
1

0

Notes to the Reader

“When the terrain disagrees with
the map, trust the terrain.”

—Swiss army proverb

This chapter is a grab bag of information; it aims to give you

an idea of what to expect from the rest of the book. Please

skim through it and read what you find interesting. A teacher

will find most parts immediately useful. If you are reading this

book without the benefit of a good teacher, please don’t try to

read and understand everything in this chapter; just look at “The

structure of this book” and the first part of the “A philosophy of

teaching and learning” sections. You may want to return and

reread this chapter once you feel comfortable writing and execut-

ing small programs.

Stroustrup_book.indb 1Stroustrup_book.indb 1 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER2

0.1 The structure of this book
This book consists of four parts and a collection of appendices:

• Part I, “The Basics,” presents the fundamental concepts and techniques
of programming together with the C++ language and library facilities
needed to get started writing code. This includes the type system, arith-
metic operations, control structures, error handling, and the design, im-
plementation, and use of functions and user-defi ned types.

• Part II, “Input and Output,” describes how to get numeric and text data from
the keyboard and from fi les, and how to produce corresponding output
to the screen and to fi les. Then, it shows how to present numeric data,
text, and geometric shapes as graphical output, and how to get input into
a program from a graphical user interface (GUI).

• Part III, “Data and Algorithms,” focuses on the C++ standard library’s con-
tainers and algorithms framework (the STL, standard template library).
It shows how containers (such as vector, list, and map) are implemented
(using pointers, arrays, dynamic memory, exceptions, and templates) and
used. It also demonstrates the design and use of standard library algo-
rithms (such as sort, fi nd, and inner_product).

• Part IV, “Broadening the View,” offers a perspective on programming through
a discussion of ideals and history, through examples (such as matrix com-
putation, text manipulation, testing, and embedded systems program-
ming), and through a brief description of the C language.

• Appendices provide useful information that doesn’t fi t into a tutorial presen-
tation, such as surveys of C++ language and standard library facilities,
and descriptions of how to get started with an integrated development
environment (IDE) and a graphical user interface (GUI) library.

0.1 The structure of this book
0.1.1 General approach
0.1.2 Drills, exercises, etc.
0.1.3 What comes after this book?

0.2 A philosophy of teaching
and learning
0.2.1 The order of topics
0.2.2 Programming and programming

language
0.2.3 Portability

0.3 Programming and computer science

0.4 Creativity and problem solving

0.5 Request for feedback

0.6 References

0.7 Biographies

Stroustrup_book.indb 2Stroustrup_book.indb 2 4/22/14 9:41 AM4/22/14 9:41 AM

0.1 THE STRUCTURE OF THIS BOOK 3

Unfortunately, the world of programming doesn’t really fall into four cleanly
separated parts. Therefore, the “parts” of this book provide only a coarse classifi-
cation of topics. We consider it a useful classification (obviously, or we wouldn’t
have used it), but reality has a way of escaping neat classifications. For example,
we need to use input operations far sooner than we can give a thorough explana-
tion of C++ standard I/O streams (input/output streams). Where the set of topics
needed to present an idea conflicts with the overall classification, we explain the
minimum needed for a good presentation, rather than just referring to the com-
plete explanation elsewhere. Rigid classifications work much better for manuals
than for tutorials.

The order of topics is determined by programming techniques, rather than
programming language features; see §0.2. For a presentation organized around
language features, see Appendix A.

To ease review and to help you if you miss a key point during a first reading
where you have yet to discover which kind of information is crucial, we place
three kinds of “alert markers” in the margin:

• Blue: concepts and techniques (this paragraph is an example of that)
• Green: advice
• Red: warning

0.1.1 General approach
In this book, we address you directly. That is simpler and clearer than the conven-
tional “professional” indirect form of address, as found in most scientific papers.
By “you” we mean “you, the reader,” and by “we” we refer either to “ourselves,
the author and teachers,” or to you and us working together through a problem,
as we might have done had we been in the same room.

