
Stroustrup 2025 Concept-Based Generic Programming

1

Concept-Based Generic Programming in C++
Bjarne Stroustrup (www.stroustrup.com)

Columbia University

Abstract
We present programming techniques to illustrate the facilities and principles of C++ generic

programming using concepts. Concepts are C++’s way to express constraints on generic code. As an

initial example, we provide a simple type system that eliminates narrowing conversions and provides

range checking without unnecessary notational or run-time overheads.

Concepts are used throughout to provide user-defined extensions to the type system. The aim is to

show their utility and the fundamental ideas behind them, rather than to provide a detailed or complete

explanation of C++’s language support for generic programming or the extensive support provided by

the standard library.

Generic programming is an integral part of C++, rather than an isolated sub-language. In particular, key

facilities support general programming as well as generic programming (e.g., uniform notation for types,

lambdas, variadic templates, and C++26 static reflection).

Finally, we give design rationales and origins for key parts of the concept design, including use patterns,

the relationship to Object-Oriented Programming, value arguments, notation, concept type-matching,

and definition checking.

1. Introduction
Generic programming is a style of programming where commonalities among types are abstracted into

requirements known as concepts and typically used in code to constrain arguments to generic types and

functions (often called algorithms). For example:

void sort(Sortable_range auto& r);

This declares an algorithm sort that can take an argument of any type that meets the requirements of

the concept Sortable_range.

Alex Stepanov, the father of modern C++ generic programming, expressed his goal for generic

programming like this:

“Aim: The most general, most efficient, most flexible representation of concepts.”

For much of the code where generic programming is relevant, such as foundational code and code with

real-time constraints, both flexibility and performance are major concerns. To be viable, the design and

programming techniques must be widely useful as well as affordable in compile time, run time, and

memory consumption in their intended domains. They must obey the zero-overhead principle [BS’94].

This paper presents the general idea of generic programming as it is supported by contemporary C++,

addressing three design requirements outlined in 1994 [BS’94]:

Stroustrup 2025 Concept-Based Generic Programming

2

• Generality: “Must be able to express more than I can imagine.”

• Uncompromised efficiency: Generic code must not impose run-time overheads compared to

roughly equivalent lower-level code. E.g., using a generic, strongly-typed vector is as efficient as

equivalent uses of a C array.

• Statically type-safe interfaces: The type system must be flexible enough to allow compile-time

checking of most aspects of interfaces that do not depend on run-time values.

Further requirements include:

• Affordable: Doesn’t require expensive computers or slow compilers.

• Teachable: “if we require PhDs from MIT, we have failed.” – Kristen Nygaard, the father of

object-oriented programming,

Naturally, C++’s support for generic programming is not perfect, but it is in many ways better than

alternatives. In particular, concepts can handle combinations of types (§5) and combinations of types

and values (§7.5). Here, language facilities and fundamental techniques are presented through examples

accompanied by rationales. The approach is like teaching a natural language through useful examples,

rather than first explaining the complete grammar and vocabulary of that language. All technical details

can be found in the ISO C++ standard [C++23], but that document is most certainly not a tutorial. Finally

(§7), some design decisions for concepts are discussed.

2. Arithmetic conversions
In generic programming, implementations are chosen to match the arguments used. For example:

void print(auto arg); // a generic function

void test()
{

print (1); // arg is an int
print ("one"); // arg is a C-style string

 }

This leaves the possibility of type errors to type conversions. Explicit conversions are unavoidable, but

very rare in well-designed code, but implicit conversions are hard to avoid and can lead to loss of

information with functions taking fixed static types. For example:

void print(int);
void print(char);

void f(unsigned x, int y)
{

print(x); // can x fit into an int?
print(y); // can y fit into a char?

 }

Implicit narrowing conversions among arithmetic types are convenient and demanded by many users,

but also a nasty source of errors. For C++, they arose in the early days before C had explicit type

Stroustrup 2025 Concept-Based Generic Programming

3

conversions (casts). Using generic programming, we can build a set of arithmetic types (of various sizes)

that allows only conversions which don’t change values (non-narrowing conversions). The problems with

conversions that change values in surprising ways come in a few flavors:

• An integer converted to a type with too few bits to represent its value (e.g., short x = 1'000'000;

assuming that a short is 16 bits and float y = 0xFFFF'FFFFu; assuming a float is 32 bits).

• An unsigned integer with a representation interpreted as a (large) negative integer after

conversion to a signed value (e.g., short x = 0b1000'0000'0000'0000u;).

• A negative integer interpreted as a (large) positive value after conversion to an unsigned (e.g.,

unsigned x = -2;).

• A floating-point value with a decimal part truncated to its integer part when converted to an

integer (e.g., int x = 7.8;).

In general, dealing with this requires looking at the values to be converted. However, in real code hardly

any assignments lead to narrowing conversions. So, for performance reasons, we want to do run-time

checks only where a narrowing conversion is possible.

Modern compilers warn against most simple and obvious examples like the ones above, but not all

examples are simple and obvious. We have, of course, ways of explicitly checking for narrowing.

However, to benefit from explicit testing we have to decide to test and then do testing consistently.

Let’s start by dealing with only arithmetic types, that is, signed integers, unsigned integers, and floating-

point numbers. We define a concept for that:

template<typename T>
concept Num = integral<T> || floating_point<T>;

A concept is a predicate (a function returning a bool) that can be evaluated at compile time and

can take types as arguments. The integral and floating_point concepts are part of the standard

library. For historical reasons, parameterization with types is indicated by angle brackets so in

integral<T>, <T> indicates the type argument T. So, integral<T> means “is T an integral type?”

Later (§5), we explain how such predicates can be defined. If we need to, we can extend Num

to also accept user-defined types, such as Bigint and complex (§6.4).

In C++, the char and bool types are deemed arithmetic. If we wanted to, we could deal with the

problems that can arise from that also.

2.1. Detecting narrowing
It is crucial to be able to test whether assignment between a pair of types can lead to narrowing, so we
define a concept for that:

template<typename T, typename U>
concept Can_narrow_to = // can converting a T to a U cause loss of information?
 ! same_as<T, U> // different types
 && Num<T> && Num<U> // both Nums
 && (

Stroustrup 2025 Concept-Based Generic Programming

4

 (floating_point<T> && integral<U>) // might dismiss a fractional part
 || (numeric_limits<T>::digits > numeric_limits<U>::digits) // might truncate
 || (signed_integral<T>!=signed_integral<U> && sizeof(T)==sizeof(U)) // might change sign
);

Can_narrow_to<T,U> is true if there exists a T value that loses information or change meaning if

assigned to a U.

The (numeric_limits<T>::digits > numeric_limits<U>::digits) deals with the case where T is an integer

type and U is an integer type with fewer bits (e.g. short x = 234'567;) and the case where T is a floating-

point type with a mantissa is too small to hold the digits from a U (e.g., Bfloat16_t x = 300; [Intel]).

Floating-point types where that is possible are now common in graphics and AI/LLM code.

The signed_integral<T>!=signed_integral<U>) && (sizeof(T)==sizeof(U) deals with the fact that signed

and unsigned integers of the same size have different value ranges.

The complexity of this directly reflects the complexity of modern hardware.

Finally, we need a function for testing values:

template<Num U, Num T>
constexpr bool will_narrow(U u) // converting t to a U will cause loss of information
{
 if constexpr (!Can_narrow_to<T, U>)

return false;
 if constexpr (signed_integral<T> && unsigned_integral<U>)

if (numeric_limits<T>::max() <u) // too large positive?
return true;

 if constexpr (unsigned_integral<T> && signed_integral<U>)
if (u<0) // negative?

return true;
 T t = u; // potentially narrows
 return (t != u); // narrows?
}

First, we test what can be done at compile-time (the if constexpr tests). This makes trivial cases, such as

assignments to the same or a larger type, free. Only if a change of value is possible do we use a run-time

test. That means that we don’t have to think too hard to decide whether to apply will_narrow and

won’t risk bugs to be introduced by changes to the types used during maintenance.

