
Inside: SPECIAL ALL-MACINTOSH SUPPLEMENT

AUGUST 1988

The First of
the 25-
Machi

IN DEPTH

A McGRAW-HILL PUBLICATION

The CLang __ ., __
with Kernighan and .1.)::.1. '~"' ... · ... "'•

Stroustrup, and

REVIEWS

AppleA/UX
PC Input Devices
Three 20-MHz 80386s
VersaCAD for the Mac

0 4

PRODUCT FOCUS
Script-Driven Communications

IN DEPTH

THE C LANGUAGE

ABetterC?
This child of C goes its parent one better

in compatibility and portability

T
he C++ language
is a general-p~r
pose programmmg
language that is,

except for minor details, a
superset of C. It improves on
C through its support of data
abstraction and object-ori
ented programming. The
main influences on its design,
in addition to C, were Simula-
67 and Algol68 (see refer
ences 1 and 2).

C + + was first installed 5
years ago. Today, it has sev
eral independent implementa
tions and many thousands of
installations. It is being used
for major university research
projects and for large-scale
software development in com
panies such as Apple, Apollo,
AT&T, and Sun.

It has been applied to most
branches of programming, in
cluding banking, CAD, com
piler construction, database
management, image processing, graph
ics, music synthesis, networking, pro
gramming environments, robotics , sim
ulation, scientific computation,
switching, and very-large-scale-integra
tion design.

ABetterC
C + + improves the notational conve
nience of C and provides greater type

ILLUSTRATION: ROBERT TINNEY © 1988

Bjarne Stroustrup

safety. It compensates for C' s weak
nesses without compromi sing C ' s
strengths. In particular, there is no pro
gram that can be written in C but not in
C + + , nor is there a program that can be
written in C so that it achieves greater
run-time efficiency than it does in C + +
(see reference 3).

C is clearly not the cleanest language
ever designed nor the easiest to use, but it

owes its current pervasiveness
to several key strengths:

• Flexibility: You can apply C
to almost every application
area and use almost every
programming technique with
it. The language has no inher
ent limitations that preclude
writing particular kinds of
programs.
• Efficiency: C's semantics
are "low-level." That is, its
fundamental concepts mirror
those of a traditional com
puter. Consequently, it ' s rel
atively easy, both for you and
for a compiler, to efficiently
use hardware resources for a
Cprogram.
• Availability: Given any
computer, from the tiniest
microcomputer to the largest
supercomputer, chances are
that there's an acceptable
quality C compiler available
for it, and that such a com

piler supports an acceptably complete
and standard C language and library .
There are also libraries and support tools
available, so you rarely need to design a
new system from scratch.
• Portability: While a C program may
not be easily or automatically portable
from one machine (or operating system)
to another, such a port is usually possi-

continued

AUGUST 1988 • BYTE 215

IN DEPTH

A BETTER C?

The Origin of C + +
Rich Malloy

C + + (pronounced "C plus plus"),
like many other languages, began

life as a tool to solve a specific problem.
Bjarne Stroustrup, a Bell Labs re
searcher, needed to write some simula
tion programs. Simula67, the first real
object-oriented language, would have
been ideal for these programs except for
its comparatively slow execution speed.
Dr. Stroustrup chose instead to write a
new version of C, which he called "C
with Classes." By 1983, the language
had evolved considerably and the name
was changed to C++ .

After further evolution, Bell Labs'
parent company, AT&T, began offering

ble. The level of difficulty is also usually
low enough that even porting software
that contains inherent machine depen
dencies is both technically and economi
cally feasible.

C + + preserves these strengths and
remedies some of C 's most obvious prob
lems. For example, function arguments
are type-checked in C + +, and coer
cions are applied where they are found to
be appropriate:

extern doub l e sqrt (doublt);
II declare square - root function

double dl = sqrt (2);
II fine : 2 is convert ed to
II a doubl e

double d2 sqrt (" t wo");
II error : sqrt () doe s not
II accept a string

The II notation was introduced into
C++ from BCPL (see reference 4) for
comments starting at the 11 and ending at
the end of the line.

