetic— standard library overview — advice.

3.1 Introduction

No significant program is written in just a bare programming language. First, a set of supporting
libraries are developed. These then form the basis for further work.

Continuing Chapter 2, this chapter gives a quick tour of key library facilitiesto give you an idea
what can be done using C++ and its standard library. Useful library types, such as string, vector,
list, and map, are presented as well as the most common ways of using them. Doing this allows me
to give better examples and to set better exercises in the following chapters. Asin Chapter 2, you
are strongly encouraged not to be distracted or discouraged by an incomplete understanding of
details. The purpose of this chapter is to give you a taste of what is to come and to convey an
understanding of the simplest uses of the most useful library facilities. A more detailed introduc-
tion to the standard library isgivenin §16.1.2.

The standard library facilities described in this book are part of every complete C++ implemen-
tation. In addition to the standard C++ library, most implementations offer ‘‘ graphical user inter-
face'’’ systems, often referred to as GUIs or window systems, for interaction between a user and a
program. Similarly, most application development environments provide ‘‘foundation libraries”
that support corporate or industrial ‘‘standard’’ development and/or execution environments. | do
not describe such systems and libraries. The intent isto provide a self-contained description of C++

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

46 A Tour of the Standard Library Chapter 3

as defined by the standard and to keep the examples portable, except where specifically noted. Nat-
urally, a programmer is encouraged to explore the more extensive facilities available on most sys-
tems, but that is|eft to exercises.

3.2 Hello, world!
The minimal C++ program is
int main() { }

It defines a function called main, which takes no arguments and does nothing.

Every C++ program must have a function named main() . The program starts by executing that
function. Theint value returned by main() , if any, isthe program’ sreturn value to * ‘the system.”’
If no value is returned, the system will receive a value indicating successful completion. A nonzero
valuefrommain() indicatesfailure.

Typically, aprogram produces some output. Hereisaprogram that writes out Hello, world! :

#include <iostream>
int main()

{

}

The line #include <iostream> instructs the compiler to include the declarations of the standard
stream |/O facilities as found in iostream. Without these declarations, the expression

std: : cout << " Hello, world! \n";

std: : cout << " Hello, world! \n"

would make no sense. The operator << (*‘put to’’) writes its second argument onto itsfirst. In this
case, the string literal " Hello, world! \n" iswritten onto the standard output stream std: : cout. A
string literal is a sequence of characters surrounded by double quotes. In a string literal, the back-
dlash character \ followed by another character denotes a single special character. Inthiscase, \nis
the newline character, so that the characters written are Hello, world! followed by anewline.

3.3 The Standard Library Namespace

The standard library is defined in a namespace (82.4, §8.2) called std. That is why | wrote
std: : cout rather than plain cout. | was being explicit about using the standard cout, rather than
some other cout.

Every standard library facility is provided through some standard header similar to <iostream>.
For example:

#include<string>
#include<list>

This makes the standard string and list available. To usethem, the std:: prefix can be used:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 3.3 The Standard Library Namespace 47

std: : string s="Four legs Good; two legs Baaad! ";
std: : list<std: : string> slogans,

For simplicity, | will rarely use the std:: prefix explicitly in examples. Neither will | always
#include the necessary headers explicitly. To compile and run the program fragments here, you
must #include the appropriate headers (as listed in §3.7.5, §3.8.6, and Chapter 16). In addition,
you must either usethe std: : prefix or make every name from std global (88.2.3). For example:

#include<string> /1 make the standard string facilities accessible
using namespace std; /1 make std names available without std:: prefix
string s="Ignorance is bliss! "; /1 ok: string isstd::string

It is generaly in poor taste to dump every name from a namespace into the global namespace.
However, to keep short the program fragments used to illustrate language and library features, |
omit repetitive #includes and std: : qualifications. In this book, | use the standard library almost
exclusively, so if a name from the standard library is used, it either is a use of what the standard
offers or part of an explanation of how the standard facility might be defined.

3.4 Output

The iostream library defines output for every built-in type. Further, it is easy to define output of a
user-defined type. By default, values output to cout are converted to a sequence of characters. For
example,

void f()
{

}
will place the character 1 followed by the character 0 on the standard output stream. So will

cout << 10;

void g()
{

int i =10;
cout << i;

}
Output of different types can be combined in the obvious way:

void h(int i)
{

cout << "the value of i is";
cout << i;
cout << \n’;

}
If i hasthe value 10, the output will be
the value of i is 10

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

48 A Tour of the Standard Library Chapter 3

A character constant is a character enclosed in single quotes. Note that a character constant is out-
put as a character rather than as a numerical value. For example,

void k()

{ s s
cout<<’a’;
cout<<’b’;
cout <<’ ¢ ;

}

will output abc.

