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Abstract
Selecting operations based on the run-time type of an object
is key to many object-oriented and functional programming
techniques. We present a technique for implementing open
and efficient type-switching for hierarchical extensible data
types. The technique is general and copes well with C++
multiple inheritance.

To simplify experimentation and gain realistic prefor-
mance using production-quality compilers and tool chains,
we implement our type swich constructs as an ISO C++11 li-
brary. Our library-only implementation provides concise no-
tation and outperforms the visitor design pattern, commonly
used for type-casing scenarios in object-oriented programs.
For many uses, it equals or outperforms equivalent code in
languages with built-in type-switching constructs, such as
OCaml and Haskell. The type-switching code is easier to
use and is more expressive than hand-coded visitors. The li-
brary is non-intrusive and circumvents most of extensibility
restrictions typical of visitor design pattern. It was motivated
by applications involving large, typed, abstract syntax trees.

Categories and Subject Descriptors D [1]: 5; D [3]: 3

General Terms Languages, Design

Keywords Type Switch, Typecase, Visitor Design Pattern,
Memoization, C++

1. Introduction
Algebraic data types as seen in functional languages are
closed and their variants are disjoint, which allows for ef-
ficient implementation of case analysis on such types. Data
types in object-oriented languages are extensible and hierar-
chical (implying that variants are not necessarily disjoint).
To be general, an type-switching construct must be open
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– allow for independent extensions, modular type-checking
and dynamic linking. On the other, in order to be accepted
for production code, the implementation of such a construct
must equal or outperform all known workarounds. However,
existing approaches to case analysis on hierarchical exten-
sible data types are either efficient or open, but not both.
Truly open approaches rely on expensive class-membership
testing combined with decision trees []. Efficient approaches
rely on sealing either the class hierarchy or the set of func-
tions, which loses extensibility [9, 18, 44, 51]. Consider a
simple expression language:

exp ∶∶= val ∣ exp + exp ∣ exp − exp ∣ exp ∗ exp ∣ exp/exp

In an object-oriented language without direct support for
algebraic data types, the type representing an expression-tree
in the language will typically be encoded as an abstract base
class, listing the (sealed set of) allowed virtual functions,
with derived classes representing variants:

struct Expr { virtual int eval () = 0; };
struct Value : Expr { ⋯ int eval (); int value ; };
struct Plus : Expr { ⋯ Expr& e1; Expr& e2; };

A simple evaluator for this language can be implemented
with the aid of a virtual function eval() declared in the base
class Expr. The approach is intrusive however, as we will
have to modify the base class every time we would like to
add a function. Instead we offer an external introspection of
objects with case analysis:

int eval (const Expr& e)
{

Match(e)
Case(const Value& x) return x.value ;
Case(const Plus& x) return eval (x. e1) + eval(x. e2);
Case(const Minus& x) return eval(x.e1) − eval (x. e2);
Case(const Times& x) return eval(x.e1) * eval (x. e2);
Case(const Divide& x) return eval(x. e1) / eval (x. e2);

EndMatch
}

The syntax is provided without any external tool support or
additional definitions. Instead we rely on a few C++11 fea-
tures [24], template meta-programming, and macros. It runs
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about as fast as OCaml and Haskell equivalents (§4.3), and,
depending on the usage scenario, compiler and underlying
hardware, comes close or outperforms the handcrafted C++
code based on the visitor design pattern (§4).

The ideas and the library presented here were motivated
by our unsatisfactory experiences working with various C++
front-ends and program analysis frameworks [1, 32, 39]. The
problem was not in the frameworks per se, but in the fact that
we had to use the visitor design pattern [18] to inspect, tra-
verse, and elaborate abstract syntax trees to target languages.
We found visitors unsuitable to express our application logic
directly, surprisingly hard to teach students, and often slower
than hand-crafted workaround techniques. We found users
relying on dynamic casts in many places, often nested, to an-
swer simple structural questions. That is, the users preferred
shorter, cleaner, and more direct code to visitors. The conse-
quential high performance cost was usually not discovered
until later, when it was hard to remedy.

1.1 Summary
This paper makes the following contributions:

• A technique for implementing open and efficient type
switching on extensible hierarchical data types as seen
in object-oriented languages.

• The technique approaches the notational convenience of
functional-language type-switch constructs and delivers
equivalent performance to those for closed cases.

• The technique is simpler to use and outperforms the vis-
itor pattern.

• A type-switch approach that combines subtype tests and
type conversion; It delivers superior performance to ap-
proaches that combine (even constant-time) subtype tests
with decision trees for even small class hierarchies.

• The type-switch construct handles multiple inheritance
without workarounds.

• A constant-time function whose equivalence kernel par-
titions the set of objects with the same static type into
equivalence classes based on inheritance path of the static
type with the most-derived type.

In particular, our technique for efficient type switching:

• Comes close and often outperform various workaround
techniques used in practice, e.g. visitor design pattern,
without sacrificing extensibility (§4).

• Is open by construction (§3.2), non-intrusive, and avoids
the control inversion typical for visitors.

• Works in the presence of multiple inheritance, both re-
peated and virtual, as well as in generic code (§3.7).

• Does not require any changes to the C++ object model or
computations at link or load time.

• Can be used in object-oriented languages with object
models similar to C++’s.

• For C++, can be implemented as a library written in ISO
Standard C++11.

This is the first technique for efficiently handling type
switching in the presence of general multiple inheritance.
Being a library, our solution is that it can be used with any
ISO C++11 compiler (e.g., Microsoft, GNU, or Clang) with-
out requiring the installation of any additional tools or pre-
processors. The solution sets a new threshold for acceptable
performance, brevity, clarity and usefulness of open type-
switching in C++.

2. Overview
A heterarchy is a partially ordered set (H,<∶) where H
is a set of classes and <∶ is reflexive, transitive and anti-
symmetric subtyping relation on H . We are going to use
terms class and type interchangibly as the exact distinction
is not important for this discussion. Given two types in a
subtyping relation D <∶ B, the type D is said to be a subtype
or a derived class ofB, which in turn is said to be a supertype
or a base class of D. When the transitive reduction <∶d of <∶
is a function,H is usually referred to as hierarchy to indicate
single inheritance.

Subtyping effectively makes objects belong to multiple
types. We call by the most-derived type the type used to
create an object (before any conversions). By static type we
call the type of an object as known to the compiler based
on its declaration as well as any supertype of it. By dynamic
type of an object we call any base class of the most-derived
type.

2.1 Type Switch
In general, type switch or typecase is a multiway branch
statement that distinguishes values based on their type. In a
multi-paradigm programming language like C++ that sup-
ports in various forms parametric, ad-hoc and subtyping
polymorphisms, such a broad definition subsumes numer-
ous different type casing constructs studied in the litera-
ture [21, 23, 45]. In this work we only look at type casing
scenarios based on dynamic polymorphism of C++ (nomi-
native subtyping polymorphism based on inheritance), sim-
ilar to those studied by Glew [21]. It is possible to gener-
alize type casing (the notion, not our implementation) to
static polymorphism of C++ (ad-hoc and parametric poly-
morphisms enabled by overloading and templates) along the
line of work introduced by Harper and Morrisett [23] and
studied in the context of closed and extensible solutions by
Vytiniotis et al [45], but we do not address such a generaliza-
tion here. We use the term type switch instead of a broader
typecase to stress the run-time nature of the type analysis
similar to how regular switch-statement of C++ performs
case analysis of values at run time.

Given an object descriptor, called subject, of static type
S (pointer or reference) referred to as subject type, and a
list of target types Ti associated with the branches, a type
switch statement needs to identify a suitable clause m (or
absence of such) based on the most-derived type D <∶ S of
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the subject as well as suitable conversion that csts the subject
to the target type Tm. Due to multiple inheritance, types
Ti in general may or may not be derived from S, however,
because of the strong static type safety requirement, the type
of applicable clause Tm will necessarily have to be one
of subject’s dynamic types: D <∶ Tm. A hypothetical type
switch statement, not currently supported by C++, may look
as following:

switch (subject) { case T1: s1; ... case Tn: sn; }

There is no need for an explicit default clause in our setting
because such a clause is semantically equivalent to a case
clause guarded by the subject type: case S: s. The only
semantic difference such a choice makes is in the treatment
of null-pointers, which, one may argue, should be handled by
the default clause. We disagree, because not distinguishing
between invalid object and valid object of a known static
but unknown dynamic type may lead to some nasty run-time
errors.

Similar control structures exist in many programming
languages, e.g. match in Scala [35], case in Haskell [25]
and ML [33], typecase in Modula-3 [6] and CLOS [? ]
(as a macro), tagcase in CLU [30], union case in Algol 68
and date back to at least Simula’s Inspect statement [11].
The statement in general can be given numerous plausible
semantics:

• First-fit semantics will evaluate the first statement si such
that Ti is a base class of D

• Best-fit semantics will evaluate the statement correspond-
ing to the most-derived base class Ti of D if it is unique
(subject to ambiguity)

• Exact-fit semantics will evaluate statement si if Ti =D.
• All-fit semantics will evaluate all statements si whose

guard type Ti is a subtype of D (order of execution has
to be defined)

• Any-fit semantics might choose non-deterministically one
of the statements enabled by all-fit

The list is not exhaustive and depending on a language, any
of these semantics can be a plausible choice. Functional
languages, for example, often prefer first-fit semantics be-
cause it is similar to case analysis in mathematics. Object-
oriented languages would typically be inclined to best-fit se-
mantics due to its similarity to overload resolution and vir-
tual dispatch, however, some do opt for first-fit semantics
to mimic the functional style: e.g. Scala [35]. Exact-fit se-
mantics can often be seen in languages supporting discrim-
inated union types: e.g. variant records in Pascal, Ada and
Modula-2, oneof and variant objects in CLU, unions in C
and C++ etc. All-fit and any-fit semantics might be seen in
languages based on predicate dispatching [17] or guarded
commands [13], where a predicate can be seen as a charac-
teristic function of a type, while logical implication can be
seen as subtyping.