As shown, C + + makes you specify a
function's argument types in a function
declaration so that the standard type con
versions (such as int to double) can be
implicitly applied, and type errors (such
as calling a function requiring a double
with a char* argument) can be caught at
compile time. With minor restrictions,
the draft ANSI C standard accepts the
C + + function-calling rules and the syn
tax for function declarations and func
tion definitions (see reference 5) .

C + + provides in-line substitution of
functions :

216 BYTE • AUGUST 1988

the language as a product in 1985.
The name C + + , like the language it

self, is terse but meaningful. The name,
coined by an associate of Stroustrup's
named Rick Mascitti , concisely de
scribes the evolutionary nature of the
language . The term " + +" is , of
course, the increment operator in C,
suggesting that the language C + + is "a
bit more than C." A possible alternative
name, C + , is not only less inspired but
also liable to generate a syntax error.

Rich Malloy is an associate managing
editor at BYTE. You can reach him on
BIX as "rmalloy. "

i n line int max (int a , int b)
{ return a>b?a:b ;)

i nt x = 7;
int y = 9;

max (x , y) ;
II gene r ates : x>y?x : y
max (f (x) ,x) ; II generates :
II temp=f (x); temp>x?temp:x

Unlike the macros commonly used inC,
in-line functions obey the usual type and
scope rules . Using in-line functions can
lead to apparent run-time improvements
over C. In-line substitution of functions
is especially important in the context of
data abstraction and object-oriented pro
gramming . With these styles of pro
gramming, very small functions are so
common that function-call overhead can
become a performance bottleneck.

In addition, C + + provides typed and
scoped constants, operators for free store
(dynamic store) manipulation, and many
other features .

When the ANSI C committee finishes
its work, the definition of C + + will be
reviewed to remove gratuitous incom
patibilities. This will not be a major task,
though, because C + + and ANSI C have
already absorbed most of the "new ANSI
C" features from each other.

For example, the notion of a pointer to
" raw storage," void*, was incorporated
into C++ from ANSI C, as were nota
tional conveniences such as the suffix u
indicating an unsigned literal (e.g ., 12u)
and hexadecimal character constants
(e.g. , '\ xfa') . However, the most im
portant features of C + + relate to the
support of data abstraction and object-

oriented programming and are thus out
side the scope of ANSI C and unaffected
by changes in the draft ANSI C standard.

Data Abstraction
Data abstraction is a programming tech
nique in which you define general-pur
pose and special-purpose types as the
basis for applications (see reference 6) .
These user-defined types are convenient
for application programmers since they
provide local referencing and data hid
ing. The result is easier debugging and
maintenance and improved program or
ganization.

In C + + , you can define types that
you then can use as conveniently as, and
in a manner similar to, built-in types .
Common examples are arithmetic types
such as rational and complex numbers .

class compl ex {
doubl e re, im;

public :

);

complex (double r, doub l e i)
{ re=r ; im=i ;)

complex(double r)
{ re=r ; i rn=O)

II f l oat->cornplex conve r sion
friend comp lex

operator+ (complex, c omplex);
f r i end compl ex

operator-(comple x , comple x);
II binary minus
friend complex

operator-(complex);
II unary minus
friend compl ex

operator* (complex, complex) ;
frie nd complex

operatorl (compl ex, complex) ;

The declaration of class complex speci
fies the representation of a complex num
ber and the set of operations on it. The
keyword class is C + + 's term for user
defined type . The declaration of class
complex has two parts .

The initial part specifies the represen
tation of a complex number and is by de
fault private . This representation (con
sisting of the two double-precision
floating-point numbers re and im) is ac
cessible only to the functions defined in
the declaration of class complex.