People soon tire of repeating the name of the output stream when outputting several related
items. Fortunately, the result of an output expression can itself be used for further output. For
example:

void h2(int i)
{

}
Thisisequivaentto h() . Streamsare explained in more detail in Chapter 21.

cout << "the value of i is" <<i<<’'\n";

3.5 Strings

The standard library provides a string type to complement the string literals used earlier. The
string type provides avariety of useful string operations, such as concatenation. For example:

string sl ="Hello";
string s2 =" world";
void mi()
{
string s3=s1+", " +s2+"!\n";

cout << s3;

}

Here, s3 isinitialized to the character sequence
Hello, world!

followed by a newline. Addition of strings means concatenation. Y ou can add strings, string liter-
als, and charactersto a string.

In many applications, the most common form of concatenation is adding something to the end
of astring. Thisisdirectly supported by the += operation. For example:

void m2(string& s1, string& s2)

{
sl=sl+"\n"; // append newline
s2+="\n"; /1 append newline

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 3.5 Strings 49

The two ways of adding to the end of a string are semantically equivalent, but | prefer the latter
because it is more concise and likely to be more efficiently implemented.
Naturally, strings can be compared against each other and against string literals. For example:
string incantation;

void respond(const string& answer)

{ if (answer == incantation) {
/1 performmagic
Llse if (answer =="yes") {
/...
}
/..
}

The standard library string class is described in Chapter 20. Among other useful features, it pro-
vides the ability to manipulate substrings. For example:

string name =" Niels Stroustrup” ;

void m3()
{

string s = name. substr(6, 10); /1 s="Sroustrup"

name. replace(0, 5, " Nicholas"); /1 name becomes "Nicholas Stroustrup”
}

The substr() operation returns a string that is a copy of the substring indicated by its arguments.
The first argument is an index into the string (a position), and the second argument is the length of
the desired substring. Since indexing starts from 0, s gets the value Stroustrup.

The replace() operation replaces a substring with avalue. In this case, the substring starting at
0 with length 5 is Niels; it is replaced by Nicholas. Thus, the final value of name is Nicholas
Stroustrup. Note that the replacement string need not be the same size as the substring that it is
replacing.

35.1 C-Style Strings

A C-style string is a zero-terminated array of characters (85.2.2). As shown, we can easily enter a
C-style string into a string. To call functions that take C-style strings, we need to be able to extract
the value of a string in the form of a C-style string. The c_str() function does that (§20.3.7). For
example, we can print the name using the C output function printf() (821.8) likethis:

void f()
{

}

printf(" name: %s\n", name. c_str());

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

50 A Tour of the Standard Library Chapter 3

3.6 Input

The standard library offers istreams for input. Like ostreams, istreams deal with character string
representations of built-in types and can easily be extended to cope with user-defined types.

The operator >> (‘*get from’’) is used as an input operator; cin is the standard input stream.
The type of the right-hand operand of >> determines what input is accepted and what is the target
of theinput operation. For example,

void f()

{
int i;
cin>>i; // readaninteger intoi
double d;

cin>>d; // readadouble-precision, floating-point number into d

}

reads a number, such as 1234, from the standard input into the integer variable i and a floating-
point number, such as 12. 34e5, into the double-precision, floating-point variable d.

Here is an example that performs inch-to-centimeter and centimeter-to-inch conversions. You
input a number followed by a character indicating the unit: centimeters or inches. The program
then outputs the corresponding value in the other unit:

int main()

{
const float factor = 2. 54; // 1inchequals2.54cm
float x, in, cm;
char ch=0;

cout << "enter length: ";

cin>>x; /1 read a floating-point number
cin >> ch; /] read a suffix
switch (ch) {
case’ i : /] inch
in=x;
cm = x* factor;
break;
case’ ¢ : /l cm
in = x/ factor;
cm=x;
break;
default:
in=cm=0;
break;
}

cout<<in<<" in=" <<cm<<" cm\n";

}

The switch-statement tests a value against a set of constants. The break-statements are used to exit

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 3.6 Input 51

the switch-statement. The case constants must be distinct. If the value tested does not match any of
them, the default is chosen. The programmer need not provide a default.
Often, we want to read a sequence of characters. A convenient way of doing that isto read into
astring. For example:
int main()
{
string str;

cout << " Please enter your name\n";
cin >> str;
cout << "Hello, " << str <<"!'\n";

}
If youtypein
Eric
theresponseis
Hello, Eric!
By default, a whitespace character (85.2.2) such as a space terminates the read, so if you enter

Eric Bloodaxe

pretending to be the ill-fated king of Y ork, the response is still

Hello, Eric!