2.2 Expression Problem
Type switching is related to a more general problem mani-
festing the differences in functional and object-oriented pro-
gramming styles.

Conventional algebraic datatypes, as found in most func-
tional languages, allow for easy addition of new functions
on existing data types. But they fall short in extending
data types themselves (e.g. with new constructors), which
requires modifying the source code. Object-oriented lan-
guages, on the other hand, make data type extension trivial
through inheritance; but the addition of new functions op-
erating on these classes typically requires changes to the
class definition. This dilemma is known as the expression
problem [10, 46].

Classes differ from algebraic data types in two important
ways. Firstly, they are extensible, for new variants can be
added later by inheriting from the base class. Secondly, they
are hierarchical and thus typically non-disjoint since vari-
ants can be inherited from other variants and form a subtyp-
ing relation between themselves [21]. In contrast, variants in
algebraic data types are disjoint and closed. Some functional
languages e.g. ML2000 [2] and its predecessor, Moby, were
experimenting with hierarchical extensible sum types, which
are closer to object-oriented classes then algebraic data types
are, but, interestingly, they provided neither traditional nor
efficient facilities for performing case analysis on them.

Zenger and Odersky later refined the expression problem
in the context of independently extensible solutions [50] as a
challenge to find an implementation technique that satisfies
the following requirements:

• Extensibility in both dimensions: It should be possible to
add new data variants, while adapting the existing opera-
tions accordingly. It should also be possible to introduce
new functions.

• Strong static type safety: It should be impossible to apply
a function to a data variant, which it cannot handle.

• No modification or duplication: Existing code should
neither be modified nor duplicated.

• Separate compilation: Neither datatype extensions nor
addition of new functions should require re-typechecking
the original datatype or existing functions. No safety
checks should be deferred until link or runtime.

• Independent extensibility: It should be possible to com-
bine independently developed extensions so that they can
be used jointly.

While these requirements were formulated for extensible
data type with disjoint variants, object-oriented languages
primarily deal with hierarchical data types. We thus found it
important to explicitly state an additional requirement based
on the Liskov substitution principle [29]:

• Substitutability: Operations expressed on more general
data variants should be applicable to more specific ones
that are in a subtyping relation with them.
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We will refer to a solution that satisfies all of the above
requirements as open. Numerous solutions have been pro-
posed to dealing with the expression problem in both func-
tional [19, 31] and object-oriented camps [22, 27, 37, 49],
but very few has made its way into one of the mainstream
languages. We refer the reader to Zenger and Odersky’s orig-
inal manuscript for a discussion of the approaches [50]. In-
terestingly, most of the discussed object-oriented solutions
were focusing on the visitor design pattern and its exten-
sions, which even today seems to be the most commonly
used approach to dealing with the expression problem in
object-oriented languages.

A lot has been written about the visitor design pattern [18,
36, 37, 49]. Its advantages include extensibility of functions,
speed, and, being a library solution. Nevertheless, the so-
lution is intrusive, specific to hierarchy, and requires a lot
of boilerplate code to be written. It also introduces control
inversion, and, most importantly, – hinders extensibility of
classes.

2.3 Open Type Switch
Note that the presence of a type switch in an object-oriented
language alone does not solve the expression problem be-
cause the existing code may have to be modified to take
new variants into account. Relying on default clause is not
considered to be an acceptable solution in this context, be-
cause often times the only reasonable default behavior is to
raise an exception. Zenger and Odersky note that in such
cases defaults will transform type errors that should man-
ifest statically into runtime exceptions that are thrown dy-
namically [50].

While we generally agree with this observation, we would
like to point out that in our experience newly added variants
were more often extending an existing variant than creating
an entirely disjoint one. In a hypotetical compiler, for ex-
ample, a new kind of type expression will typically extend
a TypeExpression variant, while a new form of annotation
will extend an Annotation variant, thus not extending the
root ASTNode directly. Due to substitutability requirement
such a new variant will be treated as a variant it extends in
all the existing code. The functions that will be affected by
its addition and thus have to be modified will be limited to
functions directly analyzing the variant it extends and not
providing a default behavior.

To account for this subtlety of extensible hierarchical
data types, we use a term open type switch to refer to a
type switch that satisfies all the requirements of an open
solution to expression problem stated above except for the
no modification or duplication requirement. We loosen it to
allow modification of functions for which the newly added
variant becomes a disjoint (orthogonal) case not handled
by default clause. We believe that the loosened requirement
allows us to express pragmatically interesting restrictions
that developers are willing to live with. Besides, open type

switch overcomes all the major shortcomings of the visitor
design pattern:

• Case analysis with an open type switch is non-intrusive
as it inspects the hierarchy externally and can be applied
retroactively.

• New variants can be accounted for in the newly written
code and will be seen as a base class or default in the
existing code.

• The affected functions are limited to those for which the
newly added variant is a disjoint case.

• The code avoids the control inversion and the need for
boilerplate code that visitors introduce, and is thus a more
direct expression of the intent.

2.4 C++ Specifics: Subobjects
C++ supports two kinds of inheritance: non-virtual [15]
(also known as replicated [40] or repeated [47]) inheritance
and virtual [15] (or shared [47]) inheritance. The difference
between the two only arises in situations where a class indi-
rectly inherits from the same base class via more than one
path in the hierarchy. Different kinds of inheritance give
raise to the notion of subobject in C++, which are then used
to define semantics of operations like casts, virtual func-
tion dispatch etc. We give an informal introduction to them
here in order to show some subtleties of the C++ inheritance
model, which must be taken into account when addressing
type switching or subtype testing.

A

B C

D

Y

a. Repeated Inheritance

1. Class Hierarchy with Multiple Inheritance of A
Common Definitions:

struct Z                        { short z1; virtual int baz(); };
struct Y                        { short y1; virtual int yep(); };
struct A : Z                   { char   a1; virtual int foo(); };

Repeated Inheritance:
struct B : A                  { short b1; char b2; };
struct C : A, Y              {};
struct D : B, C              { short d1[3]; int yep(); };

Virtual Inheritance:
struct B : virtual A     { short b1; char b2; };
struct C : virtual A, Y {};
struct D : B, C             { short d1[3]; int yep(); };

Z

b. Virtual Inheritance

D::B::A::Z D::C::A::Z

D::B::A D::C::A

D::CD::B

D

D::C::Y

D::A::Z

D::A

D::CD::B

D

D::C::Y

2. Subobject Graphs

Figure 1. Multiple Inheritance in C++

Consider a simple class hierarchy in Figure 1(1). Class D
indirectly inherits from class A through its B and C base
classes. In this case, the user may opt to keep distinct subob-
jects of class A (repeated inheritance) or a shared one (virtual
inheritance) by specifying how B and C are inherited from
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A. The kind of inheritance is thus not a property of a given
class, but a property of an inheritance relation between de-
rived and base class and it is possible to mix the two in an
object of the most-derived type.

A class hierarchy, i.e. an inheritance graph gives rise to a
subobject graph, where a given class node may be replicated
when inherited repeatedly or left shared when inherited vir-
tually. The edges in such a graph represent subobject con-
taintment and are marked with whether such containtment
is shared or exclusive. Every class C in the class hierarchy
will have its own subobject graph representing the subobject
of an object of the most-derived type C. Figure 1(2) shows
subobject graph for class D obtained for the class hierarchy
in (1) under repeated (a) and virtual (b) inheritance of class
A by classes B and C. The shared containment is indicated
with the dashed arrows, while exclusive with the solid ones.

We will use term object descriptor to mean either pointer
or reference to an object, which we will use interchangably
when not explicitly specified. An object descriptor of static
type A referencing an object of the most-derived type C can
be understood as any *::A-node in the subobject graph of
C. Rosie and Friedman call A an effective type of object,
while the node in the subobject graph representing it – its
effective subobject. Casts in such a model can be understood
as a change from one effective subobject to another. We will
use terms source subobject and target subobject to refer to
effective subobjects before and after the cast. Their static
types will be refered to as as source type and target type
respectively. C++ distinguishes 3 kinds of casts: upcasts,
downcasts and crosscasts.

An upcast is a cast from a derived class to one of its bases.
When the base class is unambiguous, such casts are implicit
and require no additional annotations. When the base class is
ambiguous, cast failure is manifested statically in a form of a
compile-time error. This is the case for example with casting
D to A under repeated multiple inheritance of A, in which
case the user needs to explicitly cast the object to B or C
first in order to indicate the desired subobject and resolve
ambiguity. In some cases, however, introduction of such
an explicit cast is not possible: e.g. in implicit conversions
generated by the compiler to implement covariant return
types, cross casts or conversions in generic code. This does
not mean that in such cases we violate the Liskov subtitution
principle though – the classes are still in subtyping relation,
but an implicit conversion is not available.

A downcast is a cast from a base class to one of its derived
classes. The cast has to determine at run-time whether the
source subobject is contained by a subobject of the target
type in the most-derived type’s subobject graph. Failure of
such a cast is manifested dynamically at run-time.

