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The implication puts a new emphasis on the old challenge 
to software developers: deliver code that is both correct 
and efficient. The benefits achievable with better system 
design and implementation are huge. If we can double the 
efficiency of server software, we can make do with one 
server farm instead of two (or more). If we can double the 
efficiency of critical software in a smartphone, its battery 
life almost doubles. If we halve the bug count in safety-
critical software, we can naively expect only half as many 
people to sustain injuries.

This view contrasts with the common opinion that 
human effort is the factor to optimize in system develop-
ment and that computing power is essentially free. The 
view that efficiency and proper functioning are both para-
mount (and inseparable) has profound implications for 
system design. However, not all software is the same—it 
doesn’t all “live” under the same conditions and with the 
same constraints, so we should adjust our software de-
velopment techniques and tools to take that into account. 
Similarly, we should adjust our expectations of software 
developers. One size doesn’t fit all when it comes to soft-
ware, software development, or software developers.

I call software where failure can cause serious injury or 
serious economic disruption infrastructure software. Such 
software must be dependable and meet far more stringent 
reliability standards than “regular software.” Because or-
dinary personal computers and smartphones are used as 
platforms for applications that also serve as infrastructure 
in my operational use of that word, the fundamental soft-
ware of such platforms is itself infrastructure, as is the 
software used to deploy it. For example, if the software 
that updates the operating system on a cell phone malfunc-
tions, crucial calls might not get through, and someone 
could be injured or bankrupted. 

O ur lives are directly affected by software correct-
ness and efficiency:

•• A datacenter, as run by a major corporation such as 
Amazon, AT&T, Google, or IBM, uses about 15 MW per 
day (equivalent to 15,000 US homes) and the set-up 
cost is about US$500 million. In 2010, Google used 
2.26 million MW to run its servers.1

•• A smartphone battery lasts for less than a day if used 
a lot.

•• We’re surrounded by systems that, if they fail, can 
injure people or ruin them economically. Examples 
include automobile control systems, banking soft-
ware, telecommunication software, and just about 
any industrial control software.

•• We can’t send a repairman to fix a software bug in a 
space probe, and sending one to reprogram a ship’s 
engine on the high seas is impractical. Trying to fix a 
software error in a consumer device, such as a camera 
or a TV set, typically isn’t economical.

Infrastructure software needs more strin-
gent correctness, reliability, efficiency, and 
maintainability requirements than non- 
essential applications. This implies greater 
emphasis on up-front design, static struc-
ture enforced by a type system, compact 
data structures, simplified code structure, 
and improved tool support. Education for 
infrastructure and application developers 
should differ to reflect that emphasis. 
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The increases in demands on hardware 
and software will continue: human 
expectation grows even faster than 
hardware performance.
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One of my inspirations for quality infrastructure soft-
ware is the requirement AT&T placed on switches in its 
telecommunication system backbone: no more than two 
hours of downtime in 40 years (www.greatachievements.
org/?id=3639). Hardware failure, loss of main power, or a 
truck colliding with the building that houses the switch 
isn’t an excuse. To reach such goals, we need to become 
very serious about reliability, which is a vastly different 
mindset from “we must get something—anything—to 
market first.”

DO MORE WITH LESS
Software reliability is improving. If it were not, we 

would have been in deep trouble already. Our civilization 
runs on software. If it were not for computerized systems, 
most of us would starve. Our dependence on computerized 
systems is increasing, the complexity of those systems is 
increasing, the amount of code in those systems is increas-
ing, and the hardware requirements to run those systems 
are increasing. But our ability to comprehend them is not. 

Many of the improvements in system reliability over 
the years have been achieved through deep layering of 
software, each layer distrusting other software in the 
system, checking and rechecking information.2 Further-
more, layers of software are used to monitor hardware 
and, if possible, compensate for hardware errors. Often, 
applications are interpreted or run in virtual machines that 
intentionally isolate them from hardware. These efforts 
have resulted in systems that are more reliable, but huge 
and less well understood. 

Another contribution to the improved reliability 
has come from massive testing. The cost of maintain-
ing and deploying software is increasing. The increases 
in demands on hardware and software will continue: 
human expectation grows even faster than hardware 
performance.

Further consumers of computing power are tools and 
languages aimed at making programming easier and less 
error-prone. Unfortunately, many such tools move deci-
sions from design time to runtime, consuming memory 
and processor cycles. We compensate for lack of design-
time knowledge by postponing decisions until runtime and 
adding runtime tests to catch any errors.

We compensate for our lack of understanding by 
increasing our requirements for computing power. For ex-

ample, my word processing software is so “sophisticated” 
that I often experience delays using it on my dual-core 
2.8-GHz computer. But processors are no longer getting 
faster. The number of transistors on a chip still increases 
according to Moore’s law, but those transistors are used 
for more processors and more memory.  Also, we depend 
more and more on energy-consuming server farms and 
on portable “gadgets” for which battery life is an issue. 
Software efficiency equates to energy conservation.

Reliability and energy efficiency require improvements 
in many areas. Here, I discuss implications for software. 
Basically, my conjecture is that we must structure our 
systems to be more comprehensible. For reliability and 
efficiency, we must compute less to get the results we need. 