The second part of the declaration
specifies how a user can create and ma
nipulate complex numbers. It is called
the public part of the declaration be
cause it provides an interface to the gen
eral public . It consists of two construc
tors and the usual arithmetic operations.
A constructor is a function that con
structs a value of a given type. The first
constructor for complex creates a com-

continued

Circle 146 on Reader Service Card -

plex number given a coordinate pair; the
second creates a complex number given a
single floating-point number (using the
obvious mapping of the real line into the
complex plane). Together they provide
the two obvious ways of initializing a
complex variable . For example:

complex a = compl ex (1 . 2);
II a becomes (1 . 2, 0)
compl ex b = complex (3.4 , 5 . 6);

The arithmetic operations are defined by
friend functions: Specifically, these
functions are completely ordinary except
that they are granted access to the other
wise inaccessible representation of com
plex numbers by the friend declara
tions. The notation operator+ is used to
name a function defining the addition
operator, +. The number of arguments
determines whether an operator function
implements a binary or a unary operator.
For example, operator- (complex, com
plex) defines subtraction of complex
numbers, whereas operator- (complex)
defines unary minus .

Such functions can be defined as

comp l ex operator+ (comp lex al ,
complex a2)

recurn complex (al . re+a2 . re ,
al. im+a2 . i m) ;

and used like this:

main ()
{

complex a= 2 . 3;
complex b = complex (l la, 7);
complex c = a+b+comp l ex (l,4. 5);

Here, a receives the value (2 .3 , 0) by
implicit application of the constructor
complex(double) ; b receives the value
(1/ 2.3 , 7) ; and c becomes the value
(2 .3+1/ 2.3+1,7+4 .5)-that is , about
(3. 7' 11.5) .

The constructors and the operator
functions let you use complex numbers
just as if they were built into the lan
guage. In-line functions let the run-time
efficiency of a user-defined type come
close to an equivalent built-in type.

Hiding the representation is the key to
modularity . It allows the representation
of a class to be changed without affecting
users. For example, you might decide to
change the Cartesian representation of
complex used above to a polar one. Such
a change would affect only the functions
listed in the class definition. User code,
such as main () , is unaffected. Debug-

2168 BYTE • AUGUST 1988

IN DEPTH

A BETTER C?

ging can also be greatly simplified by
proper use of such data hiding.

Programming with classes shifts the
emphasis from the design of algorithms
to the design of classes (user-defined
types). Each class is a direct representa
tion of a concept in the program; each ob
ject the program manipulates is of some
·specific class that defines its behavior. In
other words , every object in a program is
of some class that defines the set of legal
operations on that object. This lets you
program in a language with a set of
types, or concepts, appropriate to the ap
plication. An engineer might use com
plex numbers, matrices, and fast Fourier
transforms, while the telephony-soft
ware designer might prefer types such as
switch, line , trunk, handset, and digit
buffer.

In C + +, this style of programming is
supported by a general and flexible set of
mechanisms for data hiding , by con
structors providing optional guaranteed
initialization, by destructors providing
optional guaranteed cleanup (termina
tion) , and by operator overloading and
user-defined coercions providing a conve
nient and conventional notation for many
kinds of applications. All these features
are cleanly integrated into the language,
and all uses are checked for type viola
tions and ambiguities at compile time to
catch errors as early as possible and to
avoid unnecessary run-time overheads.

Object-Oriented Programming
Concepts do not usually come as self
contained entities. On the contrary, most
concepts relate to other concepts in a va
riety of ways. For example, the concepts
of airplane and car relate to those of vehi
cle and transport; the concepts of mam
mal and bird relate to each other through
the more general concept of vertebrate
animal, through the concept of food , and
so forth; and the concepts of a circle ,
rectangle, and polygon involve the gen
eral concept of a shape.

Therefore, representing concepts di
rectly as types in a program also requires
ways of expressing the relations between
types. C++ lets you specify hierarchi
cally organized classes. This is the key
feature supporting object-oriented pro
gramming. Hierarchical organization is
an extremely important way of coping
with complex issues in many fields and
has , not surprisingly, also proven to be a
good way of organizing programs in a
wide variety of application areas.