A crosscast is a cast between classes that are not nec-
essarily related by inheritance. Accordingly to the C++ se-
mantics such cast is defined to be a composition of upcast
to target type and downcast to the most-derived type. While

the downcast to the most-derived type is always guaranteed
to succeed regardless of the source subobject, the upcast to
the target type may be ambiguous, in which case the cast will
fail. A cast from Y to B inside an object of the most-derived
type D in Figure 1(2a,2b) will be an example of a success-
ful cross cast. A similar cast from Y to A inside D under
repeated inheritance of (2a) will fail because of ambiguous
upcast from D to A.

An interesting artefact of these distinctions can be seen on
an example of casting a subobject of type Z to a subobject
of type A in Figure 1(2a). The subobject D::B::A::Z will
be successfully cast to D::B::A, while the D::C::A::Z will
be successfully cast to D::C::A. These casts do not involve
downcasting to D followed by an upcast to A, which would
be ambiguous, but instead take the dynamic type of a larger
subobject (D::B or D::C) the source subobject is contained
in into account in order to resolve the ambiguity. A similar
cast from Y to A will fail and should Y have also been
non-virtually derived from Z, the cast from D::C::Y::Z to A
would have failed. This shows that the distinction between
crosscast and downcast is not based solely on the presence
of a subtyping relation between the source and target types,
but also on the actual position of the source subobject in the
most-derived type’s subobject graph.

C++ inheritance model, presented here informally, com-
plicates the semantics and the implementation of a type
switch further. On one side we have to define the semantics
of a type switch when the cast between source and target
types that are in subtyping relation is not possible. On the
other – an implementation of the cast between source and
target subobjects will have to take into account the location
of the source subobject in the subobject graph into account
in addition to the most-derived and target types on which a
simple subtype test would solely depend.

2.5 Previous Work
The closed nature of algebraic data types allows for their ef-
ficient implementation. The traditional compilation scheme
assigns unique (and often small and sequential) tags to every
variant of the algebraic data type and type switching is then
simply implemented with a multi-way branch [42] (usually a
jump table) over all the tags [3]. Dealing with extensible hi-
erarchical data types makes this extremely efficient approach
infeasible:

• Extensibility implies that the compiler may not know the
exact set of all the derived classes till link-time (due to
separate compilation) or even run-time (due to dynamic
linking).

• Substitutability implies that we should be able to match
tags of derived classes against case labels representing
tags of base classes.

• Presence of multiple inheritance might require pointer
adjustments that are not known at compile time (e.g. due
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to virtual base classes, ambiguous base classes or cross-
casting).

There are two main approaches to implementing case anal-
ysis on extensible hierarchical data types, discussed in the
literature.

The first approach is based on either explicit or implicit
sealing of the class hierarchy, on which type switching can
be performed. In Scala, for example, the user can forbid fu-
ture extensions from a given class hierarchy through the use
of a sealed keyword [16, §4.3.2]. The compiler then uses the
above tag allocation over all variants to implement type anal-
ysis. In some cases the sealing may happen implicitly. For
example, languages that allow names with internal and ex-
ternal linkage may employ the fact that classes with internal
linkage will not be externally accessible and thus effectively
sealed. While clearly efficient, the approach is not open as it
avoids the question rather than solves.

The broader problem with this approach is that techniques
that rely on unique or sequential compile or link-time con-
stants violate independent extensibility since without a cen-
tralized authority there is no guarantee same constant will
not be chosen in type unsafe manner by independent ex-
tensions. Updating such constants at load time may be too
costly even when possible. More often than not however
such updates may require code regeneration since decision
trees, lookup tables etc. may have been generated by com-
piler for given values.

An important practical solution that follows this approach
is the visitor design pattern [18]. The set of visit methods in
visitor’s interface essentially seals the class hierarchy. Ex-
tensions have been proposed in the literature [49], however
they have problems of their own, discussed in §5.

The second approach employs type inclusion tests com-
bined with decision trees [5] to avoid duplicate checks. The
efficiency of the approach is then entirely focused on the ef-
ficiency of type inclusion tests [7, 9, 12, 14, 20, 26, 41, 44,
48, 51].

Type inclusion tests for single inheritance were initially
implemented by traversing a linked list of types, as proposed
by Wirth [48]. Such encoding requires little space, but runs
in time proportional to the distance between the two types
in the class hierarchy. A trivial constant-time type inclusion
test can be achieved with a binary matrix, encoding the sub-
typing relation on the class hierarchy [12]. While efficient
in time, it has quadratic space requirements, which makes it
expensive for use on large class hierarchies. In response to
Wirth’ original publication, Cohen proposed the first space-
efficient constant-time algorithm, which, howver, could only
deal with single inheritance [9]. Hierarchical encoding is an-
other constant-time test that maps subtype queries into sub-
set queries on bit-vectors [7, 26]. The approach can handle
multiple inheritance, but the space and time required for a
subtype test in this encoding increases with the size of the
class hierarchy, also Caseau’s approach is limited to class hi-

erarchies that are lattices. Schubert’s relative numbering [41]
encodes each type with an interval [l, r], effectivelly mak-
ing type inclusion tests isomorphic to a simple range check-
ing. The encoding is optimal in space and time, however it
is limited to single inheritance. PQ-Encoding of Zibin and
Gil employs PQ-trees to improve further space and time ef-
ficiency of the constant-time inclusion testing [51]. While
capable of handling type inclusion queries on heterarchies,
the approach makes the closed world assumption and can
be costly for use with dynamic linking because it is not in-
cremental. The approach of Gibbs and Stroustrup [20] em-
ploys divisibility of numbers to obtain a constant-time type
inclusion test. The approach can handle multiple inheritance
and was the first constant-time technique to addresses the
problem of casts between subobjects. Unfortunately the ap-
proach limits the size of the class hierarchies that can be
encoded with this technique. Ducournau proposed constant-
time inclusion test based on the fact that in an open solution
a class has known amount of base classes and thus perfect
hashes can be used to map them to this-pointer offsets typ-
ically used to implement subobject casts[14]. Unfortunately
the approach addresses only virtual multiple inheritance and
similarly to other approaches relies on load-time computa-
tions that may be costly. Detailed analysis and explanation
of existing constant-time type inclusion tests can be found
in [44] and [51].

With the exception of work by Gibbs and Stroustrup [20],
all the approaches to efficient type-inclusion testing we
found in the literature were based on the assumption that the
outcome of a subtyping test as well as the subsequent cast
depend only on the target type and the most-derived type of
the object. While such assumption is sound for subtyping
tests and subtype casts for shared inheritance (including sin-
gle), it does not reflect the relationship between subobjects
in the general case multiple inheritance present in C++.

2.6 The Source of Inefficiency
While constant-time type inclusion tests are invaluable in
optimizing subtype tests in programing languages, their
use in implementing a type switch is inferior to some
workaround techniques. This may prevent wide adoption
of a language implementation of such a feature due to its
inferior performance. We implemented 3 constant-time type
inclusion tests: binary matrix ??, Cohen’s algorithm [9] and
fast dynamic cast [20] and combined them with a decision
tree to implement a type switch on a class hierarchy ideally
suited for such scenario. The class hierarchy used in this
comparison was a perfect binary tree with classes number 2i
and 2i + 1 derived from a class number i. Our workaround
techniques included visitor design pattern and a switch on
the sealed sequential set of tags.

The chart in Figure 2 shows the time (Y-axis) each tech-
nique took to recognize an object of the most-derived type i
(X-axis). It is easy to see that the logarithmic cost associated
with the decision tree very quickly surpasses the constant
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Figure 2. Type switch based on const-time type inclusion
tests

overhead of double dispatch present in the visitor design pat-
tern or the jump-table implementation of the switch on all
tags. The edgy shape of timing results reflects the shape of
the binary tree class hierarchy used for this experiment.

3. Type Switch
C++ does not have direct support of algebraic data types,
but they can be encoded with classes in a number of ways.
One common such encoding is to introduce an abstract base
class representing an algebraic data type with several derived
classes representing variants. The variants can then be dis-
criminated with either run-time type information (referred to
as polymorphic encoding) or a dedicated member of a base
class (referred to as tagged encoding).

While our library supports both encodings, it handles
them differently to let the user choose between openness
and efficiency. The type switch for tagged encoding is sim-
pler and more efficient for many typical use cases, however,
making it open will eradicate its performance advantages.
The difference in performance is the price we pay for keep-
ing the solution open. We describe pros and cons of each
approach in §4.2.

3.1 Attractive Non-Solution
While Wirth’ linked list encoding was considered slow for
subtype testing it can be adopted for very efficient type
switching. The idea is to combine the fast switching on
closed algebraic datatypes with a loop that tries the tags of
base classes when switching on derived tags fails.

For simplicity of presentation we assume a pointer to ar-
ray of tags be available directly from within object’s taglist
data member. The array is of variable size, its first element is
always the tag corresponding to the most-derived type of the
object, while its end is marked with a dedicated end of list
marker distinct from all the tags. The tags in between are
topologically sorted according to the subtyping relation with
incomparable siblings listed in local precedence order – the
order of the direct base classes used in the class definition.
We call such a list a Tag Precedence List (TPL) as it resem-

bles the Class Precedence List (CPL) of object-oriented de-
scendants of Lisp (e.g. Dylan, Flavors, LOOPS, and CLOS)
used there for linearization of class hierarchies. TPL is just
an implementation detail and the only reason we distinguish
TPL from CPL is that in C++ classes are often separated into
interface and implementation classes and it might so happen
that the same tag is associated by the user with an interface
and several implementation classes. We also assume the tag-
constant associated with a class Di be accessible through a
static constant Di::class tag. These simplifications are not
essential and the library does not rely on any of these as-
sumptions. Instead the user can retroactively narrate to the
library the specific tag encoding used throught a trait-like
classes.