Doing more with less is an attractive proposition, but it 
isn’t cost-free: it requires more work up front in the infra-
structure software. We must look at high-reliability systems 
as our model, rather than the techniques used to produce 
“Internet-time Web applications.” Building high-efficiency, 
high-reliability systems can be slow, costly, and demand-
ing of developer skills. However, this expenditure of time, 
money, and talent to develop infrastructure hardware isn’t 
just worthwhile, it’s necessary. In the longer term, it might 
even imply savings in maintenance time and costs.

PROGRAMMING TECHNIQUES
I base the discussion here on very simple code ex-

amples, but most current infrastructure software doesn’t 
systematically use the techniques I suggest. Code that did 
so would differ dramatically from what we see today and 
would be much better for it. 

I won’t try to show anything radically new, but I high-
light what I hope to see deployed over the next 10 years. 
My examples are in C++, the programming language  
I know best.3,4 Of the languages currently used for infra-
structure programming, C++ most closely approximates 
my ideals, but I hope to see even better language and tool 
support over the next decade. There is clearly much room 
for improvement.

Compute less
On 23 September 1999, NASA lost its US$654 million 

Mars Climate Orbiter due to a navigation error. “The root 
cause for the loss of the MCO spacecraft was the failure 
to use metric units in the coding of a ground software 
file, ‘Small Forces,’ used in trajectory models. Specifi-
cally, thruster performance data in English units instead 
of metric units was used.”5 The amount of work lost was 
roughly equivalent to the lifetime’s work of 200 good en-
gineers. In reality, the cost is even higher because we’re 
deprived of the mission’s scientific results until (and if) it 
can be repeated. The really galling aspect is that we were 
all taught how to avoid such errors in high school: “Always 
make sure the units are correct in your computations.” 
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Why didn’t the NASA engineers do that? They’re indisput-
ably experts in their field, so there must be good reasons.

No mainstream programming language supports units, 
but every general-purpose language allows a program-
mer to encode a value as a {quantity,unit} pair. We can 
encode enough of the ISO standard SI units (meters, kilo-
grams, seconds, and so on) in an integer to deal with all 
of NASA’s needs, but we don’t because that would almost 
double the size of our data. Furthermore, checking the 
units in every computation would more than double the 
amount of computation needed.

Space probes tend to be both memory and compute 
limited, so the engineers—just as essentially everyone else 
in their situation has done—decided to keep track of the 
units themselves (in their heads, in the comments, and 
in the documentation). In this case, they lost. Compilers 
read neither documentation nor comments, and a mag-
nitude crossed an interface without its unit and suddenly 
took on a whole new meaning (which was a factor of 4.45 
wrong). One conclusion we can draw is that integers and 
floating-point numbers make for very general but essen-
tially unsafe interfaces—a value can represent anything.

It isn’t difficult to design a language that supports SI 
units as part of its type system. In such a language, all unit 
checking would be done at compile time and only unit-
correct programs would get to execute:

Speed sp1 = 100m/9.8s; // fast for a human
Speed sp2 = 100m/9.8s2; // error: m/s2 is acceleration 
Speed sp3 = 100/9.8s; // error: speed must be m/s
Acceleration acc = sp1/0.5s; // too fast for a human

General-purpose programming languages don’t provide 
direct support for SI units. Some reasons are historical, but 
the deeper reason is that a language might support a va-
riety of such notions (such as other unit systems, systems 
for naming dates, markers to help concurrency, and timing 
constraints). However, we can’t build every useful notion 
into a language, so language designers, programming 
teachers, and practitioners have preferred the simplicity 
of doing nothing. 

Could a tool or a specialized language supply SI units? 
In theory, yes, but in practice, specialized languages suffer 
from high development and maintenance costs and tend 
not to work well with other specialized tools and languages. 
Features work best when they’re integrated into a general-
purpose language and don’t need separate tool chains.6

Interestingly, a sufficiently expressive language can 
achieve compile-time unit checking without language ex-
tensions. In C++, we can define Speed as a simple template 
that makes the unit (meters per second) part of the type 
and holds only the quantity as a runtime value. In the 
recent ISO C++ standard C++11, we can even define liter-
als of those types so that the code fragment above is legal. 
Doing so isn’t rocket science; we simply map the rules of 
the SI units into the general type system:

template<int M, int K, int S>
struct Unit {	 // a unit in the MKS system
    enum { m=M, kg=K, s=S }; 	
};

template<typename Unit> // magnitude with unit
struct Value {
    double val;	    // the magnitude
    explicit Value(double d)
         : val(d) {} // construct a Value from a double
};

using Speed = Value<Unit<1,0,-1>>;        // m/s
using Acceleration = Value<Unit<1,0,-2>>; // m/s/s

using Second = Unit<0,0,1>; 	// s
using Second2 = Unit<0,0,2>;	// s*s

constexpr
Value<Second> operator”” s(long double d)
 	 // a f-p literal suffixed by 's'
{
   return Value<Second> (d); 
}

constexpr
Value<Second2> operator”” s2(long double d) 
      // a f-p literal  suffixed by 's2'
{
  return Value<Second2 > (d);
}

If you aren’t familiar with modern C++, much of this 
code is cryptic. However, it’s fundamentally simple and 
performs all checking and conversions at compile time. 
Obviously, handling the complete SI unit system takes 
more code—about  three pages in all.