We can now define a function that tests for narrowing and decides what to do when it happens:

class Bad_value {};

template<Num T, Num U>
constexpr T convert_to(T t)
{
 if (will_narrow<U>(t))

throw Bad_value{};

Stroustrup 2025 Concept-Based Generic Programming

5

 return U(t); // we only get to here if the cast doesn’t narrow
}

I use exceptions to report errors because narrowing is very rare and explicitly checking every potential

narrowing would be tedious, costly, and likely not done consistently (aka “error code hell”). Attempts to

achieve complete error handling through explicit checks everywhere usually fail. In particular, the rules

of implicit conversions among numeric types (mostly inherited from ancient C) are tricky and often only

partially understood by developers. The points where they might occur are not easily spotted by a

programmer. Also, much of the worry about exceptions is misinformed and mistaken (e.g., see [BS’22,

KE’24]).

Now we can write:

void test(int si, char ch, unsigned ui, double d)
{

auto x0 = convert_to<int>(si); // redundant
auto x1 = convert_to<int>(ui); // ui could be too large
auto x2 = convert_to<char>(si); // si could be too large
auto x3 = convert_to<int>(ch); // redundant
auto x4 = convert_to<unsigned>(ch); // redundant or ch could be negative
auto x5 = convert_to<unsigned>(si); // si could be negative
auto x6 = convert_to<double>(si); // redundant if sizeof(int)<sizeof(double)
auto x7 = convert_to<int>(d); // could truncate (e.g., if d is 7.8)

}

The keyword auto is used to represent the type of the initializer saving us from repeating that type’s
name.

2.2. Making checking implicit
Those convert_to calls are verbose and tedious. They are unlikely to be used consistently, so let’s

provide a way to make them implicit.

template<Num T>
class Number { // a Number<T> is a T that doesn’t suffer narrowing conversions
 T val;
public:
 template<Num U>
 constexpr Number(const U u) : val{convert_to<T>(u)} { }

 template<Num U>
 constexpr void operator=(const U u) { val = convert_to<T>(u); }

operator T() { return val; } // extract value
};

Now we can simplify initializations and assignments by using Number<T> rather than T directly:

void test(int i)

Stroustrup 2025 Concept-Based Generic Programming

6

{
 Number<unsigned int> ii = 0;

Number<char> cc = '0';

ii = 2; // OK
ii = -2; // throws
cc = i; // OK if i is within cc’s range
cc = -17; // OK if char is signed; otherwise throws
cc = 1234; // throws if a char is 8 bits

}

This is all that’s required: 43 lines of code, most of which simply augment the type system and are never

executed at run time. Those lines of code may be unfamiliar when first encountered, but they are not

complex. What is done here is typically not done, implemented as costly run-time code, or provided as

complex parts of a compiler.

An arithmetic type without arithmetic operations is of little use so we can add those:

template<Num N1, Num N2>
using Common = std::common_type_t<N1,N2>; // a type that can represent a N1 and a N2

template<Num I1, Num I2>
auto operator+(Number<I1> x, Number<I2> y)
{
 return Number<Common<N1,N2>>{ x.val + y.val };
}

template<Num N1, Num N2>
auto operator*(Number<N1> x, Number<N2> y)
{
 return Number<Common<N1,N2>>{ x.val * y.val };
}

// … other operations, such as *, /, ==, and > …

These operations determine the return type according to the rules of C++ using the standard-library

concept common_with. Two types have a common_with type if there is type that they both can be

converted into without loss of information. As usual, such predicates are evaluated at compile time and

can be extended by users to handle user-defined types, such as Bigint.

As usual, signed/unsigned conversions are tricky. For example, -1<2u is false! The reason is that when an

operation has a signed and an unsigned operand, the signed operand is converted to unsigned.

Consequently, we define < (less than) for signed and unsigned integers to eliminate such horrors:

template<Num N1, Num N2>
bool operator<(Number<N1> x, Number<N2> y)
{
 if constexpr (is_signed_v<N1> && is_unsigned_v<N2>)

Stroustrup 2025 Concept-Based Generic Programming

7

 if (x.val < 0) // x.val would be converted into a positive number
return true;

 return x.val < y.val ;
 }

When using Numbers, rather than built-in types directly, we outlaw all dangerous narrowing

conversions. The run-time cost is very low because we only test where narrowing is possible. For

example:

Number<int> test(double d, Number<int> i)
{
 auto x = d+i*10; // x is a double

Number<double> z = d+i*10; // OK
 return x*2 - d*z; // will check: may narrow
}

3. Subscripting
Out of range accesses, often referred to as “buffer overflows” is a significant source of errors and

security problems in C and old-style C++. An effective way of handling this problem is never to subscript

a pointer without ensuring that the subscript is in range. That’s impossible to do for arbitrary uses of

pointers so we commonly use classes that check (and enforce the use of such classes). For example, a

span is a type that holds a pointer to elements plus the number of elements it points to. The span

doesn’t own those elements; it simply controls access to them. A span has the information needed to

prevent range errors and to implement range-for loops and algorithms on ranges (§4.3). It is a good

example of a generic type. However, a span is still vulnerable to signed/unsigned problem when

initialized with an explicit size. For example:

const unsigned max = 100;
int a[max];
span<int> s {a, max-500}; // I mistyped 50

If a span’s constructor takes an unsigned size argument (like the standard-library span, but not the

original GSL span [GSL]) that -500 is converted to unsigned, so s gets a limit of 4294966896. With that

limit, no buffer overrun would be caught. With more complex size calculations, errors are easier to make

and harder to spot in large programs.

3.1. Protecting a span from narrowing
Let’s address that problem using our Number and a variant of span. First decide what we want to be

able to span over

 template<typename S>
concept Spanable = ranges::contiguous_range<S>;

Contiguous ranges include C-style arrays, std::arrays, and vectors. We name a concept even though we

define it using a standard-library one because we might later want to extend it beyond the standard.

Stroustrup 2025 Concept-Based Generic Programming

8

As a first step, let’s define a span that can be initialized from data for which we know the number of

elements:

 template<class T>
 class Span {
 T* p;
 unsigned n;
 public:
 unsigned check(unsigned nn) // in range?
 {
 if (n <= nn)
 throw Span_range_error{};
 return nn;
 }

 Span(Spanable auto& s) : p{ data(s)}, n{size(s)} {} // [0:size)

 T& operator[](Number<unsigned> i) { return p[check(i)]; }
 };

Spanable<S> (aka ranges::contiguous_range<S>) guarantees that data(S) and size(S) exist. This Span is

easy to use:

void test(Span<Number<int>> ssi, vector<double>& v)
{
 int x0 = ssi[10]; // OK if 10 is in range
 int x1 = ssi[-10]; // will throw

 Span<double> sv {v};
 int xx0 = sv[10]; // OK if 10 is in range
 int xx1 = sv[-1]; // will throw

int a[100];

 Span<int> sa { aa };
 int xxx0 = sa[10]; // OK
 int xxx1 = sa[200]; // will throw
 int xxx2 = sa[sv[2]]; // will throw unless sv[2] is a positive integer
}

For v, we could have used a range-checked vector or checked the range ourselves using v.size(), but

unfortunately people often fail to do that. C-style arrays turn into pointers at the slightest excuse and

once that’s done the number of elements pointed to is lost. A span carries the size along for later use.

3.2. Element type deduction
This Span is a bit verbose: we have to repeat the type of elements that the compiler already knows. We
can avoid that by using what is called Class Template Argument Deduction (CTAD). We add a deduction
guide to tell which part of an initializer’s type to use as the template argument type:

Stroustrup 2025 Concept-Based Generic Programming

9

 template<Spanable R>
 Span(R&) -> Span<ranges::range_value_t<R>>; // use the range’s element type

A lot of generic programming has to do with using information that the compiler already has. For arrays,

the compiler knows its size and for vectors we know where to find it. That’s what the Span constructor

uses.