Y ou can read awhole line using the getling() function. For example:

int main()
{
string str;

cout << " Please enter your name\n";
getline(cin, str);
cout << "Hello, " << str<<"!'\n";

}

With this program, the input
Eric Bloodaxe

yields the desired output:

Hello, Eric Bloodaxe!

The standard strings have the nice property of expanding to hold what you put in them, so if you
enter a couple of megabytes of semicolons, the program will echo pages of semicolons back at you
— unless your machine or operating system runs out of some critical resourcefirst.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

52 A Tour of the Standard Library Chapter 3

3.7 Containers

Much computing involves creating collections of various forms of objects and then manipulating
such collections. Reading characters into a string and printing out the string is a smple example.
A class with the main purpose of holding objects is commonly called a container. Providing suit-
able containers for a given task and supporting them with useful fundamental operations are impor-
tant steps in the construction of any program.

To illustrate the standard library’s most useful containers, consider a simple program for keep-
ing names and telephone numbers. This is the kind of program for which different approaches
appear ‘‘simple and obvious'’ to people of different backgrounds.

3.7.1 Vector

For many C programmers, a built-in array of (name,number) pairs would seem to be a suitable
starting point:

struct Entry {
string name;
int number;
b
Entry phone_book{ 1000] ;

void print_entry(int i) // simpleuse

{
}

However, abuilt-in array has afixed size. If we choose alarge size, we waste space; if we choose a
smaller size, the array will overflow. In either case, we will have to write low-level memory-
management code. The standard library provides a vector (§16.3) that takes care of that:

cout << phone_book[i] . name <<~ ~ << phone_book[i] . number << " \n";

vector<Entry> phone_book(1000);

void print_entry(int i) /1 simple use, exactly as for array

{
cout << phone_book[i] . name <<~ *~ << phone_book] i] . number << \n";
}
void add_entries(int n) // increasesizebyn
{
phone_book. resize(phone_book. size() +n);
}

The vector member function size() givesthe number of elements.

Note the use of parentheses in the definition of phone_book. We made a single object of type
vector<Entry> and supplied itsinitial size asan initidizer. Thisis very different from declaring a
built-in array:

vector<Entry> book(1000); /1 vector of 1000 elements
vector<Entry> books] 1000] ; /1 1000 empty vectors

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 3.7.1 Vector 53

If you make the mistake of using [] where you meant () when declaring a vector, your compiler
will aimost certainly catch the mistake and issue an error message when you try to use the vector.
A vector isasingle object that can be assigned. For example:

void f(vector<Entry>&v)

{
vector<Entry> v2 = phone_book;
V=V2;
Il ..

}

Assigning a vector involves copying its elements. Thus, after the initialization and assignment in
(), v and v2 each holds a separate copy of every Entry in the phone book. When a vector holds
many elements, such innocent-looking assignments and initializations can be prohibitively expen-
sive. Where copying is undesirable, references or pointers should be used.

3.7.2 Range Checking

The standard library vector does not provide range checking by default (816.3.3). For example:

void f()

{
int i = phone_book| 1001] . number; // 1001 isout of range
/..

}

The initialization is likely to place some random value in i rather than giving an error. This is
undesirable, so | will use a simple range-checking adaptation of vector, called Vec, in the following
chapters. A Vec islike a vector, except that it throws an exception of type out_of range if a sub-
script is out of range.

Techniques for implementing types such as Vec and for using exceptions effectively are dis-
cussed in §11.12, §8.3, Chapter 14, and Appendix E. However, the definition here is sufficient for
the examplesin this book:

template<class T> class Vec: public vector<T> {
public:

Vec() : vector<T>() { }

Vec(int s) : vector<T>(s) { }

T& operator[] (int i) { return at(i); } /1 range-checked
const T& operator[] (int i) const{ return at(i); } // range-checked
b

The at() operation is a vector subscript operation that throws an exception of type out_of range
if its argument is out of the vector’ srange (§16.3.3). If necessary, it is possible to prevent accessto
the vector<T> base; see §15.3.2.

Returning to the problem of keeping names and telephone numbers, we can now use a Vec to
ensure that out-of-range accesses are caught. For example:

Vec<Entry> phone_book(1000);

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

54 A Tour of the Standard Library Chapter 3

void print_entry(int i) /1 simple use, exactly as for vector

{
cout << phone_book] i] . name <<~ ~ << phone_book[i] . number << \n";
}
An out-of-range access will throw an exception that the user can catch. For example:
void f()
{
try {
for (int i =0; i<10000; i++) print_entry(i);
catch (out_of range) {
cout << "range error\n";
}
}

The exception will be thrown, and then caught, when phone_book] i] istried with i==1000.
If the user doesn't catch this kind of exception, the program will terminate in a well-defined manner
rather than proceeding or failing in an undefined manner. One way to minimize surprises from
exceptionsisto useamain() with atry-block asits body:
int main()
try {
/1 your code

catch (out_of range) {
cerr << "range error\n";

}
catch(...) {

cerr << "unknown exception thrown\n";
}

This provides default exception handlers so that if we fail to catch some exception, an error mes-
sage is printed on the standard error-diagnostic output stream cerr (8§21.2.1).