A type switch below, built on top of a hierarchy of tagged
classes, proceeds as a regular switch on the subject’s tag.
If the jump succeeds, we found an exact match; otherwise,
we get into a default clause that obtains the next tag in the
tag precedence list and jumps back to the beginning of the
switch statement for a rematch:

size t attempt = 0;
size t tag = object→ taglist[attempt];

ReMatch:
switch (tag) {
default:

tag = object→ taglist[++attempt];
goto ReMatch;

case end of list:
break;

case D1::class tag:
D1& match = static cast⟨D1&⟩(*object);
s1;break;
...

case Dn::class tag:
Dn& match = static cast⟨Dn&⟩(*object);
sn;break;

}
The above structure, which we call Tag Switch, lets us dis-
patch to case clauses of the most-derived class with an over-
head of initializing two local variables, compared to effi-
cient switch used on algebraic data types. Dispatching to
a case clause of a base class will take time roughly pro-
portional to the distance between the matched base class
and the most-derived class in the inheritance graph, thus
the technique is not constant. When none of the base class
tags were matched, we will necessarily reach the end of list
marker in the tag precedence list and exit the loop. As men-
tioned before, the default clause of the type switch can
be implemented with a case clause on subject type’s tag:
case S::class tag:

The efficiency of the above code crucially depends on the
set of tags we match against be small and sequential to jus-
tify the use of jump table instead of decision tree to imple-
ment the switch. This is usually not a problem in closed hier-
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archies based on tag encoding since the user of the hierarchy
hand-picks himself the tags. The use of static cast to obtain
proper reference once the most specialized derived class has
been established, however, essentially limits the use of this
mechanism to single inheritance only. This of course only
refers to the way target classes inherit from the subject type
– they can freely inherit other classes as long as they do not
create repeated of virtual multiple inheritance of the subject
type. Due to these assumptions, the technique is not open be-
cause it may violate independent extensibility. Moving away
from these assumptions in order to make the technique more
open (e.g. randomizing tags, using dynamic cast etc.) will
also eradicate its performance advantages.

3.2 Open but Inefficient Solution
Instead of starting with an efficient solution and trying to
make it open, we start with an open solution and try to
make it efficient. The following cascading-if statement im-
plements the first-fit semantics for our type switch in a truly
open fashion:

if (T1* match = dynamic cast⟨T1*⟩(subject)) { s1;} else
if (T2* match = dynamic cast⟨T2*⟩(subject)) { s2;} else
...
if (Tn* match = dynamic cast⟨Tn*⟩(subject)) { sn;}

Its main drawback is performance: a typical implementation
of dynamic cast takes time proportional to the distance
between base and derived classes in the inheritance tree.
What is worse, is that the time to uncover the type in the ith

case clause is proportional to i, while failure to match will
always take the longest. In a test involving a flat hierarchy of
100 variants it took 93 cycles to discover the first type and
22760 to discover the last (with linear combination of those
times to discover the types in between). A visitor design
pattern could uncover any type in about 55 cycles, regardless
of its position among the case clauses, while a switch based
on sequential tags could achieve the same in less than 20
cycles. The idea is thus to combine the openness of the
above structure with the efficiency of a jump table on small
sequential values.

3.3 Memoization Device
Let us look at a slightly more general problem than type
switching. Consider a generalization of the switch statement
that takes predicates on a subject as its clauses and executes
the first statement si whose predicate is enabled:

switch (x) { case P1(x): s1; ... case Pn(x): sn; }

Assuming that predicates depend only on x and nothing else
as well as that they do not involve any side effects, we can
be sure that the next time we come to such a switch with
the same value, the same predicate will be enabled first.
Thus, we would like to avoid evaluating predicates and jump
straight to the statement it guards. In a way we would like the

switch to memoize which case is enabled for a given value
of x.

The idea is to generate a simple cascading-if statement
interleaved with jump targets and instructions that associate
the original value with enabled target. The code before the
statement looks up whether the association for a given value
has already been established, and, if so, jumps directly to the
target; otherwise the sequential execution of the cascading-if
is started. To ensure that the actual code associated with the
predicates remains unaware of this optimization, the code
preceeding it after the target must re-establish any invariant
guaranteed by sequential execution (§3.7).

The above code can easily be produced in a compiler
setting, but producing it in a library setting is a challenge.
Inspired by Duff’s Device [43], we devised a construct that
we call Memoization Device that does just that in standard
C++:

typedef decltype(x) T;
static std::unordered map⟨T,size t⟩ jump targets;

switch (size t& jump to = jump targets[x]) {
default: // entered when we have not seen x yet

if (P1(x)) { jump to = 1; case 1: s1;} else
if (P2(x)) { jump to = 2; case 2: s2;} else

...
if (Pn(x)) { jump to = n; case n: sn;} else

jump to = n + 1;
case n + 1: // none of the predicates is true on x
}

The static jump targets hash table will be allocated upon
first entry to the function. The map is initially empty and
according to its logic, request for a key x not yet in the
map will allocate a new entry with its associated data default
initialized (to 0 for size t). Since there is no case label 0 in
the switch, the default case will be taken, which, in turn, will
initiate sequential execution of the interleaved cascading-
if statement. Assignments to jump to effectively establish
association between value x and corresponding predicate,
since jump to is just a reference to jump targets[x]. The
last assignment records absence of enabled predicates for the
value.

To change the first-fit semantics of the above construct
into sequential all-fit, we remove the elses and rely on
fall-through behavior of the switch. We also make the as-
signments conditional to make sure only the first one gets
recorded:

if (Pi(x)) { if (jump to ==0) jump to = i; case i: si;}

Note that the protocol that has to be maintained by this struc-
ture does not depend on the actual values of case labels. We
only require them to be different and include a predefined
default value. The default clause can be replaced with a case
clause for the predefined value, however keeping the default
clause results in a faster code. A more important perfor-
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mance consideration is to keep the values close to each other.
Not following this rule might result in a compiler choosing a
decision tree over a jump table implementation of the switch,
which in our experience significantly degrades the perfor-
mance.

The first-fit semantics is not an inherent property of the
memoization device. Assuming that the conditions are ei-
ther mutually exclusive or imply one another, we can build a
decision-tree-based memoization device that will effectively
have most-specific semantics – an analog of best-fit seman-
tics in predicate dispatching [17].

Imagine that the predicates with the numbers 2i and 2i +
1 are mutually exclusive and each imply the value of the
predicate with number i i.e. ∀x ∈ Domain(P )

P2i+1(x) → Pi(x) ∧ P2i(x) → Pi(x) ∧ ¬(P2i+1(x) ∧ P2i(x))

An example of predicates that satisfy this condition are class
membership tests where the truth of testing membership in
a derived class implies the truth of testing membership in its
base class.

The following decision-tree based memoization device
will execute the statement si associated with the most-
specific predicate Pi (i.e. the predicate that implies all other
predicates true on x) that evaluates to true or will skip the
entire statement if none of the predicates is true on x.

switch (size t& jump to = jump targets[x]) {
default:

if (P1(x)) {
if (P2(x)) {

if (P4(x)) { jump to = 4; case 4: s4;} else
if (P5(x)) { jump to = 5; case 5: s5;}
jump to = 2; case 2: s2;

} else
if (P3(x)) {

if (P6(x)) { jump to = 6; case 6: s6;} else
if (P7(x)) { jump to = 7; case 7: s7;}
jump to = 3; case 3: s3;

}
jump to = 1; case 1: s1;

} else { jump to = 0; case 0: ; }
}

Our library solution prefers the simpler cascading-if ap-
proach only because the necessary structure of the code can
be laid out directly with macros. A compiler solution will
use the decision-tree approach whenever possible to lower
the cost of the first match from linear in case’s number to
logarithmic as seen in Figure??.

The main advantage of the memoization device is that it
can be built around almost any code, providing that we can
re-establish the invariants, guaranteed by sequential execu-
tion. Its main disadvantage is the size of the hash table that
grows proportionally to the number of different values seen.
Fortunately, the values can often be grouped into equivalence

classes that do not change the outcome of the predicate. The
map can then associate the equivalence class of a value with
a target instead of associating the value with it.

In application to type switching, the idea is to use the
memoization device to learn the outcomes of type inclusion
tests (with dynamic cast used as a predicate), thus avoid-
ing calls to it on subsequent runs. It is easy to see that objects
can be grouped into equivalence classes based on their most-
derived type without affecting the results of predicates – the
outcome of each type inclusion test will be the same on all
the objects from the same equivalence class. We can use the
address of class’ type info object obtained in constant time
with typeid() operator as a unique identifier of each most-
derived type. Presence of multiple type info objects for the
same class, as is often the case when dynamic linking is in-
volved, is not a problem as we would effectively split a sin-
gle equivalence class into multiple ones. This in fact would
have been a solution if we were only interested in class mem-
bership. More often than not, however, we will be interesting
in obtaining a reference to the target type of the subject and
we saw in §?? that proper this-pointer adjustments depend
not only on the most-derived type, but also on target type
and most importantly – path to the subject’s static type from
the most-derived type in the inheritance graph. Ideally we
would like to have different equivalence classes per different
paths from object’s most-derived type to its static types, but
there seem to be no easy way of identifying them given just
an object descriptor.