Why bother with the user-defined literals, such as 9.8s, 
and 100m? Many developers dismiss this as redundant and 
distracting “syntactic sugar.” Although a library support-
ing the SI system has been available in C++ for a decade, 
very few people have used it. Most engineers and physi-
cists simply refuse to write code using variants like this:

// a very explicit notation (quite verbose):
Speed sp1 = Value<1,0,0> (100)/ Value<0,0,1> (9.8); 

// use a shorthand notation:
Speed sp1 = Value<M> (100)/ Value<S> (9.8);

// abbreviate further still:
Speed sp1 = Meters(100)/Seconds(9.8); 

Speed sp1 = M(100)/S(9.8); // this is getting cryptic

Notation matters. SI units are important and should 
be supported, but so should a variety of other notions. 
The fundamental point here is that we can improve 
code quality without adding runtime costs. The use of 
a static type system improves code quality by reducing 
the number of errors and moves checking to compile 
time. In fact, we can move much simple computation to 
compile time. 

Compile-time computation has been done in a variety 
of languages for decades. Before that (and sometimes still) 
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We can improve code quality without 
adding runtime costs. 

developers simply precomputed answers and added them 
to the source code or as data inputs, which is rather ad 
hoc. In C, compile-time computation implies a rat’s nest 
of complicated and error-prone macros. Such computation 
is essentially untyped because most information must be 
encoded as integers. For infrastructure code, I suggest a 
more systematic and structured approach: type-rich pro-
gramming at compile time.7 The SI units example is an 
illustration.

Compile-time evaluation (and immutability in general) 
becomes more important as more systems become con-
current: You can’t have a data race on a constant.	

Access memory less
When I first wrote microcode to squeeze the last bit of 

efficiency out of a processor, a good rule of thumb was that 
the system could execute nine instructions while waiting 
for a memory read to complete. Today, that factor is 200 to 
500, depending on the architecture. Memory has become 
relatively slower. In response, hardware architects have 
added systems of registers, pipelines, and caches to keep 
the instructions flowing. This has major implications for 

software: How do I organize my code and data to minimize 
memory usage, cache misses, and so on? My first-order 
answer is

•• don’t store data unnecessarily,
•• keep data compact, and
•• access memory in a predictable manner. 

This again has implications on software design. Consider 
a simple example: generate N random integers and insert 
them into a sequence so that each is in its proper position in 
the numerical order. For example, if the random numbers 
are 5, 1, 4, and 2, the sequence should grow like this:

5
1 5
1 4 5
1 2 4 5

Once the N elements are in order, we remove them one 
at a time by selecting a random position in the sequence 
and removing the element there. For example, if we choose 
positions 1, 2, 0, and 0 (using 0 as the origin), the sequence 
should shrink like this:

1 2 4 5
1 4 5
1 4
4

Now, for which N is it better to use a linked list than a 
vector (or an array) to represent the sequence? If we naively 
apply complexity theory, that answer will be something 
like, “Is this a trick question? A list, of course!” We can 
insert an element into and delete from a linked list without 
moving other elements. In a vector, every element after the 
position of an inserted or deleted element must be moved. 
Worse still, if you don’t know the maximum number of 
elements in advance, it’s occasionally necessary to copy 
the entire vector to make room for another element. 

Depending on the machine architecture and the pro-
gramming language, the answer will be that the vector 
is best for small to medium values of N. When I ran the 
experiment on my 8-Gbyte laptop, I found N to be much 
larger than 500,000. The red line in Figure 1 shows the 
time taken for the list, and the blue line the time taken 
by the vector.

This isn’t a subtle difference. The x-axis is in 100,000 
elements, and the y-axis in seconds. So for “small lists,” 
a vector is a better representation of a list than a linked 
structure. This is also true for numbers too small to show 
on this graph. 

Why? First, it takes 4 bytes to store a 4-byte integer in 
a vector, but it takes 12 bytes to store it in a doubly linked 
list (assuming 4-byte pointers as links). Saying “list” tri-
pled the memory requirement. Actually, it’s worse because 
many general-purpose list types store each element as 
a separate object in dynamic (heap, free store) memory, 
adding another word or two of memory overhead per ele-
ment. The green line in Figure 1 is a list that I optimized  
by preallocating space for elements and where each ele-
ment wasn’t a separate object. This demonstrates that even 
though allocation overheads are significant, they don’t 
explain the vector’s fundamental advantage.

Not only are the list nodes large, they’re scattered in 
memory, implying that when we traverse the list to find 
a position for insertion or deletion, we randomly access 
memory locations in the area that stored the list, causing 
cache misses. On the other hand, the hardware really likes 
the vector’s sequential access of words in memory. In an 
attempt at fairness, I didn’t use a binary search to speed 
up insertion into the vector. Nor did I use random access 
to find the deletion point in the vector version. This keeps 
the number of elements traversed the same for all ver-
sions. In fact, I used identical generic code for the vector 
and the lists.

Is this an academic curiosity? No. Infrastructure 
application developers tell me that compactness and 
predictable access patterns are essential for efficiency. 
Power consumption is roughly proportional to the 
number of memory accesses, so the red (list) and blue 
(vector) lines are first-order approximations to the drain 
on a smartphone battery or the number of server farms 
needed. 



Figure 3. Linked representation.
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We should prefer sequential access of compact struc-
tures, not thoughtlessly use linked structures, and avoid 
general memory allocators that scatter logically related 
data. We must measure to avoid being blind-sided by un-
expected phenomena. Our systems are too complex for us 
to guess about efficiency and use patterns. 