A Span knows its number of elements, so we can use range-for and other algorithms:

 void test(Span<float> s)
 {

for (const auto x : s)
 cout << x << '\n';
}

That is far simpler and far safer than the common pointer and integer style

void test(float* p, int n)
 {

for (int i = 0; i< n; ++i)
 cout << p[n] << '\n';
}

However, a span must be more flexible to match what is necessary and frequently used: taking a sub-
range. We can add constructors for that:

template<class T>
 class Span {
 // …

 // initialize with a pointer and an explicit number of elements:
 Span(T* pp, Number<unsigned> nn) :p{ pp }, n{ nn } { } // can’t check

 Span(Spanable auto& s, Number<unsigned> nn)

: p{ data(s) }, n{ size(s) } { n = check(nn); } // [0:nn)

 Span(Spanable auto& s, Number<unsigned> low, Number<unsigned> high)
: p{ data(s) }, n{ size(s) } { p=check(low); n=check(high - low); } // [low:high)

 };

We need appropriate deduction guides for the new constructors:

template<class T>
Span(T*, Number<unsigned>) -> Span<T>;

template<Spanable R>
Span(R&, Number<unsigned>) -> Span<ranges::range_value_t<R>>;

template<Spanable R>

Stroustrup 2025 Concept-Based Generic Programming

10

Span(R&, Number<unsigned>, Number<unsigned>) -> Span<ranges::range_value_t<R>>;

Now we can write:

void test(vector<double>& v, int* p)
{
 int aa[100];
 Span s1 {aa}; // deduce Span to mean Span<int>
 Span s2 {aa,50}; // in case we want just half of the array

Span s3 { aa,200}; // out of range: will throw

 Span sv1{v,10}; // first 10 elements
 Span sv2 {v,10,20}; // elements [10:20)

int a[100];
Span sa { aa, 10}; // first 10 elements

 Span sa { aa, 10, 20}; // elements [10:20)

 Span sp {p, 10}; // unchecked
}

If the container doesn’t have the elements requested the constructor throws an exception. Now an

explicit specification of a Span’s number of elements can often be tested and where it cannot (e.g., for a

plain pointer) it stands out as an obvious target for code review and static analysis.

Given that we can deduce the type of element and sometimes even the number of elements for a span,

we must wonder why we need to state the underlying type of a Number. We don’t have to if we add

type deduction:

template<Num Init>
Number(const Init) -> Number<Init>; // deduce to the underlying type

Now Number is as notationally convenient as built-in arithmetic typers, but without their quirks:

Number x1 = 1; // Number<int>
Number x2 = 1u; // Number<unsigned>
Number x3 = 1.2; // Number<double>

We need to be explicit only when that makes code clearer:

Number<double> d = 1;

4. Algorithms
Is what has been presented so far really Generic Programming? Much of what is commonly used to

illustrate generic programming is mathematical code and data manipulation. The most popular C++

example is the standard-library framework of algorithms and containers (the STL). However, templates

are the backbone of the ISO C++ standard library: time, random numbers, I/O, numerics, formatting,

Stroustrup 2025 Concept-Based Generic Programming

11

data manipulation, concurrency support, memory management, and more. That is, Generic

Programming – programming with parameterized types – is excellent for managing the complexity of

foundational high-performance code.

4.1. Classical sort example
To explore the use of concepts in generic algorithms, consider a popular example from the standard

library: sort. Let’s start with an old-style declaration that has been used since the 1990s and can still be

found in the standard today:

template<typename Random_access_iterator>
void sort(Random_access_iterator first, Random_access_iterator last)
{
 // … implementation …
}

It says that sort takes first and last of some type Random_access_iterator. The standard states precisely

what properties are assumed for first, last, and Random_access_iterator [C++20], roughly:

• Random_access_iterator must be a pointer-like type that can be used to iterate over a range of

elements

• Random_access_iterator must provide random access to those elements.

• These elements must be comparable with the < operator.

• first and last must define a half-open range [first:last).

This style of definition offers flexibility and efficiency and was consequently spectacularly successful for

decades. For example:

void test(vector<double>& vec, span<string>& ss)
{
 sort(vec.begin(),vec.end()); // vector of doubles in ascending order
 sort(ss.begin(),ss.end()); // span of strings in ascending order
}

However, this style of declaration does not meet the third design criteria for C++ generic programming

(§1):

Interfaces should be precisely specified in code so that humans and compilers can read,

understand, and use them.

Neither compilers nor most programmers read the standard and the declaration of sort() states only

that some type is needed for its arguments. The result is that code that completely meets the

expectations of the implementer works great but code that does not suffer spectacularly obscure

compile-time error messages. For example:

void compute(vector<complex<double>>& v)
{
 sort(v.begin(),v.end()); // error: complex does not provide <
}

Stroustrup 2025 Concept-Based Generic Programming

12

For most generic libraries, the specification of generic functions is less precise than the standard’s and

the error messages nowhere near as helpful as the comment in the compute() example.

4.2. Sort using concepts
Using concepts to specify the requirements of a template, we can do much better:

template<random_access_iterator Iter, typename Pred = ranges::less>
 requires sortable<Iter,Pred>
void sort(Iter first, Iter last, Pred p = {});

Here, the requirements on the argument types are explicitly specified:

• Iter must be an iterator providing random access to its elements (a random_access_iterator).

• sortable<Iter,Pred> checks that Pred can be used to compare of elements pointed to by Iter.

• Pred is defaulted to a standard-library less-than operation (ranges::less).

• If the caller doesn’t specify a comparison, the default Pred (Pred{}) is used.

Given that, we can write:

void test(vector<double>& vec, span<string>&ss, list<int>& lst)
{
 sort(vec.begin(),vec.end()); // vector of doubles in ascending order
 sort(ss.begin(),ss.end()); // span of strings in ascending order

 sort(vec.begin(),vec.end(), ranges::greater{}); // descending order
 sort(ss.begin(),ss.end(), ranges::greater{}); // descending order

 sort(lst.begin(),lst.end()); // error: list doesn’t provide random access
}

Types such as vector, span, and list, as well as algorithms like sort, less, and greater, and concepts such

as random_access_iterator and sortable are defined in the standard library.

Compatibility is an important feature, so old code still works and with the same efficiency as before.

However, we can now type check a call at the point of call rather than have to postpone checking until

code-generation time (where error messages often are spectacularly bad).

4.3. Sort using ranges
The sort specified using concepts still doesn’t check that a (first,last) pair really defines a sequence. For

example, these kinds of bad errors have been observed in real-world code:

sort(vec.end(),vec.begin()); // begin and end flipped
sort(ss1.begin(),ss2.end()); // not iterators into the same container

Furthermore, in 90+% of cases, specifying begin and end is verbose and not really what we wanted to

say. We want to sort a whole container. The obvious solution is to give sort a range, rather than a pair of

iterators supposedly representing a range. First, we define what we mean by a sortable range:

template<typename R, typename Pred = ranges::less>

Stroustrup 2025 Concept-Based Generic Programming

13

concept Sortable_range =
 ranges::random_access_range<R> // has begin()/end(), size(), ++, [], +, …
 && sortable<ranges::iterator_t<R>, Pred>; // compare elements using Pred

That is, to be a Sortable_range, a type must

• be a range providing random access

• provide an iterator that provides operations necessary for sorting (such as swap) and allows

elements to be compared (using a predicate Pred).

Given Sortable_range, we can define a further improved sort:

template<typename R, typename Pred = ranges::less>
 requires Sortable_range<R,Pred>
void sort(R& r, Pred p = {})
{
 sort(r.begin(), r.end(), p);
}

Now we have what I consider a minimal and elegant interface to whatever sort we want:

void test(vector<double>& vec, span<string>&ss, list<int>& lst)
{
 sort(vec); // vector of doubles in ascending order
 sort(ss); // span of strings in ascending order
 sort(lst); // error (as ever): list doesn’t provide random access

 sort(vec, ranges::greater{}); // descending order
 sort(ss, ranges::greater{}); // descending order
}

4.4. Function template overloading
Given the information in concepts, function overloading is trivial. If we wanted to, we could define sort

for lists. First, we define the requirements for a sort that doesn’t require random access:

template<typename R, typename Pred = ranges::less>
concept Forward_sortable_range =
 ranges::forward_range<R> // has begin()/end(), ++, …
 && sortable<ranges::iterator_t<R>, Pred>; // compare elements using Pred

There are clever algorithms that sort streams of elements without requiring random access (e.g.,

std::list::sort()), but for many uses we could just copy the elements of the list into a vector, sort the

vector, and copy the elements back into the list.

template<typename For, typename Pred = ranges::less>
 requires Forward_sortable_range<For, Pred>
void sort(For & r, Pred p = {}) // one possible implementation
{

Stroustrup 2025 Concept-Based Generic Programming

14

 vector v {from_range, r}; // copy the elements into a vector
 sort(v, p); // use the vector sort
 copy(r, v.begin()); // copy the element back
}

Now we can write:

void test()
{
 vector<double> vec = {1, -2, 2, 3};
 list<string> lst = {"d", "q", "a"};

 sort(vec); // sort the vector ascending

sort(lst,ranges::greater); // sort the list descending
}

Whether sorting lists without explicit mentioning “list” is wise is debatable. In particular, the reason the

C++ standard doesn’t support sorting lists is that the memory layout of lists is inappropriate for fast

sorting.