This book is designed to be read chapter by chapter from the beginning to
the end. Often, you’ll want to go back to look at something a second or a third
time. In fact, that’s the only sensible approach, as you’ll always dash past some
details that you don’t yet see the point in. In such cases, you’ll eventually go back
again. However, despite the index and the cross-references, this is not a book that
you can open to any page and start reading with any expectation of success. Each
section and each chapter assume understanding of what came before.

Each chapter is a reasonably self-contained unit, meant to be read in “one
sitting” (logically, if not always feasible on a student’s tight schedule). That’s one
major criterion for separating the text into chapters. Other criteria include that
a chapter is a suitable unit for drills and exercises and that each chapter presents
some specific concept, idea, or technique. This plurality of criteria has left a few
chapters uncomfortably long, so please don’t take “in one sitting” too literally. In
particular, once you have thought about the review questions, done the drill, and

Stroustrup_book.indb 3Stroustrup_book.indb 3 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER4

worked on a few exercises, you’ll often find that you have to go back to reread a
few sections and that several days have gone by. We have clustered the chapters
into “parts” focused on a major topic, such as input/output. These parts make
good units of review.

Common praise for a textbook is “It answered all my questions just as I
thought of them!” That’s an ideal for minor technical questions, and early read-
ers have observed the phenomenon with this book. However, that cannot be the
whole ideal. We raise questions that a novice would probably not think of. We
aim to ask and answer questions that you need to consider when writing quality
software for the use of others. Learning to ask the right (often hard) questions
is an essential part of learning to think as a programmer. Asking only the easy
and obvious questions would make you feel good, but it wouldn’t help make
you a programmer.

We try to respect your intelligence and to be considerate about your time.
In our presentation, we aim for professionalism rather than cuteness, and we’d
rather understate a point than hype it. We try not to exaggerate the importance of
a programming technique or a language feature, but please don’t underestimate
a simple statement like “This is often useful.” If we quietly emphasize that some-
thing is important, we mean that you’ll sooner or later waste days if you don’t
master it. Our use of humor is more limited than we would have preferred, but
experience shows that people’s ideas of what is funny differ dramatically and that
a failed attempt at humor can be confusing.

We do not pretend that our ideas or the tools offered are perfect. No tool,
library, language, or technique is “the solution” to all of the many challenges
facing a programmer. At best, it can help you to develop and express your solu-
tion. We try hard to avoid “white lies”; that is, we refrain from oversimplified
explanations that are clear and easy to understand, but not true in the context
of real languages and real problems. On the other hand, this book is not a refer-
ence; for more precise and complete descriptions of C++, see Bjarne Stroustrup,
The C++ Programming Language, Fourth Edition (Addison-Wesley, 2013), and the
ISO C++ standard.

0.1.2 Drills, exercises, etc.
Programming is not just an intellectual activity, so writing programs is necessary
to master programming skills. We provide two levels of programming practice:

• Drills: A drill is a very simple exercise devised to develop practical, almost
mechanical skills. A drill usually consists of a sequence of modifi cations
of a single program. You should do every drill. A drill is not asking for
deep understanding, cleverness, or initiative. We consider the drills part
of the basic fabric of the book. If you haven’t done the drills, you have
not “done” the book.

Stroustrup_book.indb 4Stroustrup_book.indb 4 4/22/14 9:41 AM4/22/14 9:41 AM

0.1 THE STRUCTURE OF THIS BOOK 5

• Exercises: Some exercises are trivial and others are very hard, but most are
intended to leave some scope for initiative and imagination. If you are
serious, you’ll do quite a few exercises. At least do enough to know which
are diffi cult for you. Then do a few more of those. That’s how you’ll learn
the most. The exercises are meant to be manageable without exceptional
cleverness, rather than to be tricky puzzles. However, we hope that we
have provided exercises that are hard enough to challenge anybody and
enough exercises to exhaust even the best student’s available time. We do
not expect you to do them all, but feel free to try.

In addition, we recommend that you (every student) take part in a small project
(and more if time allows for it). A project is intended to produce a complete
useful program. Ideally, a project is done by a small group of people (e.g., three
people) working together for about a month while working through the chap-
ters in Part III. Most people find the projects the most fun and what ties every-
thing together.