You might say, “But I don’t use sequences of 100,000 ele-
ments.” Neither do I (most of the time), but using 10,000 lists 
of 100 elements has the same efficiency implications. To 
developers who write code for huge server farms, 100,000 
items are barely noticeable. Consider what’s needed to 
recognize a repeat visitor to a major website and retrieve 
that person’s preferences in time to display a personalized 
welcome screen. Compactness goes hand in hand with ef-
forts to subdivide larger datasets as well as with the design 
of algorithms to ensure concurrent execution.8

For a small system such as an embedded processor, the 
differences between compact and linked structures are 
significant even for small datasets. Even individual object 
layouts can produce efficiency effects. Consider a simple 
vector of two-dimensional points:

vector<Point> vp = {
   Point{1,2}, Point{3,4}, Point{5,6}, Point{7,8} 
};

We can represent this in memory as a compact struc-
ture with a handle, as in Figure 2, where the blue box 
represents the overhead required to place memory in 
dynamic storage. This compact layout is found in a tra-
ditional systems programming language, such as C or 
C++. If necessary, it’s possible—at the cost of some flex-
ibility—to eliminate the handle and the dynamic storage 
overhead.

Alternatively, we can represent the vector as a tree struc-
ture, as in Figure 3. This layout is found in a language that 
doesn’t emphasize compact representation, such as Java or 
Python. The fundamental reason for the difference is that 
user-defined abstractions (class objects) in such languages 
are allocated in dynamic memory and accessed through 
references. The compact representation is 11 words, out of 
which nine are required data (the eight coordinates plus 
the number of points). The tree representation is 21 words. 
In the compact representation, access to a coordinate point 
requires one indirection; in the tree representation, access 
requires three indirections.

For languages that are not systems programming lan-
guages, getting the compact layout involves avoiding the 
abstraction mechanisms that make such languages attrac-
tive for applications programming. 

Practice type-rich programming
So far, I’ve focused primarily on efficiency, but ef-

ficiency is irrelevant if the code contains critical errors. 
Addressing the issue of correctness requires making prog-
ress on two fronts:

•• eliminate programming errors (make such errors less 
likely and more easily spotted), and

•• make it easier to analyze a program for design errors 
(in general, make it easier to build tools that manipu-
late programs).

The distinction between a design error and a program-
ming error isn’t completely clear. My practical definition is 
that programming errors are those that can be caught by a 
good production compiler; they involve inconsistent use of 
values and don’t require extensive computation to detect. 
Design errors involve plausible-looking code that just hap-
pens to do the wrong thing. Catching design errors requires 
tools that “understand” the semantics of higher-level op-
erations. Even a compiler can be such a tool if semantic 
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information is encoded in the type system.
Consider

void increase_to(double speed);  // speed in m/s

This is an error waiting to happen. Maybe we understand 
the requirements for an argument, but they only appear in 
comments and other documentation. Is increase_to(7.2) 
correct? Does 7.2 represent a speed? If so, in what units? 
A better try would be

void increase_to(Speed s);

Given a reasonable definition of Speed, increase_to(7.2) 
is an error and increase_to(72m/10s) is likely to be cor-
rect. This isn’t just an issue of units; I have a philosophical 
problem with parameters of near-universal types. For 
example, an integer can represent just about everything. 
Consider

// construct a rectangle:
Rectangle(int x, int y, int h, int w); 

What does Rectangle (100,200,50,100) mean? Are h and w 
the coordinates for the bottom right corner or a height and 
a width? To avoid errors, we should be more specific about 
Rectangle’s requirements on its arguments:

Rectangle(Point xy, Area hv);

I can now write the clearer and less error-prone

Rectangle(Point(100,200), Area(50,100)); 

I can also add a second version:

Rectangle(Point top_left, Point bottom_right);

and use either of the following to suit my needs and 
preferences: 

Rectangle(Point(100,200), Area(50,100)); 
Rectangle(Point(100,200), Point(150,300)); 

To be relevant for infrastructure development, simple 
user-defined types (such as Point and Speed) may not 
impose overheads compared to built-in types.

Use libraries
Type-rich programming must reflect an overall design 

philosophy or the software descends into a mess of in-
compatible types, incompatible styles, and replication. 
For example, overuse of simple types (such as integers and 
character stings) to encode arbitrary information hides 

a program’s structure from human readers and analy-
sis tools, but a function specified to accept any int will 
perform its action on integers representing a variety of 
things. This generality makes functions accepting general 
types useful in many contexts. Generality makes it easier 
to design and implement libraries for noncritical uses. It 
avoids unnecessary replication of effort and code.

We want to practice type-rich programming, but 
we also want to minimize the size of the implemen-
tation by using only a few fundamental abstractions. 
Object-oriented programming resolves this dilemma 
by organizing related types into hierarchies, whereas 
generic programming tackles it by generalizing re-
lated algorithms and data structures through (explicit 
or implicit) parameterization. However, each style of 
programming handles only a subset of the desirable 
generalizations: only some relations are hierarchical 
and only some variation can be conveniently expressed 
through parameterization. The evolution of languages 
over the past few years bears this out. For example, Java 
and C# have added some support for generic program-
ming to their object-oriented cores.