3.7.3 List

Insertion and deletion of phone book entries could be common. Therefore, a list could be more
appropriate than a vector for representing a simple phone book. For example:

list<Entry> phone_book;

When we use alist, we tend not to access elements using subscripting the way we commonly do for
vectors. Instead, we might search the list looking for an element with agiven value. To do this, we
take advantage of the fact that alist is a sequence as described in §3.8:

void print_entry(const string& s)
{
typedef list<Entry>:: const_iterator LlI;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 3.7.3 List 55

for (LI i = phone_book. begin(); i! = phone_book. end(); ++i) {
const Entry& e=*i; // reference used as shorthand
if (s==e name) {
cout << e name<<’ ~ << e number <<'\n";
return;

}

The search for s starts at the beginning of the list and proceeds until either sisfound or the end is
reached. Every standard library container provides the functions begin() and end() , which return
an iterator to the first and to one-past-the-last element, respectively (816.3.2). Given an iterator i,
++i advancesi to refer to the next element. Given an iterator i, the element it referstois™i.

A user need not know the exact type of the iterator for a standard container. That iterator typeis
part of the definition of the container and can be referred to by name. When we don’t need to mod-
ify an element of the container, const_iterator is the type we want. Otherwise, we use the plain
iterator type (816.3.1).

Adding elementsto alist and removing elementsfrom alist is easy:

void f(const Entry& e, list<Entry>:: iterator i, list<Entry>:: iterator p)
{
phone_book. push_front(e); /1 add at beginning
phone_book. push_back(e); /1 add at end
phone_book. insert(i, €); /1 add before the element referred to by ‘i’

phone_book. erase(p); /1 remove the element referred to by ‘p’
}

For amore complete description of insert() and erase(), see §16.3.6.

3.7.4 Map

Writing code to look up anamein alist of (name,number) pairsisrealy quite tedious. In addition,
alinear search is quite inefficient for all but the shortest lists. Other data structures directly support
insertion, deletion, and searching based on values. In particular, the standard library provides the
map type (817.4.1). A map isacontainer of pairs of values. For example:

map<string, int> phone_book;

In other contexts, amap is known as an associative array or adictionary.
When indexed by avalue of its first type (called the key) a map returns the corresponding value
of the second type (called the value or the mapped type). For example:

void print_entry(const string& s)
{

}

If no match was found for the key s, adefault value is returned from the phone_book. The default
valuefor an integer typeinamap is0. Here, | assumethat Oisn’t avalid telephone number.

if (int i = phone_book| s]) cout<<s<<’ ~ <<i<<’\n";

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

56 A Tour of the Standard Library Chapter 3

3.7.5 Standard Containers

A map, a list, and a vector can each be used to represent a phone book. However, each has
strengths and weaknesses. For example, subscripting a vector is cheap and easy. On the other
hand, inserting an element between two elements tends to be expensive. A list has exactly the
opposite properties. A map resembles alist of (key,value) pairs except that it is optimized for find-
ing values based on keys.

The standard library provides some of the most general and useful container types to allow the
programmer to select a container that best serves the needs of an application:

O Standard Container Summary O
Hvector<T> A variable-sized vector (§16.3) S
Hist<T> A doubly-linked list (§17.2.2) .
gueue<T> A gueue (817.3.2) O
Ctack<T> A stack (817.3.1) O
Ldeque<T> A double-ended queue (§17.2.3) §

riority_queue<T> A queue sorted by value (8§17.3.3) E
Cpet<T> A set (817.4.3) 0
Omultiset<T> A set in which avalue can occur many times (817.4.4)
Cmap<key,val> An associative array (817.4.1) O

Hnultimap<key,val> A map in which akey can occur many times (§17.4.2) H

The standard containers are presented in 816.2, 816.3, and Chapter 17. The containers are defined
in namespace std and presented in headers <vector>, <list>, <map>, etc. (§16.2).

The standard containers and their basic operations are designed to be similar from a notational
point of view. Furthermore, the meanings of the operations are equivalent for the various contain-
ers. In general, basic operations apply to every kind of container. For example, push_back() can
be used (reasonably efficiently) to add elements to the end of a vector as well as for a list, and
every container hasasize() member function that returns its number of elements.

This notational and semantic uniformity enables programmers to provide new container types
that can be used in a very similar manner to the standard ones. The range-checked vector, Vec
(83.7.2), is an example of that. Chapter 17 demonstrates how a hash_map can be added to the
framework. The uniformity of container interfaces also alows us to specify algorithms indepen-
dently of individual container types.