Consider defining a type shape for
use in a graphics system. The system has
to support circles, triangles, squares ,
and many other shapes. First, you spec-

ify a class that defines the general prop
erties of all shapes:

class shape {
point center;
color co l;
I I ...

public :

};

point where () { return center;
void move (point to)

{ center = to ; draw ();
virtual void draw() ;
virtua l void rotate (int);
II

You can define the calling interfaces
for draw () and rotate () , but you can
not yet define their implementation .
They are, therefore, declared virtual
(the Simula67 and C + + term for "to be
defined later in a class derived from this
one"). They will be defined for each spe
cific shape. Given this definition of class
shape, you can write general functions
manipulating shapes:

void rotate_al l(shape* v [],
int size , i nt angl e)

II rotate all members of
II vector 11 V " of s i ze "size"
II "angle " degrees
{

for (int i = 0; i < size ; i++)
v [i] ->rotate (angle) ;

For each shape v[i] , the proper r o
tate () function for the actual type of
the object will be called. That "actual
type" is not known at compile time.

To define a particular shape, you must
say that it is a shape and specify its par
ticular properties :

class circle : public shape
II a circ l e i s a shape

int radius ;
public :

void draw() { I* ... *I) ;
void r otate (int } {}
II yes, the nul l funct i on

};

A class is said to be derived from another
class, which is then called its base class.
Here, circle is derived from shape, and
shape has a base class of circle. A de
'rived class is said to inherit the proper
ties of its base. In addition to such inher
ited properties , a derived class has its
own specific properties . For example,
class circle has the member radius in
addition to the members col and center
that it inherited from class shape.

Note that the new shape center was
continued

addesJ without modifying "old code,"
such as the rotate_all() function and
other shapes. The ability to extend a pro
gram by adding new variations of a basic
concept (i.e., adding new derived classes
given a base class) without touching old
code is a major boon. Using traditional
techniques, such additions require ac
cess to the source code of the system you
want to extend, require understanding of
the key implementation details of the old
code, and carry the risk of introducing
errors in the already-tested old code.
Furthermore, using derived classes, im
provements and bug fixes done to a base
class are automatically "inherited" by
every class derived from it.

I chose the "shape" example because
everyone understands about shapes, not
because object-oriented programming
has anything particular to do with graph
ics. Graphics is a good area for object
oriented techniques, but most uses of
such techniques in C + + have nothing to
do with graphics. Other examples are
compilers, operating-system kernels and
device drivers, switching software, and
network simulations.

In many contexts, it is important that
the C++ virtual-function mechanism
be nearly as efficient as a "normal"
function call. The additional run-time
overhead is about five memory refer
ences (depending on the machine archi
tecture and the compiler), and the mem
ory overhead is one word per object plus
one word per virtual function per class.

C + + provides multiple inheritance
(see reference 7), or the ability to derive
a class from more than one direct base
class. For example, if you have a class
task representing the concept of a con
current activity, and a class displayed
representing the concept of something
displayed on the screen, you might write:

class displayed_ task
: public displayed, public task
{ 0 0 0 }

Now a displayed_ task is really both a
displayed and a task, so a displayed_
task can be used wherever a displayed
or a task is required:

void wait(task*,int);
II do something to a task
void update(displayed*);
(I do something to a displayed

f ()
{

II make a displayed_task:
displayed task* dtp =

new displayed_task(
I* appropriate arguments *I);

216D BYTE • AUGUST 1988

IN DEPTH

A BETTER C?

wait (ctp ,lO);
II use displayed_task as a task
update (ctp);
II displayed_task as displ ayed

Naturally, the usual type-checking
rules, ambiguity rules, and encapsula
tion mechanisms are applied to multiple
inheritance to ensure the usual degree of
safety and efficiency.