What kinds of libraries are suitable for infrastructure 
code? A library should encourage type-rich programming 
to ease human comprehension and tool use, compact 
data structures, and minimal computation. It should aid 
in writing efficient and maintainable software, and not 
encourage bloatware. In particular, it shouldn’t “bundle” 
facilities so that using one library component forces the 
inclusion of other, potentially unused components. Al-
though the zero-overhead principle—“what you don’t use, 
you don’t pay for”—is remarkably difficult to follow when 
designing tools and systems, it’s extremely worthwhile as 
a goal. Composing solutions to problems out of separately 
developed library and application components should be 
easy and natural.

Many aspects of libraries are determined by the type 
systems of their implementation languages. A language 
choice determines the overheads of the basic operations 
and is a major factor in the style of libraries. Obviously, 
library design for infrastructure is a more suitable topic 
for a series of books than a section of an article, but short 
examples can illustrate the role of types.

I see a type system primarily as a way of imposing a 
definite structure—a technique for specifying interfaces 
so that a value is always manipulated according to its defi-
nition. Without a type system, all we have are bits, with 
their meaning assigned by any piece of code that accesses 
them. With a type system, every value has a type. Moreover, 
every operation has a type and can accept only operands 
of its required argument types. It isn’t possible to realize 
this ideal for every line of code in every system because of 
the need to access hardware and communicate between 
separately developed and maintained systems. Further-

We want to practice type-rich program-
ming, but we also want to minimize the 
size of the implementation by using 
only a few fundamental types.
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more, backward compatibility requirements for languages 
and protocols pose limitations. However, type safety is an 
unavoidable ideal. Encoding a program’s static structure in 
the type system (ensuring that every object has a type and 
can hold only the values of its type) can be a major tool for 
eliminating errors.

Programmers can and do vigorously disagree about the 
meaning of “type” and its purpose. I tend to emphasize a 
few significant benefits:

•• more specific interfaces (relying on named types), 
implying early error detection;

•• opportunities for terse and general notation (such as 
+ for addition for any arithmetic type or draw() for 
all shapes);

•• opportunities for tool building that rely on high-level 
structure (test generators, profilers, race condition 
finders, and timing estimators); and

•• improved optimization (for example, references to 
objects of unrelated types can’t be aliases).

We can classify widely used languages by their support 
for types:

•• Languages that provide only a fixed set of types and no 
user-defined types (for example, C and Pascal). Records 
(structs) provide representations for composite values 
and functions provide operations. Popular built-in 
types (such as integers, floating-point numbers, and 
strings) are overused to specify interfaces with no 
explicit high-level semantics. A trivial type system can 
catch only trivial errors.

•• Languages that provide user-defined types (classes) 
with compile-time checked interfaces (such as Simula, 
C++, and Java). They also tend to support runtime poly-
morphism (class hierarchies) for added flexibility and 
extensibility. Very general interfaces (for example, 
Object) are often overused to specify interfaces with 
no explicit high-level semantics. Semantically mean-
ingful operations, such as initialization and copy can 
be associated with user-defined types. 

•• Languages that provide user-defined types (classes) 
with runtime type checking (such as Smalltalk, Java-
Script, and Python). An Object can hold values of any 
type. This implies overly general interfaces.

The demands of correctness and efficiency will push 
infrastructure developers toward a disciplined use of the 
second alternative: rich, extensible type systems with 
named, statically checked, and semantically meaningful 
interfaces.

Alternative one, writing code without serious use of 
user-defined types, leads to hard-to-comprehend, verbose 
results with few opportunities for higher-level analysis. 

However, this kind of code (usually written in C or low-level 
C++) is popular because it’s easy to teach the language 
basics (the complexities disappear into the application 
code) and provide low-level analysis.

There’s a widespread yet mistaken belief that only 
low-level, messy code can be efficient. I once gave a pre-
sentation of a C++ linear-algebra library that achieved 
astounding efficiency because it used a type system that 
allowed it to eliminate redundant temporaries and apply 
optimized operations by “knowing” (from the static type 
system) the fundamental properties of some matrices.9 
Afterward, I was repeatedly asked, “But how much faster 
would it run if it was rewritten in C?” Many developers 
equate “low level” with “fast” out of naiveté or from experi-
ence with complicated bloatware. 

Alternative three, relying heavily on runtime resolution 
or interpretation, doesn’t provide the maintainability and 
efficiency needed for infrastructure. Too many decisions 
are hidden in conditional statements and calls to overly 
general interfaces. Obviously, I’m not saying that JavaScript 
(or whatever) is never useful, but I do suggest that the Java-
Script engine should be written in a language more suitable 
for systems programming (as it invariably is).

One of the advantages of dynamic typing is that it (typi-
cally) provides “duck typing” (“if it walks like a duck and 
quacks like a duck, it’s a duck,” or, in more technical terms, 
values have types, but objects do not—an object’s behavior 
is determined by the value it holds). This can be used to 
provide more general and flexible libraries than interface-
based class hierarchies. However, duck typing is suspect 
in infrastructure code; it relies on weakly specified, very 
general interfaces. This can result in unexpected semantics 
and need for runtime checking. It simplifies debugging but 
complicates systematic testing. Runtime typing carries 
heavy costs—often a factor of 10 to 50 (http://shootout.
alioth.debian.org): objects are larger because they must 
carry type information, resolving types at runtime implies 
extra computation compared to less dynamic alternatives, 
and optimization is inhibited because interfaces must be 
able to handle objects of every type, if only to give an error 
message. 