3.8 Algorithms

A data structure, such asalist or avector, is not very useful on itsown. To use one, we need oper-
ations for basic access such as adding and removing elements. Furthermore, we rarely just store
objects in a container. We sort them, print them, extract subsets, remove elements, search for
objects, etc. Conseguently, the standard library provides the most common algorithms for contain-
ers in addition to providing the most common container types. For example, the following sorts a
vector and places a copy of each unique vector element on alist:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 3.8 Algorithms 57

void f(vector<Entry>& ve, list<Entry>& le)

{
sort(ve. begin(), ve. end());
unique_copy(ve. begin(), ve. end(), le. begin());

}

The standard algorithms are described in Chapter 18. They are expressed in terms of sequences of
elements (82.7.2). A sequence is represented by a pair of iterators specifying the first element and
the one-beyond-the-last element. In the example, sort() sorts the sequence from ve. begin() to
ve. end() — which just happens to be al the elements of a vector. For writing, you need only to
specify the first element to be written. If more than one element is written, the elements following
that initial element will be overwritten.

If we wanted to add the new elements to the end of a container, we could have written:

void f(vector<Entry>& ve, list<Entry>& le)

{
sort(ve. begin(), ve. end());
unique_copy(ve. begin(), ve. end(), back inserter(le)); // appendtole

}

A back_inserter() adds elements at the end of a container, extending the container to make room
for them (819.2.4). Thus, the standard containers plus back_inserter() s eliminate the need to use
error-prone, explicit C-style memory management using realloc() (816.3.5). Forgetting to use a
back_inserter() when appending can lead to errors. For example:

void f(vector<Entry>& ve, list<Entry>& le)

{
copy(ve. begin(), ve. end(), le); /1 error: le not an iterator
copy(ve. begin(), ve. end(), le.end()); // bad: writes beyond the end
copy(ve. begin(), ve. end(), le. begin()); // overwrite elements

}

3.8.1 Useof Iterators

When you first encounter a container, a few iterators referring to useful elements can be obtained,;
begin() and end() are the best examples of this. In addition, many algorithms return iterators.
For example, the standard algorithm find looks for a value in a sequence and returns an iterator to
the element found. Using find, we can count the number of occurrences of a character in astring:

int count(const string&s, char ¢) // countoccurrencesofcins

{
int n=0;
string: : const_iterator i = find(s. begin(), s. end(), ¢);
while(i!=s end()) {
++n;
i=find(i+1, s. end(), c);
ieturn n;
}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

58 A Tour of the Standard Library Chapter 3

The find algorithm returns an iterator to the first occurrence of a value in a sequence or the one-
past-the-end iterator. Consider what happens for asimple call of count:

void f()

{
string m="Mary had a little lamb";
int a_count=count(m, " a);

}

Thefirst call tofind() findsthe” a” in Mary. Thus, the iterator points to that character and not to
s. end() , so we enter the loop. In the loop, we start the search at i+1; that is, we start one past
where we found the " a” . We then loop finding the other three " @’ s. That done, find() reaches
theend and returns s. end() so that the conditioni! =s. end() failsand we exit the loop.

That call of count() could be graphically represented like this:

| | V Voo

M[afr[y[[hfa[d] [a [T]i[t[t[l]e[[T[am[b] :

The arrows indicate the initial, intermediate, and final values of theiterator i.
Naturally, the find algorithm will work equivalently on every standard container. Conse-
quently, we could generalize the count() function in the same way:

template<class C, class T>int count(const C&v, T val)

{
typename C:: const_iterator i = find(v. begin(), v. end(), val); // "typename"; see 8C.13.5
int n=0;
while(i!=v.end()) {
++n;
++i; // skip past the element we just found
i =find(i, v. end(), val);
}
return n;
}

Thisworks, so we can say:

void f(list<complex>& Ic, vector<string>&vs, string s)

{
int i1l=count(lc, complex(1, 3));
int i2 = count(vs, " Diogenes');
int i3=count(s, X);

}

However, we don't have to define a count template. Counting occurrences of an element is so gen-
eraly useful that the standard library provides that algorithm. To be fully general, the standard
library count takes a sequence as its argument, rather than a container, so we would say:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 3.8.1 Useof Iterators 59

void f(list<complex>&Ic, vector<string>&vs, string s)

{
int i1 = count(lc. begin(), Ic. end(), complex(1, 3));
int i2 = count(vs. begin(), vs. end(), " Diogenes");
int i3 = count(s. begin(), s. end(), "X);