Fortunately, the overloading rules for template functions are very simple:

• if no function matches, the call fails (obviously).

• If just one function matches, it is used.

• If two functions both match based on their concepts and one has constraints that are a subset of

the other’s, the one with the stricter requirements is chosen.

• Otherwise, the call is ambiguous and an error.

One important use of overloading is to allow tuning by providing specialized data structures and

algorithms for performance critical tasks. Concepts significantly simplify this by selecting the optimized

versions at compile time.

5. Concepts
Concepts are simply compile-time functions (predicates) that can take type arguments. They are used to

provide significant flexibility to the type system. Like other compile-time functions, they can be used to

catch errors early and to move computations from run time to compile time. Importantly, that saves us

from writing error-handling functions.

We have always had the notion of concepts. For example,

• C built-in types: arithmetic and floating (from 1972 or so [K&R’78])

• STL concepts: iterators, sequences, and containers (since the early 1990s [AS’95])

• Mathematical concepts: monad, group, ring, and field (for a couple of centuries)

• Graph concepts: edge, vertex, graph, and DAG (since 1736)

No generic program could work unless the programmer had an idea of the concepts involved clearly in

mind. What is relatively new [BS’17, C++20] is that we can define them to be used in code.

Stroustrup 2025 Concept-Based Generic Programming

15

Concepts are not types of types or defined properties of types (like base classes). They are functions

used to inquire about properties of types. For example, “are you an iterator?”, “are you a number?”,

and “can this range together with this comparison predicate be used by sort?” These functions are

executed at compile time. That makes them very efficient in addition to the usual properties of

functions: general, flexible, and easy to use. Importantly, concepts specify what a template must be able

to do with its arguments, not exactly what an argument type must provide to do so.

Many, probably most, concepts take multiple arguments. Like many “ordinary functions”, concepts tend

to be defined by calls to other concepts. We saw that with Forward_sortable_range:

template<typename R, typename Pred = ranges::less>
concept Forward_sortable_range =
 ranges::forward_range<R> // has begin()/end(), ++, …
 && sortable<ranges::iterator_t<R>, Pred>; // compare elements using Pred

It takes two type arguments (R and Pred) and calls two other concepts using those

(ranges::forward_range and sortable). To be able to relate R and Pred to each other, sortable takes

both as arguments. If the comments are not sufficiently informative for use, the standard and online

sources (e.g., [CPP]) have detailed definitions.

5.1. Use patterns
When we want to express something that hasn’t already been defined by others, we define concepts

directly from language features. The classical example is how to require that a pair of types can be

compared using == and !=:

template<typename T, typename U = T>
concept equality_comparable = requires(T a, U b) {
 {a==b} -> Boolean;
 {a!=b} -> Boolean;
 {b==a} -> Boolean;
 {b!=a} -> Boolean;
}

Here, we use a requires-clause taking two arguments. Its arguments are used only for type checking

(and never executed at run time). The expressions in curly braces are use patterns [GDR’06]. That is,

expressions must type check yielding a result of the concept mentioned after the -> (if any). Therefore,

{a==b} -> Boolean says that for T and U to be equality_comparable, the expression a==b must yield a

type that is Boolean (e.g., a bool). Fortunately, the standard library provides an equality_comparable so

we don’t have to define it ourselves, but the definition above shows the basic technique for defining a

concept from fundamental language features.

A requires-clause building directly on language features is a low-level mechanism for checking whether

a construct is valid C++. It is essential for expressing low-level requirements but best avoided outside

concept definitions. Named concepts (often defined using requires) are more comprehensible and

maintainable. Outside concept definitions, requires-clause are ad hoc, and programmers often fall into

the trap of constraining the actual implementation of a function rather than presenting a general idea as

a concept. This easily leads to many similar but slightly different requires-clauses, rather than a concept

Stroustrup 2025 Concept-Based Generic Programming

16

that can be used repeatably and is more easily remembered. In other words, overuse of requires-clauses

degenerates into copy-and-paste programming.

A concept specifies what a template must be able to do with its arguments, not exactly what those

argument types must be. For example: when specified in a use pattern, the + in a+b for some type T and

some type U could be provided as any of

• X operator+(X,Y); // if a is an X and b is a Y

• X X::operator+(const Y&); // if a is an X and b is of a class derived from Y

• Y operator+(const X&, const Y&); // if an X can be implicitly constructed from a T

 // and a Y can be implicitly constructed from a U

• Y operator+(Y,X&); // if a Y can be implicitly constructed from a T

 // and b is an X

• … and many more …

That’s important because use patterns allow concepts to

• Handle mixed-mode arithmetic

• Handle implicit conversions

• Provide interface stability (e.g., if the definition of a + changes or if a new + is added)

5.2. Checking types against concepts
It is not necessary for users to explicitly check whether a type meets the requirements of a concept.

That is implicitly done whenever such a combination is used. That implies that combinations of types

and concepts that a programmer hasn’t imagined can be safely used and provide an important degree of

flexibility. However, if we want to catch problems early for combinations we know of (e.g., during

debugging or testing), we can test that types are equality_comparable using static_assert:

static_assert(equality_comparable<int,double>); // succeeds
static_assert(equality_comparable<int>); // succeeds (U is defaulted to int)
static_assert(!equality_comparable<int,string>); // succeeds (Note the !)

Concepts provides a cheap and very flexible mechanism that enables us to build our own type systems
on top of what C++ offers by default. A single-argument concept can be used almost like type and
multiple-argument concepts can define relationships among types.

6. Facilities supporting generic programming
Every C++ feature can be used in generic code. Some language features exist primarily to support

generic programming, but these features are designed to combine nicely with other language features,

so you find them used in ways that are not primarily generic programming. The idea is to avoid generic

programming becoming a sub-language isolated from the rest of C++.

6.1. Uniform treatment of types
From the earliest days, C++ treated user-defined types (e.g., vector and complex) and built-in types

(e.g., int and double) uniformly with respect to scope and definition syntax. That’s necessary to avoid

special cases in generic code. Consider a simplified version of swap():

Stroustrup 2025 Concept-Based Generic Programming

17

template<typename T>
void swap(T& x, T& y)
{
 T tmp = std::move(x);

x = std::move(y);
y = std::move(tmp);

}

If user-defined types needed to be created with new (as in Simula and other object-oriented languages)
this would require a workaround for common types like complex and vector.

The use of constructors/destructor pairs (the oddly named “Resource Acquisition Is Initialization” (RAII)

idiom) allows us to avoid special cases for objects that require cleanup or resource release. Consider a

simplified version of make_unique() that constructs an object of an arbitrary type and returns a unique

pointer to it:

template<typename T, typename... Args> // variadic template (see §6.5)
auto make_unique(Args&&... args) // the return type is deduced
{

return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}

If built-in types couldn’t be created using new and late destroyed using delete by unique_ptr’s

destructor, this would require a workaround. If “cleanup operations” couldn’t be made implicit defining

destructors, unique_ptr would need workarounds for every type requiring cleanup.

6.2. Lambdas
We used the standard-library function object greater to reverse the order of the sorted vector:

sort(lst,ranges::greater). For a predicate that has many uses, represents a general action, and can be

given a comprehensible name, that’s ideal. However, many arguments to algorithms don’t fit those

criteria and having to define the function object (a class with an operator()) in one place and use it in

another can be a burden to the programmer. Consequently, C++ offers a notation for specifying an

unnamed function object that can be used immediately. For example:

sort(lst,[](const string& x, const string& y) { return x>y; }).

The [] indicates an anonymous function object. Such objects are called “lambda expressions” or simply

“lambdas.” Here, the [] simply generates an anonymous function.

A lambda can have a state and access local variables in its enclosing scope. For example:

void test(vector<int>& v, int smallest)
{

auto p = find_if(v, [&](auto arg) { return smallest <= arg; });
if (p!=v.end()) {

// … use *p …
}

}

Stroustrup 2025 Concept-Based Generic Programming

18

Here, the lambda holds a reference to the local variable smallest and uses it as the smallest value to be

found. The writer of a lambda can exercise detailed control over what names from its environment it

can access (“it captures”) and whether their use is by reference or by copy. “By copy" is especially useful

when we want to minimize indirections (through pointers and references) as in much concurrent

programming. The [&] indicates “by reference.”