However, a statically typed language can provide much 
of the desired flexibility. In particular, duck typing, as 
provided by templates, is the backbone of generic program-
ming in C++. It’s also the practical basis of the ISO C++ 
standard library and most high-efficiency C++ (including 

Relying heavily on runtime resolution 
or interpretation does not provide the 
maintainability and efficiency needed 
for infrastructure.
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generic code optimized for particular hardware through 
parameters). For example,

template<typename Container, typename Predicate>
typename Container::iterator
find_if(Container& c, Predicate pred)
     // return an iterator to the first element in c
     // for which pred(element) is true
{
      auto p = c.begin();
      while(p!=c.end() && !pred(*p)) ++p;
      return p;
}

void user (vector<string>& v,
    list<Record*>& lst,
    Date threshold)
{
      auto p = find_if(v,
   	           [](const string& s)
     	                 { return s<”Fulcrum”; }
         );
      // …
      auto q = find_if(lst,
   		         [](const Record* p)
        		            { return threshold<p->date; }
)
	 // …
}

Here, the generic function find_if() is called with 
dramatically different arguments: a vector of strings, 
and a list of pointers to Records. The search criteria are 
presented as lambda expressions. Every modern C++   
compiler can generate code for this that equals or outper-
forms elaborate hand-coded alternative implementations.10 
Note the way that code from different sources is used to 
compose the solution:

•• the list, vector, and string from the ISO C++ stan-
dard library;

•• the find_if() and Record from my application; and
•• the lambda expressions written specifically in user().

There’s no need for “glue code,” use of inheritance, wrap-
ping of built-in types (such as Record*) into self-describing 
objects, or dynamic resolution. This style of generic code 
is often called STL-style.11

However, the interfaces are still underspecified—in 
particular, the definition of find_if() didn’t say that its 
first argument had to be a Container. Errors that man-
ifest as exceptions in a dynamically checked language 
become compile-time errors. Unfortunately, the reporting 
of those errors can be very obscure. Consequently, much 
effort in modern C++ is aimed at better specification of 
template arguments.12,13 We also need to add semantic 
constraints14—for example, a generic function that uses a 

copy operation needs to know whether that copy is deep 
or shallow. Similarly, a generic function that uses a + needs 
to know whether that + is an arithmetic function or some-
thing else, such as a concatenation.

An explicit representation of system structure can 
simultaneously increase flexibility, improve error diag-
nostics, and improve efficiency. Correctness and efficiency 
are closely related properties of a well-specified system. 
It seems that extensive use of a rich type system leads to 
shorter code independently of whether the type system 
is static or dynamic. Obviously, we can also use types 
to gain the usual aspects of an object-oriented system— 
encapsulation, runtime polymorphism, and inheritance—
but we can’t go overboard and try to rely completely on 
static structure. That isn’t necessary for noncritical parts of 
a system, and a complete absence of runtime checks would 
leave the system open to catastrophic errors caused by mal-
functioning hardware. Dealing gracefully with hardware 
failure is a crucial characteristic of infrastructure systems.

Prefer highly structured code
It isn’t enough to be disciplined in our specification of 

data structures and interfaces: we must also simplify our 
code logic. Complicated control structures are as danger-
ous to efficiency and correctness as are complicated data 
structures.

When choosing among alternatives in code, we often 
have three options:

•• Overloading. Select among alternative functions based 
on the static type of arguments, for example, f(x).

•• Virtual function call. Select based on the dynamic 
type of a class object in a class hierarchy, for example, 
x.f().

•• Selection statement. Select on a value with an if- 
statement or a switch-statement, for example, if 
(x.c) f1(x) else f2(x).

Using an if-statement is the least structured and most 
flexible option. However, we should choose the more struc-
tured and easier-to-optimize alternatives whenever possible. 
The hierarchy option can be most useful, but was seriously 
overused in the past couple of decades. Not every class natu-
rally belongs in a hierarchy, not every class benefits from the 
coupling that a hierarchy introduces, and not every class is 
improved by the possibility of adding to it through deriva-
tion (subclassing). Of the alternatives, a call of an ordinary 
function is the easiest to understand—it’s also often easy 
to inline. Consequently, overloading—statically selecting a 
function based on argument types—can lead to major ef-
ficiency advantages compared to indirect calls (as used to 
select among alternatives in a class hierarchy).

To become significantly more reliable, code must 
become more transparent. In particular, nested conditions 

Errors that manifest as exceptions  
in a dynamically checked language 
become compile-time errors.
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and loops must be viewed with great suspicion. Compli-
cated control flows confuse programmers. Messy code 
often hides bugs.

Consider a real example (taken from Sean Parent): in 
many user interfaces, an item of a sequence can be moved 
to a different position in the sequence by dragging its 
screen representation over a screen representation of the 
sequence. The original solution (after cleanup and simplifi-
cation) involved 25 lines of code with one loop, three tests, 
and 14 function calls. Its author considered it messy and 
an attempt to simplify the code was made. The result was

void drag_item_to(Vector& v,
    	            Vector::iterator source,
   	              Coordinate p)
{
   auto dest = find_if(v.begin(), v.end(), contains(p));
    if (source < dest)
        // from before insertion point:
        rotate(source, source+1, dest);	  
    else
        // from after insertion point:
        rotate(dest, source, source+1);
}

That is, find the insertion point using the standard library 
algorithm find_if and then move the element to the in-
sertion point using the standard library algorithm rotate. 
Obvious once you see it! 