3.4 Virtual Table Pointers
A class that declares or inherits a virtual function is called a
polymorphic class. The C++ standard [24] does not pre-
scribe any specific implementation technique for virtual
function dispatch. However, in practice, all C++ compilers
use a strategy based on so-called virtual function tables (or
vtables for short) for efficient disptach. The vtable is part of
the reification of a polymorphic class type. C++ compilers
embed a pointer to a vtable (vtbl-pointer for short) in ev-
ery object of polymorphic class type. CFront, the first C++
compiler, puts the vtbl-pointer at the end of an object. The
so-called “common vendor C++ ABI”[8], further referred
to as C++ ABI when not indicated otherwise, requires the
vtbl-pointer to be at offset 0 of an object. The following
compilers comply with the C++ ABI: GCC (3.x and up);
Clang and llvm-g++; Linux versions of Intel and HP com-
pilers, and compilers from ARM. We do not have access to
the unpublished Microsoft ABI, but we have experimental
evidence that Microsoft’s C++ compiler also puts the vtbl-
pointer at the start of an object.

While the exact offset of the vtbl-pointer within the ob-
ject is not important for our discussion, it is important to
realize that every object of a static type S* or S& pointed
to or referenced by a polymorphic class S will have a vtbl-
pointer at a predefined offset. Such offset may be different
for different static types S, in which case the compiler will
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know at which offset in type S the vtbl-pointer is located. For
a library implementation we assume presence of a function
template ⟨typename S⟩intptr t vtbl(const S* s); that re-
turns the address of the virtual table corresponding to the
subobject referenced to by s. Such a function can be triv-
ially implemented for the common C++ ABI, where the
vtbl-pointer is always at offset 0:

template ⟨typename S⟩ std::intptr t vtbl(const S* s) {
static assert(std::is polymorphic⟨S⟩::value, ”error”);
return *reinterpret cast⟨const std::intptr t*⟩(s);

}

Consider a repeated multiple inheritance hierarchy from
Figure ??(1). Each of the vtbl fields shown in Figure ??(2)
will hold a vtbl-pointer referencing a group of virtual meth-
ods known in object’s static type. Figure 3(1) shows a typi-
cal layout of virtual function tables together with objects it
points to for classes B and D.

0
RTTI baz foo

 RTTI for D

thunk Y in D

C*

-12
RTTI baz foo

-20
RTTI yep

&A::foo

&D::yep

0
RTTI baz foo

 RTTI for B

&Z::baz

B*

B D

2. Vtable layout without Run-Time Type Information

1. Vtable layout with Run-Time Type Information

yep

baz foo

thunk Y in D

C*

yep

&A::foo

&D::yep
&Z::baz

B*

D::C::EA, B, C::A, D, D::B, D::C::A
yep

Figure 3. VTable layout with and without RTTI

Entries in the vtable to the right of the address pointed
to by a vtbl-pointer represent pointers to functions, while
entries to the left of it represent various additional fields
like: pointer to class’ type information, offset to top, offsets
to virtual base classes etc. In many implementations, this-
pointer adjustments required to properly dispatch the call
were stored in the vtable along with function pointers. Today
most of the implementations prefer to use thunks or tram-
polines – additional entry points to a function, that adjust
this-pointer before transferring the control to the function, –
which was shown to be more efficient []. Thunks in general
may only be needed when its virtual function gets overriden.
In such case the overriden function may be called via pointer
to base class or a pointer to derived class, which may not be
at the same offset in the actual object.

The intuition behind our proposal is to use the values of
vtbl-pointers stored inside the object to uniquely identify the
subobject in it. There are several problems with the approach

however. First of all the same vtbl-pointer is usually shared
by multiple types, for example, the first vtbl-pointer in Fig-
ure ??(2) will be shared by objects of static type Z*, A*, B*
and D*. This is not a problem for our purpose, because the
subobjects of these types will be at the same offset in the
most-derived object. Secondly, and more importantly, how-
ever, there are legitimate optimizations that let the compiler
share the same vtable among multiple subobjects of often
unrelated types.

Generation of the Run-Time Type Information (or RTTI
for short) can typically be disabled with a compiler switch
and the Figure 3(2) shows the same vtable layouts once the
RTTI has been disabled. Since neither baz nor foo were
overriden, the prefix of the vtable for the C subobject in D
is exactly the same as the vtable for its B subobject, the A
subobject of C or the entire vtable of A and B classes. Such
layout, for example, is produced by Microsoft Visual C++
11 when the command-line option /GR− is specified. Visual
C++ compiler has been known to unify code identical on
binary level, which in some cases may result in sharing of
the same vtable between unrelated classes (e.g. when virtual
functions are empty).

We now would like to show more formally that in the
presence of RTTI, a C++ ABI compliant implementation
will always have all the vtbl-pointers different. To do so,
we need look closer at the notion of subobject, which has
been formalized before [38, 40, 47]. We follow here the
presentation of Ramamanandro et al [38].

3.5 Subobjects
In a given program P , a class B is a direct repeated base
class of D if B is mentioned in the list of base classes
of D without the virtual keyword (D ≺R B). Similarly,
a class B is a direct shared base class of D if B is men-
tioned in the list of base classes of D with the virtual key-
word (D ≺S B). A reflexive transitive closure of these re-
lationships ⪯∗= (≺R ∪ ≺S)∗ defines the subtyping relation
on types of program P . A base class subobject of a given
complete object is represented by a pair σ = (h, l) with
h ∈ {Repeated,Shared} representing the kind of inheritance
(single inheritance is Repeated with one base class) and l
representing the path in a non-virtual inheritance graph. A
predicate C * σ ( A states that σ designates a subobject of
static typeA within the most-derived object of type C. More
formally:

C * (Repeated,C ∶∶ ε) (C

C ≺R B B * (Repeated, l) (A
C * (Repeated,C ∶∶ l) (A

C ≺S B B * (h, l) (A
C * (Shared, l) (A
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ε indicates an empty path, but we will generally omit it in
writing when understood from the context. In case of re-
peated inheritance in Figure 1(1), an object of the most-
derived class D will have the following Repeated subob-
jects: D::C::Y, D::B::A::Z, D::C::A::Z, D::B::A, D::C::A,
D::B, D::C, D. Similarly, in case of virtual inheritance in
the same expample, an object of the most-derived class D
will have the following Repeated subobjects: D::C::Y, D::B,
D::C, D as well as the following Shared subobjects: D::A::Z,
D::Z, D::A.

It is easy to show by structural induction on the above
definition, that C *σ(A Ô⇒ σ = (h,C ∶∶ l1)∧σ = (h, l2 ∶∶
A ∶∶ ε), which simply means that any path to a subobject of
static type A within the most-derived object of type C starts
with C and ends with A. This objservation shows that σ� =
(Shared, ε) does not represent a valid subobject. If ΣP is the
domain of all subobjects in the program P extended with
σ�, then a cast operation can be understood as a function
δ ∶ ΣP → ΣP . We use σ� to indicate an impossibility of
a cast. The fact that δ is defined on subobjects as opposed
to actual run-time values reflects the non-coercive nature of
the operation – i.e. the underlain value remains the same.
Any implementation of such a function must thus satisfy the
following condition:

δ(σ1) = σ2 ∧C * σ1 (A Ô⇒ C * σ2 (B

i.e. the most-derived type of the value does not change dur-
ing casting, only the way we reference it does. We refer to
A as the source type and σ1 as the source subobject of the
cast, while to B as the target type and to σ2 as the target
subobject of it. The type C is the most-derived type of the
value being casted. The C++ semantics states more require-
ment to the implementation of δ: e.g. δ(σ�) = σ� etc. but
their precise modeling is out of the scope of this discussion.
We would only like to point out here that since the result
of the cast does not depend on the actual value and only on
the source subobject and the target type, we can memoize
the outcome of a cast on one instance in order to apply its
results to another.

3.6 Uniqueness of vtbl-pointers under the C++ ABI
Given a reference a to polymorphic type A that points to a
subobject σ of the most-derived type C (i.e.C*σ(A is true),
we will use the traditional field-access notion a.vtbl to refer
to the virtual table of that subobject. The exact structure of
the virtual table as mandated by the common vendor C++
ABI is immaterial for this discussion, but we mention a few
fields that are important for the reasoning [8, §2.5.2]:

• rtti(a.vtbl): the typeinfo pointer points to the typeinfo
object used for RTTI. It is always present and is shown as
the first field to the left of any vtbl-pointer in Figure 3(1).

• off2top(a.vtbl): the offset to top holds the displacement
to the top of the object from the location within the object
of the vtbl-pointer that addresses this virtual table. It is

always present and is shown as the second field to the
left of any vtbl-pointer in Figure 3(1). The numeric value
shown indicates the actual offset based on the object
layout from Figure ??(2).

• vbase(a.vtbl): Virtual Base (vbase) offsets are used to
access the virtual bases of an object. Such an entry is
required for each virtual base class. None are shown in
our example in Figure 3(1) since it discussed repeated
inheritance, but they will occupy further entries to the left
of the vtbl-pointer, when present.

We also use the notation offset(σ) to refer to the offset of
the given subobject σ within C, known by the compiler.

Theorem 1. In an object layout that adheres to the com-
mon vendor C++ ABI with enabled RTTI, equality of vtbl-
pointers of two objects of the same static type implies that
they both belong to subobjects with the same inheritance
path in the same most-derived class.
∀a1, a2 ∶ A ∣ a1 ∈ C1 * σ1 (A ∧ a2 ∈ C2 * σ2 (A
a1.vtbl = a2.vtbl⇒ C1 = C2 ∧ σ1 = σ2

Proof. Let us assume first a1.vtbl = a2.vtbl but C1 ≠ C2. In
this case we have rtti(a1.vtbl) =rtti(a2.vtbl). By definition
rtti(a1.vtbl) = C1 while rtti(a2.vtbl) = C2, which contra-
dicts that C1 ≠ C2. Thus C1 = C2 = C.