Some people like to put the book aside and try some examples before reading
to the end of a chapter; others prefer to read ahead to the end before trying to get
code to run. To support readers with the former preference, we provide simple
suggestions for practical work labeled “Try this” at natural breaks in the text. A
Try this is generally in the nature of a drill focused narrowly on the topic that pre-
cedes it. If you pass a Try this without trying — maybe because you are not near a
computer or you find the text riveting — do return to it when you do the chapter
drill; a Try this either complements the chapter drill or is a part of it.

At the end of each chapter you’ll find a set of review questions. They are
intended to point you to the key ideas explained in the chapter. One way to look
at the review questions is as a complement to the exercises: the exercises focus on
the practical aspects of programming, whereas the review questions try to help you
articulate the ideas and concepts. In that, they resemble good interview questions.

The “Terms” section at the end of each chapter presents the basic vocabulary
of programming and of C++. If you want to understand what people say about
programming topics and to articulate your own ideas, you should know what
each means.

Learning involves repetition. Our ideal is to make every important point at
least twice and to reinforce it with exercises.

0.1.3 What comes after this book?
At the end of this book, will you be an expert at programming and at C++? Of
course not! When done well, programming is a subtle, deep, and highly skilled
art building on a variety of technical skills. You should no more expect to be an
expert at programming in four months than you should expect to be an expert in
biology, in math, in a natural language (such as Chinese, English, or Danish), or

Stroustrup_book.indb 5Stroustrup_book.indb 5 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER6

at playing the violin in four months — or in half a year, or a year. What you should
hope for, and what you can expect if you approach this book seriously, is to have
a really good start that allows you to write relatively simple useful programs, to be
able to read more complex programs, and to have a good conceptual and practical
background for further work.

The best follow-up to this initial course is to work on a real project developing
code to be used by someone else. After that, or (even better) in parallel with a real
project, read either a professional-level general textbook (such as Stroustrup, The
C++ Programming Language), a more specialized book relating to the needs of your
project (such as Qt for GUI, or ACE for distributed programming), or a textbook
focusing on a particular aspect of C++ (such as Koenig and Moo, Accelerated C++;
Sutter’s Exceptional C++; or Gamma et al., Design Patterns). For more references, see
§0.6 or the Bibliography section at the back of the book.

Eventually, you should learn another programming language. We don’t con-
sider it possible to be a professional in the realm of software — even if you are not
primarily a programmer — without knowing more than one language.

0.2 A philosophy of teaching and learning
What are we trying to help you learn? And how are we approaching the process
of teaching? We try to present the minimal concepts, techniques, and tools for you
to do effective practical programs, including

• Program organization
• Debugging and testing
• Class design
• Computation
• Function and algorithm design
• Graphics (two-dimensional only)
• Graphical user interfaces (GUIs)
• Text manipulation
• Regular expression matching
• Files and stream input and output (I/O)
• Memory management
• Scientifi c/numerical/engineering calculations
• Design and programming ideals
• The C++ standard library
• Software development strategies
• C-language programming techniques

Stroustrup_book.indb 6Stroustrup_book.indb 6 4/22/14 9:41 AM4/22/14 9:41 AM

0.2 A PHILOSOPHY OF TEACHING AND LEARNING 7

Working our way through these topics, we cover the programming techniques
called procedural programming (as with the C programming language), data
abstraction, object-oriented programming, and generic programming. The main
topic of this book is programming, that is, the ideals, techniques, and tools of ex-
pressing ideas in code. The C++ programming language is our main tool, so we
describe many of C++’s facilities in some detail. But please remember that C++
is just a tool, rather than the main topic of this book. This is “programming using
C++,” not “C++ with a bit of programming theory.”