}

The use of a sequence allows us to use count for a built-in array and also to count parts of a con-
tainer. For example:

void g(char cg], int s2)
{

int il=count(&cs 0], &cs[s7], " 7); Il Zsinarray
int i2=count(&cs 0], &cs[sz/ 2], " Z); /I 'Zsinfirst half of array

3.8.2 Iterator Types

What are iterators really? Any particular iterator is an object of some type. There are, however,
many different iterator types because an iterator needs to hold the information necessary for doing
its job for a particular container type. These iterator types can be as different as the containers and
the specialized needs they serve. For example, a vector’siterator is most likely an ordinary pointer
because a pointer is quite areasonable way of referring to an element of a vector:

iterator: p

vector: ‘P‘i‘e‘t‘ ‘H‘e‘i‘n‘

Alternatively, avector iterator could be implemented as a pointer to the vector plus an index:

iterator: (start == p, position == 3)

vector: ‘P‘i‘e‘t‘ ‘H‘e‘i‘n‘

Using such an iterator would allow range checking (819.3).

A list iterator must be something more complicated than a simple pointer to an element because
an element of alist in general does not know where the next element of that list is. Thus, alist iter-
ator might be a pointer to alink:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

60 A Tour of the Standard Library Chapter 3

iterator: p

list; link Iinleinleink}/

b

elements: P i e t

What is common for all iterators is their semantics and the naming of their operations. For exam-
ple, applying ++ to any iterator yields an iterator that refers to the next element. Similarly, * yields
the element to which the iterator refers. In fact, any object that obeys a few simple rules like these
isan iterator (819.2.1). Furthermore, users rarely need to know the type of a specific iterator; each
container ‘‘knows’’ itsiterator types and makes them available under the conventional namesitera-
tor and const_iterator. For example, list<Entry>:: iterator is the general iterator type for
list<Entry>. | rarely have to worry about the details of how that type is defined.

3.8.3 Iteratorsand |/O

Iterators are a general and useful concept for dealing with sequences of elements in containers.
However, containers are not the only place where we find sequences of elements. For example, an
input stream produces a sequence of values and we write a sequence of values to an output stream.
Consequently, the notion of iterators can be usefully applied to input and output.

To make an ostream iterator, we need to specify which stream will be used and the type of
objects written to it. For example, we can define an iterator that refers to the standard output
stream, cout:

ostream_iterator<string> oo(cout);
The effect of assigning to * 0o is to write the assigned value to cout. For example:

int main()

{
*00="Hello, "; /1 meaning cout << "Hello, "
++00;
*oo="world! \n"; // meaning cout << "world\n"

}

Thisis yet another way of writing the canonical message to standard output. The ++00 is done to
mimic writing into an array through a pointer. Thisway wouldn’t be my first choice for that ssmple
task, but the utility of treating output as a write-only container will soon be obvious — if it isn’'t
already.

Similarly, an istream _iterator is something that allows us to treat an input stream as a read-
only container. Again, we must specify the stream to be used and the type of values expected:

istream iterator<string> ii(cin);

Because input iterators invariably appear in pairs representing a sequence, we must provide an

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 3.8.3 Iteratorsand 1/O0 61

istream iterator to indicate the end of input. Thisisthe default istream iterator:
istream _iterator<string> eos;
We could now read Hello, world! from input and writeit out again like this:
int main()
{
string sl = *ii;
++ii;
string s2 = *ii;
cout<<sl<<’ = <<82<<’\n';

}

Actualy, istream iterators and ostream iterators are not meant to be used directly. Instead, they
are typically provided as arguments to algorithms. For example, we can write a simple program to
read afile, sort the words read, eliminate duplicates, and write the result to ancther file:

int main()

{
string from, to;
cin >> from >> to; /1 get source and target file names
ifstream is(from. c_str()); /1 input stream (c_str(); see 83.5.1 and §20.3.7)
istream_iterator<string> ii(is); /1 input iterator for stream
istream _iterator<string> €os; /1 input sentinel
vector<string> b(ii, €0s); /1 bisavector initialized from input
sort(b. begin(), b. end()); /1 sort the buffer
ofstream os(to. c_str()); // output stream
ostream_iterator<string> 0o(os, "\n"); /1 output iterator for stream

unique_copy(b. begin(), b. end(), 00); /1 copy buffer to output,
/1 discard replicated values

return!is. eof() || ! os /1 return error state (83.2, §21.3.3)
}

An ifstream is an istream that can be attached to afile, and an ofstream is an ostream that can be
attached to afile. The ostream iterator’s second argument is used to delimit output values.

3.8.4 Traversalsand Predicates

Iterators allow us to write loops to iterate through a sequence. However, writing loops can be
tedious, so the standard library provides ways for a function to be called for each element of a
sequence.