Let us assume now that a1.vtbl = a2.vtbl but σ1 ≠ σ2. Let
σ1 = (h1, l1), σ2 = (h2, l2)

If h1 ≠ h2 then one of them refers to a virtual base
while the other to a repeated one. Assuming h1 refers to
a virtual base, vbase(a1.vtbl) has to be defined inside the
vtable according to the ABI, while vbase(a2.vtbl) – should
not. This would contradict again that both vtbl refer to the
same virtual table.

We thus have h1 = h2 = h. If h = Shared then there
is only one path to such A in C, which would contradict
σ1 ≠ σ2. If h = Repeated then we must have that l1 ≠
l2. In this case let k be the first position in which they
differ: lj1 = lj2∀j < k ∧ lk1 ≠ lk2 . Since our class A is
a base class for classes lk1 and lk2 , both of which are in
turn base classes of C, the object identity requirement of
C++ requires that the relevant subobjects of type A have
different offsets within class C: offset(σ1) ≠ offset(σ2)
However offset(σ1) =off2top(a1.vtbl) =off2top(a2.vtbl) =
offset(σ2) since a1.vtbl = a2.vtbl, which contradicts that the
offsets are different.

Conjecture in the other direction is not true in general as
there may be duplicate vtables for the same type present
at run-time. This happens in many C++ implementations in
the presence of Dynamically Linked Libraries (or DLLs for
short) as the same class compiled into executable and DLL it
loads may have identical vtables inside the executable’s and
DLL’s binaries.

Note also that we require both static types to be the same.
Dropping this requirement and saying that equality of vtbl-
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pointers also implies equality of the static types is not true
in general because a derived class can share the vtbl-pointer
with its primary base class. The theorem can be reformu-
lated, however, stating that one static type will necessarily
be a subtype of the other. The current formulation is suffi-
cient for our purposes, while reformulation will require more
elaborate discussion of the algebra of subobjects [38], which
we touch only briefly.

During construction and deconstruction of an object, the
value of a given vtbl-pointer may change. In particular, that
value will reflect the fact that the most-derived type of the
object is the type of its fully constructed part only. This,
however, does not affect our reasoning, as during such tran-
sition we also treat the object to have the type of its fully
constructed base only. Such interpretation is in line with the
C++ semantics for virtual function calls and the use of RTTI
during construction and destruction of an object. Once the
complete object is fully constructed, the value of the vtbl-
pointer will remain the same for the lifetime of the object.

3.7 Vtable Pointer Memoization
The C++ standard requires that information about types be
available at run time for three distinct purposes:

• to support the typeid operator,
• to match an exception handler with a thrown object, and
• to implement the dynamic cast operator.

and if any of these facilities are used in a program that was
compiled with disabled RTTI, the compiler will emit an er-
ror or at least a warning. Some compilers (e.g. Visual C++)
additionally let a library check presence of RTTI through a
predefined macro, thus letting it report an error if its depen-
dence on RTTI cannot be satisfied. Since our solution relies
on dynamic cast to perform casts at run-time, we implic-
itly rely on the presence of RTTI and thus fall into the set-
ting that guarantees the preconditions of Theorem 1. Since
all the objects that will be coming through a particular type
switch will have the same static type, the theorem guaran-
tees that different vtbl-pointers will correspond to different
subobjects. The idea is thus to group them accordingly to the
value of their vtbl-pointer and associate both jump target and
the required offset with it through memoization device:

typedef pair⟨ptrdiff t,size t⟩ type switch info;
static unordered map⟨intptr t, type switch info⟩ jump targets;
type switch info& info = jump targets[vtbl(x)];
const void* tptr;
switch (info.second) ...

The code for the ith case now evaluates the required offset
on the first entry and associates it and the target with the
vtbl-pointer of the subject. The call to adjust ptr⟨Ti⟩ re-
establishes the invariant that match is a reference to type
Ti of the subject x.

if (tptr = dynamic cast⟨const Ti*⟩(x)) {

if (info.second ==0) { // supports fall−through
info.first = intptr t(tptr)−intptr t(x); // offset
info.second = i; // jump target

}
case i: // i is a constant here − clause’s position in switch

auto match = adjust ptr⟨Ti⟩(x,info.first);
si;

}

Class std::unordered map provides amortized constant
time access on average and linear in the amount of elements
in the worst case. We show in the next section that most
of the time we will be bypassing traditional access to its
elements. We need this extra optimization because, as-is, the
type switch is still about 50% slower than the visitor design
pattern.

3.8 Minimization of Conflicts
Virtual table pointers are not constant values and are not
even guaranteed to be the same between different runs of the
application, because techniques like address space layout
randomization or rebasing of the module are likely to change
them. The relative distance between them will remain the
same as long as they come from the same module.

Knowing that vtbl-pointers point into an array of function
pointers, we should expect them to be aligned accordingly
and thus have a few lowest bits as zero. Moreover, since
many derived classes do not introduce new virtual functions,
the size of their virtual tables remains the same. When allo-
cated sequentially in memory, we can expect a certain num-
ber of lowest bits in the vtbl-pointers pointing to them to
be the same. These assumptions, supported by actual obser-
vations, has made virtual table pointers of classes related by
inheritance ideally suitable for hashing – the values obtained
by throwing away the common bits on the right were com-
pactly distributed in small disjoint ranges. We use them to
address a cache built on top of the hash table in order to
eliminate a hash table lookup in most of the cases.

Let Ξ be the domain of integral representations of point-
ers. Given a cache with 2k entries, we use a family of hash
functions Hkl ∶ Ξ → [0..2k − 1] defined as Hkl(v) = v/2l
mod 2k to index the cache, where l ∈ [0..32] (assuming 32
bit addresses) is a parameter modeling the number of com-
mon bits on the right. Division and modulo operations are
implemented with bit-shifts since denominator in each case
is a power of 2, which in turn explains the choice of the cache
size.

Given a hash function Hkl, pointers v′ and v′′ are said to
be in conflict when Hkl(v′) = Hkl(v′′). For a given set of
pointers V ∈ 2Ξ we can always find such k and l that Hkl

will render no conclicts between its elements, however the
required cache size 2k can be too large to justify the use of
memory. The value K such that 2K−1 < ∣V ∣ ≤ 2K is the
smallest value of k under which absence of conflicts is still
possible. We thus allow k to only vary in range [K,K+1] to
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ensure that the cache size is never more than 4 times bigger
than the minimum required cache size.

Given a set V = {v1, ..., vn}, we would like to find a
pair of parameters (k, l) such that Hkl will render the least
number of conflicts on the elements of V . Since for a fixed
set V , parameters k and l vary in a finite range, we can
always find the optimal (k, l) by trying all the combinations.
LetHV

kl ∶ V → [0..2k−1] be the hash function corresponding
to such optimal (k, l) for the set V .

In our setting, set V represents the set of vtbl-pointers
coming through a particular type switch. While the exact
values of these pointers are not known till run-time, their
offset from the module’s base address is. This can often be
sufficient to at least estimate optimal k and l in a compiler
setting. In the library setting we estimate them by recomput-
ing them after a given amount of actual collisions happened
in cache.

When HV
kl is injective (renders 0 conflicts on V ), the

frequency of any given vtbl-pointer vi coming through the
type switch does not affect the overal performance of the
switch. However when HV

kl is not injective, we would prefer
the conflict to happen on less frequent vtbl-pointers. Given
a probability pi of each vtbl-pointer vi ∈ V we can compute
the probability of conflict rendered by a given Hkl:

Pkl(V ) =
2k
−1

∑
j=0

( ∑
vi∈V

j
kl

pi)(1 −
∑

vi∈V
j
kl

p2
i

( ∑
vi∈V

j
kl

pi)2
)

where V j
kl = {v ∈ V ∣Hkl(v) = j}. In this case, the optimal

hash function HV
kl can similarly be defined as Hkl that min-

imizes the above probability of conflict on V .
Probabilities pi can be estimated in a compiler settings

through profiling, while in a library setting we let the user
enable tracing of frequencies of each vtbl-pointer. This in-
troduces an overhead of an increment into the critical path of
execution, and according to our tests degrades the overal per-
formance by 1-2%. By default, we do not enable frequency
tracing, however, because the significant drop in the number
of actual collisions was not reflected in a noticeable decrease
in execution time. This was because the total number of ac-
tual collisions, even in non-frequency based caching, was
much smaller than the number of successful cache hits.

Assuming the uniform distribution of vi and substituting
the probability pi = 1

n
, where n = ∣V ∣, into the above formula

we will get:

Pkl(V ) =
2k
−1

∑
j=0

[∣V j
kl∣ ≠ 0]

∣V j
kl∣ − 1

n

The value ∣V j
kl∣ − 1 represents the amount of “extra” pointers

mapped into the entry j in cache and thus HV
kl obtained

by minimization of probability of conflict is the same as

our original HV
kl minimizing the number of conflicts. An

important observation here is that the exact location of these
“extra” vtbl-pointers is not important, only the total number
m of them is. The probability of conflict under uniform
distribution of vi is thus always going to have form m

n
, where

0 ≤m < n.