Each topic we address serves at least two purposes: it presents a technique,
concept, or principle and also a practical language or library feature. For example,
we use the interface to a two-dimensional graphics system to illustrate the use of
classes and inheritance. This allows us to be economical with space (and your
time) and also to emphasize that programming is more than simply slinging code
together to get a result as quickly as possible. The C++ standard library is a major
source of such “double duty” examples — many even do triple duty. For example,
we introduce the standard library vector, use it to illustrate widely useful design
techniques, and show many of the programming techniques used to implement it.
One of our aims is to show you how major library facilities are implemented and
how they map to hardware. We insist that craftsmen must understand their tools,
not just consider them “magical.”

Some topics will be of greater interest to some programmers than to others.
However, we encourage you not to prejudge your needs (how would you know
what you’ll need in the future?) and at least look at every chapter. If you read this
book as part of a course, your teacher will guide your selection.

We characterize our approach as “depth-first.” It is also “concrete-first” and
“concept-based.” First, we quickly (well, relatively quickly, Chapters 1–11) assem-
ble a set of skills needed for writing small practical programs. In doing so, we pre-
sent a lot of tools and techniques in minimal detail. We focus on simple concrete
code examples because people grasp the concrete faster than the abstract. That’s
simply the way most humans learn. At this initial stage, you should not expect
to understand every little detail. In particular, you’ll find that trying something
slightly different from what just worked can have “mysterious” effects. Do try,
though! And please do the drills and exercises we provide. Just remember that
early on you just don’t have the concepts and skills to accurately estimate what’s
simple and what’s complicated; expect surprises and learn from them.

We move fast in this initial phase — we want to get you to the point where you
can write interesting programs as fast as possible. Someone will argue, “We must
move slowly and carefully; we must walk before we can run!” But have you ever
watched a baby learning to walk? Babies really do run by themselves before they
learn the finer skills of slow, controlled walking. Similarly, you will dash ahead,
occasionally stumbling, to get a feel of programming before slowing down to gain
the necessary finer control and understanding. You must run before you can walk!

Stroustrup_book.indb 7Stroustrup_book.indb 7 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER8

It is essential that you don’t get stuck in an attempt to learn “everything”
about some language detail or technique. For example, you could memorize all
of C++’s built-in types and all the rules for their use. Of course you could, and
doing so might make you feel knowledgeable. However, it would not make you
a programmer. Skipping details will get you “burned” occasionally for lack of
knowledge, but it is the fastest way to gain the perspective needed to write good
programs. Note that our approach is essentially the one used by children learning
their native language and also the most effective approach used to teach foreign
languages. We encourage you to seek help from teachers, friends, colleagues, in-
structors, Mentors, etc. on the inevitable occasions when you are stuck. Be as-
sured that nothing in these early chapters is fundamentally difficult. However,
much will be unfamiliar and might therefore feel difficult at first.

Later, we build on the initial skills to broaden your base of knowledge and
skills. We use examples and exercises to solidify your understanding, and to pro-
vide a conceptual base for programming.

We place a heavy emphasis on ideals and reasons. You need ideals to guide
you when you look for practical solutions — to know when a solution is good and
principled. You need to understand the reasons behind those ideals to understand
why they should be your ideals, why aiming for them will help you and the users
of your code. Nobody should be satisfied with “because that’s the way it is” as
an explanation. More importantly, an understanding of ideals and reasons allows
you to generalize from what you know to new situations and to combine ideas
and tools in novel ways to address new problems. Knowing “why” is an essential
part of acquiring programming skills. Conversely, just memorizing lots of poorly
understood rules and language facilities is limiting, a source of errors, and a mas-
sive waste of time. We consider your time precious and try not to waste it.

Many C++ language-technical details are banished to appendices and man-
uals, where you can look them up when needed. We assume that you have the
initiative to search out information when needed. Use the index and the table of
contents. Don’t forget the online help facilities of your compiler, and the web.
Remember, though, to consider every web resource highly suspect until you have
reason to believe better of it. Many an authoritative-looking website is put up by
a programming novice or someone with something to sell. Others are simply out-
dated. We provide a collection of links and information on our support website:
www.stroustrup.com/Programming.