In the lambda passed to find_if above, we used plain auto as the parameter type. That means that the

lambda will accept any type of argument. We could get away with that here because we know that

find_if only calls that argument with an argument of its element type and that v’s element type is int.

But what if we didn’t know that much and made a mistake? We would get a late and poor error message

from the compiler. To avoid that possibility we could use a more restrictive concept:

auto p = find_if(v, [=](Num arg) { return smallest <= arg; });

While cleaning up that call, we changed the capture of smallest from by-reference to by-value. If that

lambda is called many times, that’s more efficient and when capturing by-value we eliminate the

possibility of making the mistakes of retaining a reference when we should not.

6.3. Generating types
A generic algorithm wouldn’t be of much use unless there was a set of types it could be generic over. A

key use of templates is to generate types with similar interfaces. As usual, vector offers a simple

example:

template<Element T, Allocator A = std::allocator<T>>
class Vector {
 A alloc;
 T* elem;
 int sz;
public:
 Vector(int sz, const T& val = {}, Alloc a = {})

: alloc{a}, elem{alloc.allocate(sz)}, sz{z}
{
 for (auto x : span{elem,sz})

alloc.construct(x,val);
}

 ~Vector()
{
 for (auto x : span{elem,sz})

alloc.destroy(x);
 alloc.deallocate(sz);
}

// … access operations …

};

Stroustrup 2025 Concept-Based Generic Programming

19

This is a much-simplified version of the standard-library vector. We used an Element concept to

represent the requirements for a type to be used for elements, notably the ability to be copied and

moved. The concept Allocator represents the requirements for a type to be used to allocate and

deallocate memory. The allocator allows the elements of a Vector to be placed in the free store

(dynamic memory, heap), on the stack, in a user-define storage pool, or even in a permanent memory.

Both the allocator (alloc) and the default element value (val) are defaulted to their type’s default value.

The standard-library default allocator uses new and delete.

6.4. Optional member functions
When defining a parameterized type, it is often useful to provide an operator for some but not all

template arguments. For example, a “smart pointer” should offer a -> operator if and only if it points to

a class object with members:

template<typename T> class Ptr {
 // ...
 T& operator*();
 T* operator->() requires is_class<T>; // offer -> (only) if T is a class
};

Now, we get

void test(Ptr<int> pi, Ptr<pair<string,int>> psi)
{
 auto x0 = *pi; // OK: x0 is an int
 auto x1 = *psi; // OK: x1 is a pair<int,string>

auto x2 = pi->value; // error: Ptr<int> doesn’t have a ->
 auto x3 = psi>first; // OK: x3 is an int
}

Such optionality is quite popular. For example, the standard-library pair type offers a constructor from
another pair provided each element can be converted:

template<typename T, typename U>
struct Pair {
 T t;
 U u;
public:
 // ...
 // offer constructor (only) for types that can be converted to the members:
 template<typename TT, typename UU>

requires convertible_to<TT, T> && convertible_to<UU, U>
Pair(const Pair<TT, UU>& pp) :t(pp.t), u(pp.u) {};

};

The convertible_to<TT,T> is a standard library concept checking that a TT can be implicitly converted to
a T. For example:

Stroustrup 2025 Concept-Based Generic Programming

20

void test(Pair<int, int> pii, Pair<double, double> pdd, Pair<string, int> psi)
{

Pair<int, int> x0 = pii; // OK
Pair<int, int> x1= pdd; // OK
Pair<double, double> x2 = pii; // OK
Pair<int, int> x3 = psi; // error: can’t convert first element
Pair<string, int> x4 = psi; // OK

}

However, convertible_to<TT,T> doesn’t protect against narrowing conversions (e.g., x1), so it might be
better to simply check if the values used really results in narrowing using convert_to() from §2.1:

 template<typename TT, typename UU>
 Pair(const Pair<TT, UU>& pp)

:Pair{convert_to<T>(pp.t), convert_to<U>(pp.u)} {}

This catches more errors but incurs a slight cost when initializing from a Pair type that potentially

narrows.

We left a problem when we defined convert_to only for numeric types, so conversions involving strings

now fail. That now seems restrictive. A simple solution to this is to overload convert_to for types that

are not numeric so that we can’t check for narrowing:

template<typename T, typename U>
constexpr T convert_to(U u)
{
 return T{u};
}

Thanks to overloading (§4.4), this less strict version will be chosen for types that don’t meet our
definition of numeric types from §2.1, such as strings, pointers and enumerations. This version uses the
T{u} notation to protect from pointer-to-bool and int-to-enumeration narrowing conversions. Such
narrowing conversions now trigger compile-time errors.

6.5. Variadic templates
Sometimes, a function needs to take a variety of arguments. For many simple cases, this can be

achieved through overloading (e.g., §4.4) or default arguments (e.g., §4.3) but C++ also offers a general

mechanism that can handle a varying number of arguments of a variety of types. For example:

print1("Hello ", "world", '!', " It's now ", chrono::system_clock::now());

Just now that produced

Hello world! It's now 2025-05-22 16:55:25.2750128

This can be achieved by something called variadic templates:

template<class T>
concept Printable = requires(T t, ostream & os) { os << t; };

Stroustrup 2025 Concept-Based Generic Programming

21

template<Printable T>
void print1(T... args) { (cout << ... << args); }

First, we define a concept Printable as simply something that can be written to an ostream using <<.

Next, we define a function that takes a sequence of zero or more Printable arguments. The ellipsis (…)

indicates zero or more values and such an argument is called a parameter pack.

The simplest way of using a parameter pack is in a fold expression. Here, (cout << ... << args) says “write

all the elements of args to cout one at a time using <<.” Basically, we say <<…<< instead of << to indicate

that a parameter pack is used instead of a single object. A fold expression can be done with most

operators.

If we want to do more with a parameter pack than can be handled by a single operator, we have to

recursively unravel the pack. For example, we can implement something similar to the standard library

print function [C++20, BS’22]) that uses a format string where {} indicates where arguments should be

inserted. For example:

print2("Hello {}! It's now {}", "world", chrono::system_clock::now());

That produced:

Hello world! It's now 2025-05-22 17:50:42.3606077

Implementing print2 involves classical C-style character manipulation in addition to variadic templates

and concepts.

First, we handle the case with no arguments after the format string:

 void print2(const char* s)
 {
 if (s == nullptr)

return;
 while (*s) {
 if (*s == '{')
 if (*++s == '}')
 throw runtime_error("argument missing");
 else
 cout << '{';
 cout << *s++;
 }
 }

Most of this code is there to catch the error when the format string requires an argument that isn’t

supplied.

Next come the generic programming solution using a parameter pack (T…). First, we deal with the first

element of the pack and then recursively call print2 again with whatever is left of the format string and

the rest of the arguments:

Stroustrup 2025 Concept-Based Generic Programming

22

template<Printable T>
void print2(const char* s, T val, T... args)

 {
 while (s && *s) {
 if (*s == '{')
 if (*++s == '}') {
 cout << val;
 return print2(++s, args...); // handle the rest
 }
 else
 cout << '{';
 cout << *s++;
 }
 throw runtime_error("too many arguments");
 }

When args… is empty, the one-argument print2 is called. That way, we never get to the "too many

arguments" error unless there really too many arguments.

6.6. Modules
The 1998 C++ standard introduced a major difference between the way generic code was organized and

the way “ordinary code” was. A template function was required to be in scope at the point of use

(usually in a header file) whereas “ordinary” functions tended to be stored in separate source code files

(e.g., .c, .cpp, or .cxx files.). This simplified template instantiation and optimization, but reinforced the

impression that templates were somehow fundamentally different from non-generic code.

The introduction of modules in C++20 [BS’25] encouraged the use of the same source code organization

for all functions. For example:

export module map_printer; // we are defining a module

import iostream; // importing facilities needed for implementation
import containers;
using namespace std;

export // this template is the only entity exported
template<Sequence S>
void print_map(const S& m) {
 for (const auto& [key,val] : m) // access key and value
 cout << key << " -> " << val << '\n';
}

The introduction of modules was primarily motivated by a need for modularity and greatly improved

compilation speed but getting generic code into the same organizational framework as other code was a

deliberate move to integrate generic and non-generic facilities.