Why C++?
What distinguishes C + + from other
programming languages? C + + was de
signed under severe constraints of com
patibility, internal consistency, and effi
ciency. No feature was included that
would cause a serious incompatibility
with C at the source or linker levels;
would cause run-time or space overheads
for a program that did not use it; would
increase run time or requirements for a C
program; would significantly increase
the compile time compared with C; or
could only be implemented by making
more demands than in a traditional pro
gramming environment.

Traditional languages such as C, FOR
TRAN, Pascal, and Modula-2 don't pro
vide anything comparable to C++'s fea
tures for data abstraction and object
oriented programming. This gives the
C + + programmer a strong advantage
when it comes to understanding, writing,
and maintaining programs. It's often im
portant that the improved structure of
C + + programs be achieved without
sacrificing efficiency or restricting the
range of areas for which the language is
suitable.

Ada provides facilities for data ab
straction that may not be as elegant as
C + + 's but should be about as effective
in actual use. But Ada doesn't provide an
inheritance mechanism to support ob
ject-oriented programming, so C++
has greater expressive power in this area.

C + + is distinguished among lan
guages that support object-oriented pro
gramming, such as Smalltalk, by a vari
ety of factors: its emphasis on program
structure; the flexibility of encapsulation
mechanisms; its smooth support of a
range of programming paradigms; the
portability of C++ implementations;
the run-time efficiency (in both time and
space) of C + + code; and its ability to
run without a large run-time system.

C + + is a programming language in
the traditional sense and is not a complete
program development system or a com
plete execution environment. It can be in
stalled easily into an existing C program
development or execution environment,

and C + +-specific tools can then be
added as needed. In addition, several
C + +-specific environments are being
built to suit specific needs (see refer
ences 8 and 9).

The emphasis on explicit static struc
ture (as opposed to a weak type-check
ing, as in C, or purely dynamic type
checking, as in Smalltalk) is particularly
important for projects involving many
programmers and for individual pro
grammers using large libraries written
by others. C + + ' s strong type-checking
and encapsulation mechanisms have re
peatedly proven themselves by dramati
cally reducing integration time for larger
projects. Similarly, C + + provides a
good base for designing libraries with
precisely defined, elegant, and statically
checked interfaces.

C++ has a single, very flexible, type
system. This makes it possible to use hy
brid programming styles without violat
ing the C++ type system. It also lets you
choose a style of programming closely
matching individual application areas. •

REFERENCES
1. Birtwistle, Graham, et al. S/MULA BE
GIN. Studentlitteratur, Lund, Sweden,
1971. Chartwell-BrattLtd., U.K., 1980.
2. Woodward, P. M., and S. G. Bond.
Algol68-R Users Guide. London: Her Maj
esty 's Stationery Office, 1974.
3. Stroustrup, Bjarne. The C++ Program
ming Language. Reading, MA: Addison
Wesley, 1986.
4. Richards, Martin, and Colin Whitby
Strevens. BCPL-The Language and its
Compiler. New York: Cambridge Univer
sity Press, 1980.
5. Prosser, David F. Draft Proposed Amer
ican National Standard for Information
Systems-Programming Language C X3
Secretariat, CBEMA, Washington.
6. Stroustrup, Bjarne. "What Is 'Object
Oriented Programming'?" IEEE Software
Magazine, May 1988.
7. Stroustrup, Bjarne. The Evolution of
C++: I985-1987. Santa Fe, NM: Proc.
US EN IX C++ Workshop, November
1987.
8. Linton, Mark A. "Distributed Manage
ment of a Software Database." IEEE Soft
ware, November 1987, pp. 70-76.
9. Stroustrup, Bjarne. Possible Directions
for C++: 1985-1987. Santa Fe, NM:
Proc. USENIX C++ Workshop, Novem
ber 1987.

Bjarne Stroustrup is the designer and
original implementor of C + +. He works
at AT&T Bell Labs, Murray Hill, New
Jersey. You can reach him on BIX as
"bstroustrup. "