4. Evaluation
Our evaluation methodology consisted of several indepen-
dent studies of the technique in order to achieve a better con-
fidence in its validity. Our first study involved comparison of
relative performance of our approach against the visitor de-
sign pattern. The second study did a similar comparison with
built-in facilities of Haskell and OCaml. In the third study
we looked at how well our caching mechanisms deal with
some large real-world class hierarchies. In the last study we
did rewrite an existing application that was based on visitors
using our approach and compared the two.

4.1 Comparison with Visitor Design Pattern
Our evaluation methodology consists of several benchmarks
representing various uses of objects inspected with either
visitors or type switching.

The repetitive benchmark (REP) performs calls on differ-
ent objects of the same most-derived type. This scenario hap-
pens in object-oriented setting when a group of polymorphic
objects is created and passed around (e.g. numerous particles
of a given kind in a particle simulation system). We include
it because double dispatch becomes twice faster (27 vs. 53
cycles) in this scenario compared to others due to cache and
call target prediction mechanisms.

The sequential benchmark (SEQ) effectively uses an ob-
ject of each derived type only once and then moves on to
an object of a different type. The cache is typically reused
the least in this scenario, which is typical of lookup tables,
where each entry is implemented with a different derived
class.

The random benchmark (RND) is the most representative
as it randomly makes calls on random objects, which will
probably be the most common usage scenario in the real
world.

Presence of forwarding in any of these benchmarks refers
to the common technique used by visitors where, for class hi-
erarchies with multiple levels of inheritance, the visit method
of a derived class will provide a default implementation of
forwarding to its immediate base class, which, in turn, may
forward it to its base class, etc. The use of forwarding in visi-
tors is a way to achieve substitutability, which in type switch
corresponds to the use of base classes in the case clauses.

The class hierarchy for non-forwarding test was a flat
hierarchy with 100 derived classes, encoding an algebraic
data type. The class hierarchy for forwarding tests had two
levels of inheritance with 5 intermediate base classes and
95 derived ones. While we do not advocate here for the
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closed solution of §3.1, we included it in our tests to show
the performance gains a closed solution might have over the
open one. Our library supports both solutions with the same
surface syntax, which is why we believe many users will try
them both before settling on one.

The benchmarks were executed in the following config-
urations refered to as Linux Desktop and Windows Laptop
respectively:

• Lnx: Dell Dimension® desktop with Intel® Pentium® D
(Dual Core) CPU at 2.80 GHz; 1GB of RAM; Fedora
Core 13

G++ 4.4.5 executed with -O2
• Win: Sony VAIO® laptop with Intel® Core™i5 460M

CPU at 2.53 GHz; 6GB of RAM; Windows 7 Profes-
sional

G++ 4.5.2 and 4.6.1 / MinGW executed with -O2; x86
binaries
MS Visual C++ 2010 Professional x86/x64 binaries
with profile-guided optimizations

The code on the critical path of our type switch implemen-
tation benefits significantly from branch hinting as some
branches are much more likely than others. We use the
branch hinting in GCC to guide the compiler, but, unfortu-
nately, Visual C++ does not have similar facilities. Microsoft
suggests to use Profile-Guided Optimization to achieve the
same, which is why the results for Visual C++ reported here
have been obtained with profile-guided optimizations en-
abled. The results without profile-guided optimizations can
be found in the accompanying technical report [4, §10].

We compare the performance of our solution relative to
the performance of visitors in Figure 4. The values are given
as percentages of performance increase against the slower
technique. Numbers in regular font represent cases where
type switching was faster, while numbers in bold indicate
cases where visitors were faster.

Open Closed
G++ MS VC++ G++ MS VC++

x86-32 x86-32 x86-32 x86-64 x86-32 x86-32 x86-32 x86-64

REP 16% 55% 4% 0% 124% 216% 124% 47%
SEQ 56% 3% 3% 1% 640% 520% 34% 14%
RND 56% 1% 18% 27% 603% 542% 43% 16%

Fo
rw

ar
d REP 33% 67% 10% 6% 53% 79% 31% 9%

SEQ 55% 90% 153% 145% 86% 259% 185% 118%
RND 78% 27% 18% 6% 88% 31% 24% 10%

Lnx Win Lnx Win

Figure 4. Relative performance of type switching versus
visitors. Numbers in regular font (e.g. 67%), indicate that
our type switching is faster than visitors by corresponding
percentage. Numbers in bold font (e.g. 18%), indicate that
visitors are faster by corresponding percentage.

We can see that type switching wins by a good margin
when implemented with tag switch as well as in the pres-
ence of at least one level of forwarding. Note that the num-
bers are relative, and thus the ratio depends on both the per-
formance of virtual function calls and the performance of
switch statements. Visual C++ was generating faster virtual
function calls, while GCC was generating faster switch state-
ments, which is why their relative performance seem to be
much more favorable for us in the case of GCC. Similarly
the code for x64 is only slower relatively: the actual time
spent for both visitors and type switching was smaller than
that for x86, but it was much smaller for visitors than type
switching, which resulted in worse relative performance.

4.2 Open vs. Closed Type Switch
With a few exceptions for x64, it can be seen from Figure 4
that the performance of the closed tag switch dominates the
performance of the open type switch. We believe that the
difference, often significant, is the price one pays for the true
openness of the vtable pointer memoization solution.

As we mentioned in §3.1, the use of tags, even allocated
by compiler, may require integration efforts to ensure that
different DLLs have not reused the same tags. Randomiza-
tion of tags, similar to a proposal of Garrigue [19], will not
eliminate the problem and will surely replace jump tables
in switches with decision trees. This will likely significantly
degrade the numbers for the part of Figure 4 representing
closed tag switch, since the tags in our experiments were all
sequential.

The reliance of a tag switch on static cast has severe limi-
tations in the presence of multiple inheritance, and thus is not
as versatile as open type switch. Overcoming this problem
will either require the use of dynamic cast or techniques
similar to those used for vtable pointer memoization, which
will likely degrade tag switch’es performance numbers even
further.

Note also that the approach used to implement open type
switch can be used to implement both first-fit and best-fit se-
mantics, while the tag switch is only suitable for best-fit se-
mantics. Their complexity guarantees also differ: open type
switch is constant on average, but slow on the first call with
given subobject. Tag switch is logarithmic in the size of the
class hierarchy (assuming a balanced hierarchy), including
the first call. This last point can very well be seen in Figure 4,
where the performance of a closed degrades significantly in
the presence of forwarding, while the performance of open
solution improves.

4.3 Comparison with OCaml and Haskell
We now compare our solution to the built-in pattern-matching
facility of OCaml [28] and Haskell [25]. In this test, we
timed small OCaml and Haskell applications performing our
sequential benchmark on an algebraic data type of 100 vari-
ants. Corresponding C++ applications were working with a
flat class hierarchy of 100 derived classes. The difference be-
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tween the C++ applications lies in the encoding used. Kind
encoding is the same as Tag encoding, but it does not require
substitutability, and thus can be implemented with a direct
switch on tags. It is only supported through specialized syn-
tax in our library as it differs from the Tag encoding only
semantically.

We used optimizing OCaml compiler ocamlopt.opt

version 3.11.0 working under the Visual C++ toolset as
well as the Glasgow Haskell Compiler version 7.0.3 (with
-O switch) working under the MinGW toolset. All the tests
were performed on the Windows 7 laptop. The timing results
presented in Figure 5 are averaged over 101 measurements
and show the number of seconds it took to perform a million
decompositions within our sequential benchmark.

Figure 5. Performance comparison of various encodings
and syntax against OCaml code

4.4 Dealing with real-world class hierarchies
We used a class hierarchy benchmark used before to study
efficiency of type inclusion testing and dispatching tech-
niques [14, 26, 44, 51]. We use the names of the benchmarks
from Vitek et al [44, Table 2], since the set of benchmarks
we were working with was closest to that work.

While not all class hierarchies originated from C++, for
this experiment it was more important for us that the hi-
erarchies were man-made. While converting the hierachies
into C++, we had to prune inaccessible base classes (di-
rect base class that is already an indirect base class) when
used with repeated inheritance in order to satisfy semantic
requirements of the C++. We maintained the same number
of virtual functions present in each class as well as the num-
ber of data members. The benchmarks, however, did not pre-
serve the types of those. The data in Figure 6 shows various
parameters of the class hierarchies in each benchmark, after
their adoption to C++.

The number of paths represents the number of distinct
inheritance paths from the classes in the hierarchy to the
roots of the hiearchy. As we showed in §?? this number
reflects the number of possible subobjects in the hierarchy.
The roots listed in the table are classes with no base classes.
We will subsequently use the term non-leaf to refer to the
possible root of a subhierarchy. Leafs are classes with no
children, while both refers to utility classes that are both
roots and leafs and thus neiter have base nor derived classes.
The average for the number of parents and the number of

LIBRARY LANGUAGE CLASSES PATHS HEIGHT ROOTS LEAFS BOTH
PARENTS CHILDREN

AVG MAX AVG MAX

DG2 SMALLTALK 534 534 11 2 381 1 1 1 3.48 59
DG3 SMALLTALK 1356 1356 13 2 923 1 1 1 3.13 142
ET+ C++ 370 370 8 87 289 79 1 1 3.49 51
GEO EIFFEL 1318 13798 14 1 732 0 1.89 16 4.75 323
JAV JAVA 604 792 10 1 445 0 1.08 3 4.64 210
LOV EIFFEL 436 1846 10 1 218 0 1.72 10 3.55 78
NXT OBJECTIVE-C 310 310 7 2 246 1 1 1 4.81 142
SLF SELF 1801 36420 17 51 1134 0 1.05 9 2.76 232
UNI C++ 613 633 9 147 481 117 1.02 2 3.61 39
VA2 ?? 3241 3241 14 1 2582 0 1 1 4.92 249
VA2 ?? 2320 2320 13 1 1868 0 1 1 5.13 240
VW1 SMALLTALK 387 387 9 1 246 0 1 1 2.74 87
VW2 SMALLTALK 1956 1956 15 1 1332 0 1 1 3.13 181

OVERALLS 15246 63963 17 298 10877 199 1.11 16 3.89 323

Figure 6. Benchmarks Class Hierarchies

children were computed only among the classes having at
least one parent or at least one children correspondingly.