Stroustrup 2025 Concept-Based Generic Programming

23

6.7. Static reflection (C++26)
A lot of the power of generic programming comes from letting the programmer use what the compiler

knows about the types and functions. Static reflection is a facility coming in C++26 that will dramatically

enhance the programmer’s ability to use what the compiler knows.

As an example, let’s generate a description of a class’ layout. Various forms of such layout data can be

used in a variety of places, such as debuggers, cross-language interfaces, and communication protocols:

struct member_descriptor
{
 string_view name;
 size_t offset;
 size_t size;
};

We use a string_view (a type similar to a span for character strings) to avoid creating a string object.

The compiler already has such a string stored for the lifetime of the type we are examining.

We want to make a member_descriptor for a variety of types. Here is a function doing that:

template <typename S>
consteval auto get_layout()
{

constexpr auto members = meta::nonstatic_data_members_of(^^S);

 array<member_descriptor, members.size()> layout;

 int i = 0;

for (const auto& x :members)
 layout[i++] = {

meta::identifier_of(x), // member name
meta::offset_of(x),
meta::size_of(x)

};

 return layout; // returns an array<member_descriptor, members.size()>
}

The ^^S means “get the reflection object of type meta::info for S.” A meta::info object gives access to

essentially all the compiler knows about a type and offers compile-time functions to access it. Here,

nonstatic_data_members_of(^^S) returns a (fixed sized) std::array of descriptors of S’s members. We

can then access the properties of those members, here their identifiers, offsets, and sizes.

As demonstration, we can do a small test. Source code:

struct X {
 char a;
 int b;

Stroustrup 2025 Concept-Based Generic Programming

24

 string c;
};

constexpr auto Xd = get_layout<X>();

Now Xd is an array of member_descriptors with the value {{"a", 0, 1}, {"b", 4, 4}, {"c", 8,2 4}}. The

literal strings are what you’d see looking through the string_views. Naturally, the exact values of the

offset and size depend on the implementation.

This style of code can be used for generating I/O operations, serialization to/from various formats,

foreign language calls to/from C++, and much more. It is too early to firmly predict how static reflection

will be used in general, but it obviously has a major role to play for experienced programmers

implementing functions and data structures with conventional interfaces that can be easily used. C++26

doesn’t allow us to directly inject functions into code, but if we need to, we can always output the

source code of the function as a string and then compile such strings in a different translation unit.

7. Major concepts design decisions
The development of generic programing support since the earliest days of C++ is well documented

[BS’82, BS’94, BS’03, BS’03b, AS’09, BS’09, AS’11, BS’20]. This section briefly presents key design

decisions related to concepts; that is, to the use of requirements that code can place on the types and

functions it uses.

My ideal is for generic programming to be simply programming without any special restrictions or

separate rules. This is of course not exceptional (e.g., see ML [LP’91]) but given generic programming’s

gradual and slow introduction into C++, that ideal is not widely understood or generally appreciated.

However, as seen above, we can often approximate this ideal. This section presents some rationale for

key design decisions for concepts.

7.1. Concepts are functions
Many constraints systems rely on sets of functions, much like a class definition. The design of concepts

for C++0x was an example of that [DG’06]. Such systems suffer from rigidity as the type of each

constraint function (argument and return types) must be specified. Also, the constraints of each function

argument must be specified in isolation from others. This leads to problems specifying implicit

conversions and to problems specifying constraints on operations with multiple operands of different

types.

Using compile-time-evaluated functions and use patterns (§5) solve those problems, make almost the

complete language available for specifying requirements, simplify such specifications, and provide a

direct mapping from requirements to compile-time checking. Concepts specify what a template must be

able to do with its arguments, not how the argument types must be defined to do so. In particular,

concepts handle mixed-mode arithmetic and implicit conversions simply and elegantly (§2.2, §5.1).

A 2006 paper [GDR’06] introduced the notion of specifications as use patterns but unfortunately the

community found it too unusual and set concepts back about 15 years. See §5, §7.1, and §7.4 for some

reasons for preferring use patterns over the conventional class-like specifications of requirements.

Stroustrup 2025 Concept-Based Generic Programming

25

7.2. GP and OOP
For C++, generic programing (GP) was designed to complement classical Object-Oriented Programming

(OOP). Both are mechanisms for specifying abstractions to represent entities and operations in an

application. GP and OOP each have unique strengths not shared with the other. Thus, despite overlaps

in usage, they are complementary rather than complete alternatives.

GP offers what is often called static polymorphism, relying on compile-time selection of functions. This is

in contrast to the run-time polymorphism offered by OOP, relying on class hierarchies using virtual

functions to select the appropriate derived class.

GP is focused on functions (algorithms). In particular, it focuses on a function’s requirements on its

arguments, including the relationships among those arguments; that is, on concepts. An argument list

can involve any set of types and values (§7.5) that meet the function’s concepts. A non-generic function

is simply one that requires a specific set of types.

In contrast, OOP is focused on objects. In particular, it focuses on the interface to and representation of

individual objects; that is, on classes. The implementation of the interface can be refined through

derived classes overriding virtual functions while keeping the meaning of operations unchanged

(interface inheritance). Functions relying on multiple arguments of classes with virtual functions (e.g.,

an intersect operation of shapes) can be tricky (double dispatch [BS’94], multimethods [PP’09]). If an

object of a derived class cannot be used in place of one of its base classes, the inheritance should be

private (this has been in C++ from the start [BS’82] and was later named “substitutability”). A class need

not be part of a class hierarchy and need not have virtual functions.

GP enables inlining of operations on function arguments because the definition of the types of those

arguments must be in scope. This offers great opportunities for optimization that compilers take

advantage of, including optimizations involving inlining of operations involving combinations of

argument.

In contrast, OOP often relies on virtual function calls where the actual type of an object is not known

until run time. Only calls to non-virtual functions, functions declared final, and functions of objects

whose definitions are in scope can be inlined.

In OOP, we have to pre-define interfaces as base classes of classes organized into hierarchies. That

required foresight – sometimes a great deal of foresight – from the designer of a class hierarchy to avoid

workarounds or widespread code changes if/when a base class needs a change.

In contrast, concept-based GP enables the use of a set of argument types as long as it meets the code’s

requirements (§4.4). That’s more flexible and requires less foresight from the programmer than class-

hierarchy-based OOP but doesn’t cope with objects of types that are not known until run time.

In OOP, an object accessed through a class interface can be of various different derived classes of

different sizes. Consequently, objects are typically allocated on the free store (dynamic memory, heap)

and accessed indirectly through pointers or references. This then requires that more care is to be taken

with memory management (e.g., using unique_ptr or shared_ptr to avoid resource leaks and dangling

pointers). Also, indirection can impede optimization and can mess up cache usage.

Stroustrup 2025 Concept-Based Generic Programming

26

GP and OOP can – and often are – used in combination. GP can use OOP constructs and techniques in

their implementation and use pointers and references to base classes as arguments. Similarly, OOP can

use GP techniques in their implementation. However, parameterizing a class that has virtual functions

should be done only with great care because that can lead to code bloat from virtual functions that are

not actually used.

Let’s have a look at a generic version of the classical “draw all shapes” OOP example:

void draw_all(Drawable_range auto& r)
{
 for (auto& d : r)

r->draw();
}

It is clearly OOP. Its simplest use involves giving it a vector<Shape*> as an argument and relies on virtual

function calls. It is clearly also a generic program, because draw_all is a template that we could also pass

a list<unique_ptr<Shape>>. It can even handle a type that controls access to Drawable objects of a

variety of types that aren’t in a hierarchy as long as they all have a draw() function that can be accessed

through a -> operator.

A very simple version of Drawable_range looks like this:

template<typename T>
concept Drawable = requires(T a) { a->draw(); };

template<typename R>
concept Drawable_range = ranges::forward_range<R> && Drawable<ranges::iterator_t<R>>;

7.3. Notation
C++ is an old language, parts stretching back all the way to the early C (1972 [K&R]). The support for

generic programming gradually evolved from the earliest days [BS’82] over decades under the

constraints of the language at different stages of development and the varying tastes and opinions of a

large standards committee.

I chose the < … > notation for type parameterization following some use in theory. Initially, I did not use

the prefix template keyword: < … > was a suffix to the name they parameterized. However, people

strongly insisted on having a prefix keyword to make templates stand out. That is typical, initially people

ask for a LOUD syntax for novel constructs because they are seen as difficult or even dangerous. Later,

the same people complain about verbosity.