Consider writing a program that reads words from input and records the frequency of their
occurrence. The obvious representation of the strings and their associated frequencies is a map:

map<string, int> histogram;

The obvious action to be taken for each string to record its frequency is:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

62 A Tour of the Standard Library Chapter 3

void record(const string& s)

{

}

Once the input has been read, we would like to output the data we have gathered. The map consists
of asequence of (string,int) pairs. Consequently, we would like to call

histogram| s] ++; /1 record frequency of ‘s’

void print(const pair<const string, int>&r)

{
}

for each element in the map (the first element of a pair is caled first, and the second element is
called second). The first element of the pair is a const string rather than a plain string because all
map keys are constants.

Thus, the main program becomes:

cout <<r. first<<” ~ <<r.second<<’'\n";

int main()
{

istream iterator<string> ii(cin);

istream iterator<string> eos;

for_each(ii, eos, record);

for_each(histogram. begin(), histogram. end(), print);
}

Note that we don’t need to sort the map to get the output in order. A map keeps its elements
ordered so that an iteration traverses the map in (increasing) order.

Many programming tasks involve looking for something in a container rather than simply doing
something to every element. For example, the find algorithm (818.5.2) provides a convenient way
of looking for a specific value. A more general variant of thisidealooks for an element that fulfills
a specific requirement. For example, we might want to search a map for the first value larger than
42. A map allows us to access its elements as a sequence of (key,value) pairs, so we can search a
map<string, int>’s sequence for a pair<const string, int> wheretheint is greater than 42:

bool gt_42(const pair<const string, int>&r)
{

}
void f(map<string, int>& m)

return r. second>42;

typedef map<string, int>:: const_iterator MI;
MI i = find_if(m. begin(), m. end(), gt_42);
/..

}

Alternatively, we could count the number of words with afrequency higher than 42:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 3.8.4 Traversalsand Predicates 63

void g(const map<string, int>& m)

int ¢42 = count_if(m. begin(), m. end(), gt_42);
/..
}

A function, such asgt_42() , that is used to control the algorithm is called a predicate. A predicate
is caled for each element and returns a Boolean value, which the algorithm uses to perform its
intended action. For example, find if() searches until its predicate returns true to indicate that an
element of interest has been found. Similarly, count_if() counts the number of times its predicate
istrue.

The standard library provides afew useful predicates and some templates that are useful for cre-
ating more (§18.4.2).

3.8.5 Algorithms Using Member Functions

Many agorithms apply afunction to elements of a sequence. For example, in §3.8.4
for_each(ii, eos, record);

callsrecord() for each string read from input.

Often, we deal with containers of pointers and we really would like to call a member function of
the object pointed to, rather than a global function on the pointer. For example, we might want to
call the member function Shape:: draw() for each element of a list<Shape* >. To handle this
specific example, we simply write a nonmember function that invokes the member function. For
example:

void draw(Shape* p)

p- >draw();

void f(list<Shape* >& sh)

for_each(sh. begin(), sh. end(), draw);
}

By generalizing this technique, we can write the example like this:
void g(list<Shape* >& sh)

for_each(sh. begin(), sh. end(), mem_fun(&Shape: : draw));
}

The standard library mem_fun() template (818.4.4.2) takes a pointer to a member function (§15.5)
as its argument and produces something that can be called for a pointer to the member’s class. The
result of mem fun(&Shape:: draw) takes a Shape* argument and returns whatever
Shape: : draw() returns.

The mem_fun() mechanism is important because it alows the standard algorithms to be used
for containers of polymorphic objects.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

64 A Tour of the Standard Library Chapter 3

3.8.6 Standard Library Algorithms

What is an algorithm? A general definition of an algorithm is *‘a finite set of rules which gives a
seguence of operations for solving a specific set of problems [and] has five important features:
Finiteness ... Definiteness ... Input ... Output ... Effectiveness”’ [Knuth,1968,81.1]. In the context of
the C++ standard library, an algorithm is a set of templates operating on sequences of elements.

The standard library provides dozens of agorithms. The algorithms are defined in namespace
std and presented in the <algorithm> header. Here are afew | have found particularly useful:

O Selected Standard Algorithms O
gor_each() Invoke function for each element (818.5.1) S
ind() Find first occurrence of arguments (818.5.2) 0
cfind_if() Find first match of predicate (§18.5.2) 0
Ceount() Count occurrences of element (818.5.3) O
Ceount_if() Count matches of predicate (§18.5.3) QU
eplace() Replace element with new value (§18.6.4) E
Teplace_if() Replace element that matches predicate with new value (818.6.4)
rcopy() Copy elements (§18.6.1) 0
Cunique_copy() Copy elementsthat are not duplicates (§18.6.1) O
Usort() Sort elements (§18.7.1) QU
ual range() Find all elements with equivalent values (§18.7.2) E
nerge() Merge sorted sequences (818.7.3) 0

These algorithms, and many more (see Chapter 18), can be applied to elements of containers,
strings, and built-in arrays.