The original solution was complicated enough to 
raise worries about correctness, plus it was completely 
special-purpose. What might happen to such hard-to- 
understand code during maintenance? The improved code 
is shorter, simpler, more general, and runs faster. It uses 
only well-documented standard library facilities known to 
experienced C++ developers.

But why move only one element? Some user interfaces 
allow selecting and moving a collection of elements. And 
why use application-specific notions such as Vector and 
Coordinate? Dealing with this more general problem turns 
out to be simpler still: 

template <typename Iter, typename Predicate>
pair<Iter, Iter>
gather(Iter first, Iter last, Iter p, Predicate pred)
// move e for which pred(e) to the insertion point p
{
     return make_pair(
        // from before insertion point:
        stable_partition(first, p, !bind(pred, _1)),
        // from after insertion point:
        stable_partition(p, last, bind(pred, _1))	
      );
}

 The Predicate determines which elements are moved. 
Admittedly, stable_partition tends to be used only 
by specialists, but its meaning isn’t obscure: stable_
partition(first,last,pred) places all the elements in 
the range [first,last) that satisfy pred before all the 
elements that don’t satisfy it. Note the absence of explicit 
tests and loops.

Expressing code in terms of algorithms rather than 
hand-crafted, special-purpose code can lead to more 
readable code that’s more likely to be correct, often more 
general, and often more efficient. Such code is also far 
more likely to be used again elsewhere. However, making 
algorithm-based code mainstream requires a culture 
change among systems programmers. Analyzing prob-
lems with the aim of coming up with general, elegant, 
and simple solutions isn’t emphasized in the education 
of or selection of systems programmers. Too many pro-
grammers take pride in complicated solutions (invariably 
assumed to be efficient), and too many managers are more 
impressed with such code than with simpler alternatives.

Complicated control flows also complicate resource 
management. A resource is anything that has to be ac-
quired and (explicitly or implicitly) released after use. 
Memory, locks, sockets, and thread handles are exam-
ples.15 For efficiency and local reasoning, it’s preferable to 
hold a resource for as short a time as possible and for that 
to be obvious. 

Consider a slightly artificial simple example. The func-
tion algo updates all records from a vector that matches 
a predicate and returns a list of indices of the updated 
records: 

vector<int>  algo(vector<Record>& vr, Predicate pred)	 
   // update vr[i] if pred(vr[i])
{
      vector<int> indices;	 // updated records
      for (int i = 0; i<v.size(); ++i) 
	     if (pred(vr[i]))  {
           unique_lock lck(vr[i].mtx); // acquire mutex
          // update vr[i]
          indices.push_back(i); // record the update
	     }
      return indices;
}

Here, I assume concurrency, so that some form of 
mutual exclusion is necessary. The vector and unique_
lock come from the C++ 11 standard library; Record and 
Predicate are assumed to be defined by the application. 
Two resources are required here: the memory for elements 
of the vector of indices, and the mutex members (mtx). 
The lifetime of the unique_lock determines how long its 
mutex is held. Both vector and unique_lock hold onto 
their resource while it’s in scope and release it when that 
scope is exited. 

Note that there is no user code for handling error re-
turns from algo: vector and unique_lock release their 
resources even if an exit from their scope is done by a 
return or by throwing an exception. Explicit resource 
management in the presence of errors can be a major 
source of complexity—for example, nested conditions or 
nested exception handlers—and obscure errors. Here, the 
resource management is made part of the semantics of the 
types used (vector and unique_lock) and is therefore 
implicit. Importantly, the resource management is still 
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local and predictable: it follows the lexical scope rules that 
every programmer understands. 

Naturally, not all resource management can be scoped 
and not all code is best expressed as highly stylized algo-
rithms. However, it’s essential to keep simple things simple. 
Doing so leaves us with more time for the more complex 
cases. Generalizing all cases to the most complex level is 
inherently wasteful.

WHY WORRY ABOUT CODE? 
Do we need traditional programmers and traditional 

programs? Can’t we just express what we want in some 
high-level manner, such as pictures, diagrams, high-level 
specification languages, formalized English text, or math-
ematical equations, and use code-generation tools to 
provide compact data structures and fast code? That ques-
tion reminds me of an observation by Alan Perlis: “When 
someone says, ‘I want a programming language in which I 
need only say what I wish done,’ give him a lollipop” (www.
cs.yale.edu/quotes.html).

True, we’ve made progress—Modelica, for example 

(https://modelica.org)—but generative techniques work 
best for well-understood and limited application do-
mains, especially for domains with a formal model, such 
as relational databases, systems of differential equa-
tions, and state machines. Such techniques have worked 
less well in the infrastructure area. Many tasks aren’t 
mathematically well-defined, resource constraints can 
be draconian, and we must deal with hardware errors. 

I see no alternative to programmers and designers di-
rectly dealing with code for most of these tasks. Where 
something like model-driven development looks prom-
ising, the generated code should be well-structured and 
human readable—going directly to low-level code could 
easily lead to too much trust in nonstandard tools. Infra-
structure code often “lives” for decades, which is longer 
than most tools are stable and supported. 

I’m also concerned about the number of options for 
code generation in tools. How can we understand the 
meaning of a program when it depends on 500 option set-
tings? How can we be sure we can replicate a result with 
next year’s version of the tool? Even compilers for formally 
standardized language aren’t immune to this problem. 