The same happened when I proposed concepts to be usable with exactly the same syntax as types. For

example:

Void sort(Sortable_range& r) // conventional functional syntax

as an alternative to

 template<Sortable_range R> // shorthand syntax (C++20)
 void sort(R& r);

Stroustrup 2025 Concept-Based Generic Programming

27

or even

 template<typename R> // explicit qualification syntax (C++20)
 requires Sortable_range<R>
 void sort(R& r);

In the end

 Void sort(Sortable_range auto& r); // almost functional syntax (C++20)

was accepted as a compromise. The last three notations are supported by the standard. There are cases

where the longer notations are needed, especially to handle multi-argument functions and functions

where the name of the argument type is needed in the definition code. Where they can express the

same constraint, the notations are interchangeable. Basically, <typename T> is the mathematical “for all

types T” and <Foo T> for a concept Foo is the mathematical “for all T such that Foo<T>.”

The name “concept” was coined by Alex Stepanov in 1981 because concepts are intended to represent

fundamental concepts in code [DK’81, AS’09]. It thus predates most names for constraints.

The name auto is part of the C++ syntax and used to represent any type. I suggested it in 2002 as the

start of a push towards more support for generic programming, e.g., allowing auto f(auto). It was

accepted in C++11 [BS’02, JJ’03]. I see auto as the weakest, least restricted concept. We could now do

without it and use a defined concept instead:

template<typename T> concept Auto = true;

Now Auto accepts values of every type just like auto.

7.4. Concepts can be partial constraints
Consider a concept specified directly from language primitives:

template<typename T, typename U = T>
concept Arith = requires(T x, U y) { // arithmetic operations and a zero
 x+y; x-y; x*y; x/y;
 x+=y; x-=y; x*=y; x/=y;
 x=x; // copy of a T (not x=y)
 x=0;
};

template<typename T, typename U = T> // symmetric
concept Arithmetic = Arith<T,U> && Arith<U,T>;

This Arith concept accepts any pair of types T,U with the operations specified but will often be used with

a single type. The Arithmetic concept additionally requires those operations for the types reversed: U,T.

For example:

template<typename T, typename U>
double my_computation(Arith<T> auto x, Arith<U> auto y)

requires Arithmetic<T,U>

Stroustrup 2025 Concept-Based Generic Programming

28

 {
 // …
 }

Return type constraints are a bit tricky, so we left them out. Incomplete concepts are very useful

because they catch most errors early. They are inevitable during development where we have yet to

discover all uses. Importantly, errors not caught early are, as ever, caught at template instantiation

(code generation) time. Then, we get awful error messages but also the opportunity to improve the

relevant concept.

7.5. Concepts can take value arguments
Some constraints on generic code involve values in addition to types just as other templates. For

example, we can specify that a generated type needs a minimum size that is a power of two:

consteval bool is_power_of_two(int n)
{
 return 0<n && (n & (n - 1))==0;
}

template<int S>
concept Buffer_space = (1024 <= S) && is_power_of_two (S);

template<Element T, int S>
 requires Buffer_space<S>
struct Buffer {
 T buf[S];
 // …
};

void test0()
{
 Buffer<char, 100> b1; // error: buffer too small
 Buffer<int, 10000> b2; // error: size not binary
 Buffer<int, 2048> b3; // OK
}

Such value arguments can be most useful. One reason is that violations are detected at compile-time so

that we don’t have to write an error handler.

7.6. Concept type matching
Whenever we look up a name, there is a chance of finding something that didn’t match our

expectations, a false match. That’s the case for libraries, for nested scopes, and for class hierarchies.

When looking for typed entities (especially functions), the chance of a false match is limited by type

checking. When looking for a name constrained by concepts, the chance of a false match is limited by

the concept check.

Stroustrup 2025 Concept-Based Generic Programming

29

Before concepts, that check was missing for template name lookups and problems occurred because

only the template name was involved in the search and constraints were only applied (too) late, at

instantiation time. The result was obscure error messages and occasionally “the wrong” template was

found (just as occasionally an unexpected function is used after a library lookup). Concepts dramatically

change that. Most well-designed concepts involve a whole set of requirements, rather than a simple

type check. For example, consider Arithmetic from §7.4, which requires 10 operations. A type that

doesn’t represent a number is most unlikely to match all those. Even a simple concept like Printable

from §6.4 requires as much checking as a traditional type check. Thus, concept checking gives about as

much protection or more against false matches as traditional type checking.

There are concepts that differ only semantically and thus cannot be distinguished syntactically without

special effort. For example, the standard-library forward_iterator concept differs semantically from an

input_iterator only in that a forward_iterator allows repeated traversals of its sequence. The simple

solution to such problems is to introduce a syntactic difference indicating the semantic requirement. For

example, a forward_iterator must have a forward_iterator_tag and an input_iterator must not.

7.7. Definition checking
Like most people, I initially thought that it was important for generic code to be checked in isolation

relying exclusively on the concepts specified [D&E, BS’02b]. I now consider that a mistake because

isolating templates decreases their usability and can have negative performance implications. So, C++

concepts don’t offer definition checking even though we know how to implement it if we wanted to

[GDR’12].

Consider:

void advance(input_iterator auto p, int n)
{
 log("advance({},{})(",p,n); // Should this work?
 p+=n; // Should this work? Where to check?
}

Here, the interface to advance doesn’t mention the logging function log. Should a name unmentioned in

the interface be usable from a template? If yes, we need to change the interface to be able to use log.

That would imply interface instability and code changes. If not, we cannot compile templates in

isolation.

In industrial code, support for infrastructure, monitoring, telemetry, logging, debug aids, and the like are

very common. Such support code changes over time and have nothing to do with a function’s primary

aim so they should not be part of its interface.

Furthermore, p+=n wouldn’t compile because an input_iterator doesn’t support +=. However, many

input_iterarors are also random_access_iterators, so banning p+=n would have performance

implications. Consider:

vector v = {0,1,2,3,4,5,6,7,8,9};
auto p = v.begin();
advance(p,2); // Should this work? It has since C++98

Stroustrup 2025 Concept-Based Generic Programming

30

The fact that advance(p,2) works even though input_iterator doesn’t offer += is important for

performance. If it didn’t, the performance of some standard-library algorithms implemented using

advance would change from O(n) to O(n2).

What happens is that a final check of advance’s definition is postponed until the actual type of the

iterator is known. That is necessary anyway if we want to avoid potentially costly indirect function calls

in the implementation.

8. Language design challenges
C++ is deliberately an evolving language [BS’94]. It is thus entirely expected that its support for generic

programming is incomplete and improving. We learn through feedback from use. Consider a few areas

that need exploring further in the context of concept-based generic programming because they appear

to promise significant improvements:

• Axioms: Like most languages, C++ does not have a way to specify semantic properties of

constructs for the use of analyzers and code generators. A design was accepted for C++11

[GDR’09] but was removed again with C++11 concepts [BS’09] and not reintroduced for lack of

committee time.

• Output ranges: To increase range safety, it is necessary to be able to range check output

operations. This is easily done [BS’22], but for systematic and wide use, standard-library support

is needed.

• Notation: The use of auto after concepts (e.g., Drawable_range auto (§7.2)) is redundant in

almost all cases and distracting. To make the conventional functional notation with concepts

more expressive, we might introduce a way of naming the deduced type [MS’23].

• Overloading of classes: Allowing overloading of classes based on concepts, as is done for

functions, would provide a generalization of and possibly a simplification of what is currently

done with specialization.

• Pattern matching: Functional-programming style pattern matching would enable selection

based on concepts as well as types and values. That would simplify much code and eliminate

some opportunities for type violations. As for functions, the notation for pattern matching must

be designed to minimize the distinction between types and concepts [HS’24].

• Uniform function call: the difference between conventional functional style notation for

function call (e.g., f(x,y)) and OOP style (e.g., x.f(y)) is a distraction and leads to duplication in

concepts. It is also unnecessary [BS’15].

None of this is technically difficult but may be politically impossible in a large standards committee.

9. Summary
Generic Programming is “just” programming, grounded in classical mathematics [AS’95, AS’14]:

“The most general, most efficient, most flexible representation of concepts”

Stroustrup 2025 Concept-Based Generic Programming

31

Contemporary C++ approximates this ideal quite well. As examples, we show how to eliminate

signed/unsigned conversion problems (§2) and common range errors (§3). Generic programming is the

backbone of the ISO C++ standard library (§4).