3.9 Math

Like C, C++ wasn’t designed primarily with numerical computation in mind. However, a lot of
numerical work is donein C++, and the standard library reflects that.

3.9.1 Complex Numbers

The standard library supports a family of complex number types along the lines of the complex
class described in 82.5.2. To support complex numbers where the scalars are single-precision,
floating-point numbers (floats), double precision numbers (doubles), etc., the standard library com-
plexisatemplate:

template<class scalar> class complex {
public:
complex(scalar re, scalar im);
/..
s

The usua arithmetic operations and the most common mathematical functions are supported for
complex numbers. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

Section 3.9.1 Complex Numbers 65

/1 standard exponentiation function from <complex>:
template<class C> complex<C> pow(const complex<C>&, int);

void f(complex<float> fl, complex<double> db)

{
complex<long double> Id = fl+sgrt(db);
db +=fI* 3;
fl = pow(V fl, 2);
Il ..
}

For more details, see §22.5.

3.9.2 Vector Arithmetic

The vector described in §3.7.1 was designed to be a general mechanism for holding values, to be
flexible, and to fit into the architecture of containers, iterators, and algorithms. However, it does
not support mathematical vector operations. Adding such operations to vector would be easy, but
its generality and flexibility precludes optimizations that are often considered essential for serious
numerical work. Consequently, the standard library provides a vector, called valarray, that is less
general and more amenabl e to optimization for numerical computation:

template<class T> class valarray {
/..
T& operator[] (size_t);
/..

b

Thetypesize tisthe unsigned integer type that the implementation uses for array indices.
The usual arithmetic operations and the most common mathematical functions are supported for
valarrays. For example:

/1 standard absolute value function from <valarray>:
template<class T> valarray<T> abs(const valarray<T>&);

void f(valarray<double>& al, valarray<double>& a2)

{
valarray<double> a = al* 3. 14+a2/ al;
a2 += al* 3. 14;
a=abs(a);
double d = a2[7];
/..
}

For more details, see §22.4.

3.9.3 Basic Numeric Support

Naturally, the standard library contains the most common mathematical functions — such aslog() ,
pow() , and cos() —for floating-point types; see §22.3. In addition, classesthat describe the prop-
erties of built-in types — such as the maximum exponent of a float — are provided; see §22.2.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

66

A Tour of the Standard Library Chapter 3

3.10 Standard Library Facilities
The facilities provided by the standard library can be classified like this;

[1] Basic run-time language support (e.g., for alocation and run-time type information); see
§16.1.3.

[2] The C standard library (with very minor modifications to minimize violations of the type
system); see §16.1.2.

[3] Strings and /O streams (with support for international character sets and localization); see
Chapter 20 and Chapter 21.

[4] A framework of containers (such as vector, list, and map) and algorithms using containers
(such as general traversals, sorts, and merges); see Chapter 16, Chapter 17, Chapter 18, and
Chapter 19.

[5] Support for numerical computation (complex numbers plus vectors with arithmetic opera-
tions, BLAS-like and generalized dlices, and semantics designed to ease optimization); see
Chapter 22.

The main criterion for including aclass in the library was that it would somehow be used by almost
every C++ programmer (both novices and experts), that it could be provided in a general form that
did not add significant overhead compared to a simpler version of the same facility, and that smple
uses should be easy to learn. Essentially, the C++ standard library provides the most common fun-
damental data structures together with the fundamental algorithms used on them.

Every agorithm works with every container without the use of conversions. This framework,

conventionally called the STL [Stepanov,1994], is extensible in the sense that users can easily pro-
vide containers and algorithms in addition to the ones provided as part of the standard and have
these work directly with the standard containers and algorithms.

3.11 Advice

[1]
(2]

(3]
[4]
(5]
[6]
[7]
8]
[9]

Don't reinvent the wheel; use libraries.

Don't believe in magic; understand what your libraries do, how they do it, and at what cost
they doit.

When you have a choice, prefer the standard library to other libraries.

Do not think that the standard library isideal for everything.

Remember to #include the headers for the facilities you use; §3.3.

Remember that standard library facilities are defined in namespace std; §3.3.

Use string rather than char* ; §3.5, §3.6.

If in doubt use a range-checked vector (such as Vec); §3.7.2.

Prefer vector<T>, list<T>, and map<key, value>to T[] ; 83.7.1, 83.7.3, §3.7.4.

[10] When adding elements to a container, use push_back() or back inserter() ; 83.7.3, 83.8.
[11] Use push_back() on avector rather than realloc() onan array; §3.8.
[12] Catch common exceptionsin main() ; §3.7.2.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.