With few useful exceptions, it generally makes sence
to only apply type switch to non-leaf nodes of the class
hierarchy. 71% of the classes in the entire benchmarks suite
were leaf classes. Out of the 4369 non-leaf classes 36% were
spawning a subhierarchy of only 2 classes (including the
root), 15% – a subhierarchy of 3 classes, 10% of 4, 7% of 5
and so forth. Turning this into a cumulative distribution, a%
of subhierarchies had more than b classes in them, where:

a 1% 3% 5% 10% 20% 25% 50% 64% 100%
b 700 110 50 20 10 7 3 2 1

These numbers reflect the percentage of use cases one may
expect in the real word that have a given number of case
clauses in them.

For each non-leaf class A we created a function perform-
ing a type switch on every possible derived class Di of it
as well as itself. The function was then executed with every
possible subobject Di * σj ( A it can possibly be applied
to, given the static type A of the subject. It was executed
multiple but the same number of times on each subobject to
ensure uniformity on one side (since we do not have the data
about the actual probabilities of each subobject the bench-
mark hierarchies) as well as let the type switch infer the op-
timal parameters k and l of its cache indexing function Hkl.
We then plotted the result of each of the 4396 experiments as
a point in chart of Figure 7 relating the optimal probability
of conflict p achieved by the type switch and the number of
subobjects n that came through that type switch. To account
for the fact that multiple experiments could have resulted in
the same pair (n, p), we use a shadow of each point to reflect
somewhat the number of experiments yielding it.

The curves on which the results of experiments line up
correspond to the fact that under uniform distribution of n
subobjects, only a finite number of different values repre-
senting the probability of conflict p are possible. In particu-
lar, all such values p = m

n
, where 0 ≤ m < n. The number

m reflects the number of subobjects an optimal cache index-
ing function Hkl could not allocate their own entry for. We
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Figure 7. Probability of Conflict vs. Number of Subobjects
in Hierarchy

showed in §3.8 that the probability of conflict under uniform
distribution of n subobjects depends only on m. The points
on the same curve (which becomes a line on a log-log plot)
all share the same numberm of “extra” vtbl-pointers that op-
timal cache indexing function could not allocate individual
entries for.

While it is hard to see from the chart, 87.5% of all the
points on the chart lay on the X-axis, which means that the
optimal hash function for the corresponding type switches
had no conflicts at all. In other words, only in 12.5% of
cases the optimal HV

kl for the set of vtbl-pointers V com-
ing through a given type switch had non-zero probability
of conflict. This is why the average probability of conflict
for the entire set is only 1.17. Experiments laying on the
first curve amount to 5.58% of subhierarchies and represent
the cases in which optimal HV

kl had only one “extra” vtbl-
pointer. 2.63% experiments had HV

kl with 2 conflicts, 0.87%
with 3 etc. These numbers do not indicate that the hash func-
tion we used is better than other hash functions, they do in-
dicate instead that the set of vtbl-pointers present in many
applications is particularly suitable for such a hash function.

4.5 Refactoring an existing visitors based application
For this experiment we have reimplemented a visitor based
C++ pretty printer for Pivot[39] using our pattern-matching
library. Pivot’s class hierarchy consists of 154 node kinds
representing various entities in the C++ program. The orig-
inal code had 8 visitor classes each handling 5, 7, 8, 10, 15,
17, 30 and 63 cases, which we turned into 8 match state-
ments with corresponding numbers of case clauses. Most
of the rewrite was performed by sed-like replaces that con-
verted visit methods into respective case-clauses. In several
cases we had to manually reorder case-clauses to avoid re-
dundancy as visit-methods for base classes were typically
coming before the same for derived, while for type switch-

ing we needed them to come after. Redundancy checking
support provided by our library was invaluable in finding out
all such cases.

Both pretty printers were executed on a set of header files
from the C++ standard library and the produced output of
both program was byte-to-byte the same. We timed execu-
tion of the pretty printing phase (not including loading and
termination of the application or parsing of the input file)
and observed that on small files (e.g. those from C run-time
library and few small C++ files) visitors-based implementa-
tion was faster because the total number of nodes in AST
and thus calls did not justify our set-up calls. In particular,
visitor-based implementation of pretty printer was faster on
files of 44–588 lines of code, with average 136 lines per
those inputs, where visitors win. On these input files it is
faster by 1.17%–21.42% with an average speed-up of 8.75%.
Open type switch based implementation of pretty printer was
faster on files of 144–9851 lines of code, with average 3497
lines per those input files, where open type switch wins. On
these inputs it is faster by 0.18% – 32.99% with an average
speed-up of 5.53%.

Figure 8 shows memory usage as well as cache hits and
misses for the run of our pretty printer on ’queue’ standard
library header (it has the largest LOC after preprocessing in
our test set).

Figure 8. Memory usage in real application

The bars represent the total amount of memory in bytes
each of the 8 match statements (marked A-H) used. The
info [N/M] next to the letter indicates the actual number of
different subobjects (i.e. vtbl-pointers) N that came through
that match statement, and the number of case clauses M the
match statement had (the library uses it as an estimate of
N ). N is also the number of cases the corresponding match
statement had to be executed sequentially (instead of a direct
jump).

The blue part of each bar corresponds to the memory
used by cache, while the maroon – to the memory used by
the hash table. Transparent parts of both colors indicate the
allocated extra memory that is not holding any data. The
black box within the blue part also indicates the amount
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of entries in the cache that are allocated for only one vtbl
pointer and thus never result in a cache miss. The non-
transparent part without black box represents the percentage
of vtbl-pointers that have to share their cache entry with at
least one other vtbl-pointer and thus may result in collisions
during access.

The actual number of hits and misses for each of the
match statements is indicated on top of the corresponding
column. The sum of them is the total amount of calls made.
Hits indicate situation when we found entry in cache and
didn’t have to make roundtrip to the hash-table to get it.
Misses indicate the number of cases during actual run we
had to pick the entry from the hash table and update the
cache with it. The number of misses is always larger then
or equal to N .

The library always preallocates memory for at least 8 sub-
objects to avoid unnecessery recomputations of optimal pa-
rameters k and l – this is the case with the last 3 match
statements. In all other cases it allocate the amount of mem-
ory proportional to the smallest power of 2 that is greater of
equal than max(M,N). The table does not have to be hash
table and can be implemented with any other container i.e.
sorted vector, map etc. that let us find quickly by a given
vtbl-pointer the data associated with it. If we implement it
with sorted vector, the red part will shrink to only the non-
transparent part.

5. Related Work
Extensible Visitors with Default Cases [49, §4.2] attempt to
solve the extensibility problem of visitors; however, the solu-
tion has problems of its own. The visitation interface hierar-
chy can easily be grown linearly, but independent extensions
by different authorities require developer’s intervention. On
top of the double dispatch the solution will incur two ad-
ditional virtual calls and a dynamic cast for each level of
visitor extension. The solution is simpler with virtual inher-
itance, which adds even more indirections.

Löh and Hinze proposed to extend Haskell’s type system
with open data types and open functions [31]. The solution
allows top-level data types and functions to be marked as
open with concrete variants and overloads defined anywhere
in the program. The semantics of open extension is given
by transformation into a single module, which assumes a
whole-program view and thus is not an open solution un-
fortunately. Besides, open data types are extensible but not
hierarchical, which avoids the problems discussed here.

Polymorphic variants in OCaml [19] allow the addition of
new variants as well as define subtyping on them. The sub-
typing, however, is not defined between the variants, but be-
tween combinations of them. This maintains disjointness be-
tween values from different variants and makes an important
distinction between extensible sum types like polymorphic
variants and extensible hierarchical sum types like classes.

Our memoization device can be used to implement pattern
matching on polymorphic variants.

Tom is a pattern-matching compiler that can be used to-
gether with Java, C or Eiffel to bring a common pattern
matching and term rewriting syntax into the languages [34].
In comparison to our approach, Tom has much bigger goals:
the combination of pattern matching, term rewriting and
strategies turns Tom into a fully fledged tree-transformation
language. Its type patterns and %match statement can be
used as a type switch; however, Tom’s handling of type
switching is based on decision trees and an instanceof-like
predicate, which are inefficient.

Pattern matching in Scala [35] also supports type switch-
ing through type patterns. The language supports extensi-
ble and hierarchical data types, but their handling in a type
switching constructs varies. Sealed classes are handled with
an efficient switch over all tags, while extensible classes are
similarly approached with a combination of an InstanceOf
operator and a decision tree [16].

6. Conclusions and Future Work
Type switching is an open alternative to visitor design pat-
tern that overcomes the restrictions, inconveniences, and dif-
ficulties in teaching and using, typically associated with it.
Our implementation of it comes close or outperforms the
visitor design pattern, which is true even in a library setting
using a production-quality compiler, where the performance
base-line is already very high.

In the future we would like to provide a compiler imple-
mentation of our technique, which will enable a better sur-
face syntax, improved diagnostics, increased performance
and many other benefits hard to achieve in a library imple-
mentation.
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