Generic programming is complementary to classical Object-Oriented Programming (§7.2).

Constraints on generic algorithms are expressed as concepts. Concepts

• Are compile-time functions that can take multiple type and value arguments – a concept is not

specified as a class with sets of function declarations nor (just) a type of types (§5, §7.1).

• Can be defined in terms of other concepts or directly in terms of basic language constructs using

use patterns (§5).

• Specify what a generic function requires from its arguments – not how those arguments

implement operations on arguments (§7.1).

• Can be used to select among alternatives through simple and flexible overloading (§4.4, §7.1).

• Allow us to make generic programming very similar to “ordinary” (non-generic) programming

without adding run-time overheads (§2, §4.4, §7.3).

Generic programming using concepts is deeply integrated into C++, rather than being an isolated sub-

language. For example:

• Built-in and user-defined types are treated uniformly, as needed to avoid generic code having to

distinguish between those (§6.1).

• Implicit cleanup and resource release (RAII) saves us from dealing separately with types that

require cleanup or resource release from types that do not, and from having to litter code with

error checks for exceptional errors (§6.1).

• Lambdas allow operations as arguments to generic code to be specified exactly where they are

needed (§6.2) and lambdas can carry state.

• Parameter packs allow us to pass lists of arguments of differing types (§6.5).

• Static reflection (C++26) greatly increases the ability of implementers of generic code to use

information known to the compiler (§6.7).

Generic programming using concepts and other compile-time evaluation support enable us to build our

own type systems on top of what C++ offers by default (§2.2, §5.2).

10. References
• [AS’95] A. Stepanov and M. Lee: The Standard Template Library. HP Laboratories TR95-11(R.1),

November, 1995.

• [AS’09] A. Stepanov and P. McJones: Elements of Programming. Addison Wesley 2009. ISBN

978-0-321-63537-2.

• [AS’11] A. Sutton and B. Stroustrup: Design of Concept Libraries for C++. Proc. SLE 2011

(International Conference on Software Language Engineering). July 2011.

• [AS’14] A. Stepanov and D. Rose: From Mathematics to Generic Programming. Addison Wesley

2014. ISBN 978-0321942043.

• [BS’82] B. Stroustrup: Classes: An Abstract Data Type Facility for the C Language. ACM/SIGPLAN

Notices, January, 1982.

https://www.stepanovpapers.com/STL/DOC.PDF
https://www.stroustrup.com/sle2011-concepts.pdf
https://www.stroustrup.com/classes_1982.pdf

Stroustrup 2025 Concept-Based Generic Programming

32

• [BS’94] B. Stroustrup: The Design and Evolution of C++. Addison Wesley, ISBN 0-201-54330-3.

1994.

• [BS’02] B. Stroustrup: Draft proposal for "typeof". C++ standards committee reflector message

c++std-ext-5364, October 2002.

• [BS’03] B. Stroustrup: Concept checking – A more abstract complement to type checking. WG21

N1510. 2003.

• [BS’03b] B. Stroustrup and G. Dos Reis: Concepts -- Design choices for template argument

checking. WG21 N1522. 2003.

• [BS’09] B. Stroustrup: The C++0x "Remove Concepts" Decision. Dr. Dobb's Journal. July 2009.

• [BS’15] B. Stroustrup and H. Sutter: Unified Call Syntax: x.f(y) and f(x,y). WG21 N4474. 2015.

• [BS’17] B. Stroustrup: Concepts: The Future of Generic Programming. WG21 P0557r1. 2017.

• [BS’20] B. Stroustrup: Thriving in a crowded and changing world: C++ 2006-2020. ACM/SIGPLAN

History of Programming Languages conference, HOPL-IV. June 2020.

• [BS’22] B. Stroustrup: A Tour of C++ (3rd Edition). Addison-Wesley. ISBN 978-0-13-681648-5.

2022.

• [BS’24] B. Stroustrup: Programming: Principles and Practice using C++ (3rd Edition). ISBN 978-0-

13-830868-1. Addison-Wesley. 2024.

• [BS’25] B. Stroustrup: 21st Century C++. Blog@CACM. Plain pdf version. February 2025.

• [CPP] cppreference.com.

• [C++20] Standard ISO/IEC 14882:2024(E) – Programming Language C++.

• [C++23] Standard ISO/IEC 14882:2024(E) – Programming Language C++.

• [DG’06] D. Gregor, J. Jarvi, J. Siek, B. Stroustrup, G. Dos Reis, A. Lumsdaine: Concepts: Linguistic

Support for Generic Programming in C++. OOPSLA'06, October 2006.

• [DK’81] D. Kapur, D. R. Musser, and A. A. Stepanov: Tecton: A Language for Manipulating

Generic Objects. Lecture Notes In Computer Science, vol. 134, Springer-Verlag, London, August 1981.

• [GDR’06] G. Dos Reis and B. Stroustrup: Specifying C++ Concepts. POPL’06. January 2006.

• [GDR’09] G. Dos Reis, B. Stroustrup, and A. Meredith: Axioms: Semantics Aspects of C++ Concepts.

WG21 N2887. June 2009

• [GDR’12] G. Dos Reis: A System for Axiomatic Programming. LANI 7362 Intelligent Computer

Mathematics. 2012.

• [GSL] The C++ Core Guidelines Support Library

• [HS’24] H. Sutter: Pattern matching using is and as. WG21 P2392R3. 2024.

• [Intel] Intel AI Technical Library: bfloat16 - Hardware Numerics Definition. 2018-11-14.

• [JJ’03] J. Järvi, B. Stroustrup, D. Gregor, and J. Siek: Decltype and auto. WG21 N1478. 2003.

• [KE’24] K. Estell: C++ Exceptions for Smaller Firmware. CppCon 2024.

• [K&R’78] Brian Kernighan and Denis Ritchie: The C Programming Language. Addison-Wesley.

1978. ISBN 0131101633.

• [LP’91] L. Paulson: ML for the Working Programmer, Cambridge University Press 1991. ISBN 0-

521-57050-6.

• [MS’23] Mike Spertus: Reconsidering concepts in-place syntax. WG21 P2677R2. 2023.

• [PP’09] P. Pirkelbauer, Y. Solodkyy, and B. Stroustrup: Design and Evaluation of C++ Open Multi-

Methods. SCP’09. June 2009. doi:10.1016/j.scico.2009.06.002.

https://www.stroustrup.com/n1510-concept-checking.pdf
https://www.stroustrup.com/N1522-concept-criteria.pdf
https://www.stroustrup.com/N1522-concept-criteria.pdf
http://www.ddj.com/cpp/218600111?pgno=1
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4474.pdf
https://www.stroustrup.com/good_concepts.pdf
https://dl.acm.org/doi/abs/10.1145/3386320
https://www.stroustrup.com/tour3.html
https://www.stroustrup.com/programming.html
https://cacm.acm.org/blogcacm/21st-century-c/
https://www.stroustrup.com/21st-Century-C++.pdf
https://en.cppreference.com/w/
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://www.stroustrup.com/oopsla06.pdf
https://www.stroustrup.com/oopsla06.pdf
https://www.stepanovpapers.com/Tecton.pdf
https://www.stepanovpapers.com/Tecton.pdf
https://www.stroustrup.com/popl06.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2887.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31374-5_20
https://github.com/microsoft/GSL
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2392r3.pdf
https://www.intel.com/content/www/us/en/content-details/671279/bfloat16-hardware-numerics-definition.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf
https://www.youtube.com/watch?v=bY2FlayomlE&t=1878s
https://parasol.tamu.edu/~yuriys/papers/OMM10.pdf
https://parasol.tamu.edu/~yuriys/papers/OMM10.pdf

Stroustrup 2025 Concept-Based Generic Programming

33

11. Acknowledgements
I am grateful to Chuck Allison, Alfred Bratterud, Damask Talary-Brown, James Cusick, J. Daniel Garcia,

Peter Juhl, Ole Lehrman Madsen, Arne Tolstrup Madsen, Gabriel Dos Reis, Herb Sutter, Clifford Tiltman,

Ville Voutilainen, and J.C. van Winkel who provided constructive comments on earlier versions of this

paper – especially helping to make the ideas comprehensible to a wider group of people.

