
Preface

All problems in computer science
can be solved by another level of indirection,

except for the problem of too many layers of indirection.
– David J. Wheeler

C++ feels like a new language. That is, I can express my ideas more clearly, more simply, and
more directly in C++11 than I could in C++98. Furthermore, the resulting programs are better
checked by the compiler and run faster.

In this book, I aim for completeness. I describe every language feature and standard-library
component that a professional programmer is likely to need. For each, I provide:

• Rationale: What kinds of problems is it designed to help solve? What principles underlie
the design? What are the fundamental limitations?

• Specification: What is its definition? The level of detail is chosen for the expert program-
mer; the aspiring language lawyer can follow the many references to the ISO standard.

• Examples: How can it be used well by itself and in combination with other features? What
are the key techniques and idioms? What are the implications for maintainability and per-
formance?

The use of C++ has changed dramatically over the years and so has the language itself. From the
point of view of a programmer, most of the changes have been improvements. The current ISO
standard C++ (ISO/IEC 14882-2011, usually called C++11) is simply a far better tool for writing
quality software than were previous versions. How is it a better tool? What kinds of programming
styles and techniques does modern C++ support? What language and standard-library features sup-
port those techniques? What are the basic building blocks of elegant, correct, maintainable, and
efficient C++ code? Those are the key questions answered by this book. Many answers are not the
same as you would find with 1985, 1995, or 2005 vintage C++: progress happens.

C++ is a general-purpose programming language emphasizing the design and use of type-rich,
lightweight abstractions. It is particularly suited for resource-constrained applications, such as
those found in software infrastructures. C++ rewards the programmer who takes the time to master
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techniques for writing quality code. C++ is a language for someone who takes the task of program-
ming seriously. Our civilization depends critically on software; it had better be quality software.

There are billions of lines of C++ deployed. This puts a premium on stability, so 1985 and
1995 C++ code still works and will continue to work for decades. However, for all applications,
you can do better with modern C++; if you stick to older styles, you will be writing lower-quality
and worse-performing code. The emphasis on stability also implies that standards-conforming
code you write today will still work a couple of decades from now. All code in this book conforms
to the 2011 ISO C++ standard.

This book is aimed at three audiences:
• C++ programmers who want to know what the latest ISO C++ standard has to offer,
• C programmers who wonder what C++ provides beyond C, and
• People with a background in application languages, such as Java, C#, Python, and Ruby,

looking for something ‘‘closer to the machine’’ – something more flexible, something offer-
ing better compile-time checking, or something offering better performance.

Naturally, these three groups are not disjoint – a professional software developer masters more than
just one programming language.

This book assumes that its readers are programmers. If you ask, ‘‘What’s a for-loop?’’ or
‘‘What’s a compiler?’’ then this book is not (yet) for you; instead, I recommend my Programming:
Principles and Practice Using C++ to get started with programming and C++. Furthermore, I
assume that readers have some maturity as software developers. If you ask ‘‘Why bother testing?’’
or say, ‘‘All languages are basically the same; just show me the syntax’’ or are confident that there
is a single language that is ideal for every task, this is not the book for you.

What features does C++11 offer over and above C++98? A machine model suitable for modern
computers with lots of concurrency. Language and standard-library facilities for doing systems-
level concurrent programming (e.g., using multicores). Regular expression handling, resource
management pointers, random numbers, improved containers (including, hash tables), and more.
General and uniform initialization, a simpler for-statement, move semantics, basic Unicode support,
lambdas, general constant expressions, control over class defaults, variadic templates, user-defined
literals, and more. Please remember that those libraries and language features exist to support pro-
gramming techniques for developing quality software. They are meant to be used in combination –
as bricks in a building set – rather than to be used individually in relative isolation to solve a spe-
cific problem. A computer is a universal machine, and C++ serves it in that capacity. In particular,
C++’s design aims to be sufficiently flexible and general to cope with future problems undreamed
of by its designers.
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