Could we leave our source code conventionally messy? 
Alternatively, could we write code at a consistently high 
level isolated from hardware issues? That is, could we rely 

on “smart compilers” to generate compact data structures, 
minimize runtime evaluation, ensure inlining of opera-
tions passed as arguments, and catch type errors from 
source code in languages that don’t explicitly deal with 
these concepts? 

These have been interesting research topics for decades, 
and I fear that they will remain so for even more decades. 
Although I’m a big fan of better compilers and static code 
analysis, I can’t recommend putting all of our eggs into 
those baskets. We need good programmers dealing with 
programming languages aimed at infrastructure problems.

I suspect that we can make progress on many fronts, 
but for the next 10 years or so, relying on well-structured, 
type-rich source code is our best bet by far.

THE FUTURE
Niels Bohr said, “It is hard to make predictions, espe-

cially about the future.” But, of course, that’s what I’ve done 
here. If easy-to-use processing power continues to grow ex-
ponentially, my view of the near future is probably wrong. 
If it turns out that most reliability and efficiency prob-
lems are best solved by a combination of lots of runtime 
decision-making, runtime checking, and a heavy reliance 
on metadata, then I have unintentionally written a history 
paper. But I don’t think I have: correctness, efficiency, and 
comprehensibility are closely related. Getting them right 
requires essentially the same tools.

Low-level code, multilevel bloated code, and weakly 
structured code mar the status quo. Because there’s a lot of 
waste, making progress is relatively easy: much of the re-
search and experimentation for many improvements have 
already been done. Unfortunately, progress is only rela-
tively easy; the amount of existing code and the number 
of programmers who are used to it seriously complicate 
any change.

Hardware improvements make the problems and costs 
resulting from isolating software from hardware far worse 
than they used to be. For a typical desktop machine, 

•• 3/4ths of the MIPS are in the GPU; 
•• from what’s left, 7/8ths are in the vector units; and 
•• 7/8ths of that are in the “other” cores.

So a single-threaded, nonvectorized, non-GPU-utilizing 
application has access to roughly 0.4 percent of the com-
pute power available on the device (taken from Russell  
Williams). Trends in hardware architecture will increase 
this effect over the next few years, and heavy use of soft-
ware layers only adds to the problem. 

I can’t seriously address concurrency and physical 
distribution issues here, but we must either find ways of 
structuring infrastructure software to take advantage of 
heterogeneous, concurrent, vectorized hardware or face 
massive waste. Developers are already addressing this 

Many tasks aren’t mathematically 
well-defined, resource constraints can 
be draconian, and we must deal with 
hardware errors. 
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problem with careful programming using architecture-
specific concurrency primitives for the code closest to 
the hardware and using threads libraries for system-level 
concurrent tasks. Getting such code correct, efficient, 
maintainable, and portable to next year’s hardware adds 
to the requirements for structure, compactness, and code 
formalization (algorithms). 

Locality and compactness are key to comprehensibility 
and efficiency for nonuniform processors and memory. 
We need to be able to reason about code without knowl-
edge of the complete system. Shared resources are poison 
to such reasoning, making local resource management 
essential.

We also need more and better tools for specifying 
requirements, analyzing code, verifying system proper-
ties, supporting testing, measuring efficiency, and so on. 
However, we shouldn’t expect miracles: designing, imple-
menting, and using such tools tends to be difficult.16-20 My 
conjecture is that much of the complexity of such tools 
comes from the messiness of the code they’re supposed 
to deal with. Whatever else we do, we must also clean up 
our code.

W hat should be done? There’s a saying that “real 
software engineers write code.” I wish that 
were true. Production of quality code should 

be elevated to a central role in software development. 
A software developer should be able to proudly dis-
play a portfolio of work (including code), much the 
way an artist or architect does. We should read and 
evaluate code as part of every project. We should dis-
tinguish between infrastructure code and application 
code. Often, the two areas need different languages, 
tools, and techniques. Sometimes, that’s the case even 
when we use the same language for both infrastructure 
and applications. The role of static typing should be 
increased.

All of this has implications for education: you can’t 
expect a person trained to deliver applications quickly 
in JavaScript to design and implement an infrastructure 
component (say, a JavaScript engine or a JVM) in C++  
using the same skills. We need to specialize at least part of 
our computer science, software engineering, and IT cur-
ricula.21 I strongly prefer general-purpose programming 
languages, but no single language is ideal for everything. 
We should master and use multiple languages, often as 
part of a single system. 

Infrastructure developers should be highly skilled 
professionals, not assembly-line workers, and not just 
scholars. The mathematical basis of their work must be 
strengthened. We need developers with good analytical 
skills, some ability in algebraic reasoning (calculus alone 
isn’t sufficient), and enough familiarity with statistics to 

understand systems through measurement. Obviously, 
algorithms, data structures, machine architecture, and 
operating systems must remain core subjects to provide a 
basis for emphasizing efficiency and reliability.

In research, we need a greater appreciation of incre-
mental (engineering) improvements with a relevance to 
real-world systems. “That’s just engineering, and we’re 
computer scientists” is an attitude we can’t afford. I suspect 
the era of transformative breakthroughs is over. We need 
to achieve a factor-of-two-or-three improvement in sev-
eral areas, rather than trying to solve our problems with a 
single elusive two-orders-of-magnitude improvement from 
a silver bullet. 
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