Please don’t be too impatient for “realistic” examples. Our ideal example is
the shortest and simplest code that directly illustrates a language facility, a con-
cept, or a technique. Most real-world examples are far messier than ours, yet
do not consist of more than a combination of what we demonstrate. Successful
commercial programs with hundreds of thousands of lines of code are based on
techniques that we illustrate in a dozen 50-line programs. The fastest way to un-
derstand real-world code is through a good understanding of the fundamentals.

Stroustrup_book.indb 8Stroustrup_book.indb 8 4/22/14 9:41 AM4/22/14 9:41 AM

0.2 A PHILOSOPHY OF TEACHING AND LEARNING 9

On the other hand, we do not use “cute examples involving cuddly animals”
to illustrate our points. We assume that you aim to write real programs to be used
by real people, so every example that is not presented as language-technical is
taken from a real-world use. Our basic tone is that of professionals addressing
(future) professionals.

0.2.1 The order of topics
There are many ways to teach people how to program. Clearly, we don’t sub-
scribe to the popular “the way I learned to program is the best way to learn” theo-
ries. To ease learning, we early on present topics that would have been considered
advanced only a few years ago. Our ideal is for the topics we present to be driven
by problems you meet as you learn to program, to flow smoothly from topic to
topic as you increase your understanding and practical skills. The major flow of
this book is more like a story than a dictionary or a hierarchical order.

It is impossible to learn all the principles, techniques, and language facilities
needed to write a program at once. Consequently, we have to choose a subset of
principles, techniques, and features to start with. More generally, a textbook or a
course must lead students through a series of subsets. We consider it our respon-
sibility to select topics and to provide emphasis. We can’t just present everything,
so we must choose; what we leave out is at least as important as what we leave
in — at each stage of the journey.

For contrast, it may be useful for you to see a list of (severely abbreviated)
characterizations of approaches that we decided not to take:

• “C fi rst”: This approach to learning C++ is wasteful of students’ time
and leads to poor programming practices by forcing students to approach
problems with fewer facilities, techniques, and libraries than necessary.
C++ provides stronger type checking than C, a standard library with
better support for novices, and exceptions for error handling.

• Bottom-up: This approach distracts from learning good and effective pro-
gramming practices. By forcing students to solve problems with insuf-
fi cient support from the language and libraries, it promotes poor and
wasteful programming practices.

• “If you present something, you must present it fully”: This approach implies a bot-
tom-up approach (by drilling deeper and deeper into every topic touched).
It bores novices with technical details they have no interest in and quite
likely will not need for years to come. Once you can program, you can
look up technical details in a manual. Manuals are good at that, whereas
they are awful for initial learning of concepts.

• Top-down: This approach, working from fi rst principles toward details,
tends to distract readers from the practical aspects of programming and

Stroustrup_book.indb 9Stroustrup_book.indb 9 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER10

force them to concentrate on high-level concepts before they have any
chance of appreciating their importance. For example, you simply can’t
appreciate proper software development principles before you have
learned how easy it is to make a mistake in a program and how hard it
can be to correct it.

• “Abstract fi rst”: Focusing on general principles and protecting the student
from nasty real-world constraints can lead to a disdain for real-world prob-
lems, languages, tools, and hardware constraints. Often, this approach is
supported by “teaching languages” that cannot be used later and (deliber-
ately) insulate students from hardware and system concerns.

• “Software engineering principles fi rst”: This approach and the abstract-fi rst ap-
proach tend to share the problems of the top-down approach: without
concrete examples and practical experience, you simply cannot appreciate
the value of abstraction and proper software development practices.

• “Object-oriented from day one”: Object-oriented programming is one of the
best ways of organizing code and programming efforts, but it is not the
only effective way. In particular, we feel that a grounding in the basics of
types and algorithmic code is a prerequisite for appreciation of the de-
sign of classes and class hierarchies. We do use user-defi ned types (what
some people would call “objects”) from day one, but we don’t show how
to design a class until Chapter 6 and don’t show a class hierarchy until
Chapter 12.

• “Just believe in magic”: This approach relies on demonstrations of powerful
tools and techniques without introducing the novice to the underlying
techniques and facilities. This leaves the student guessing — and usually
guessing wrong — about why things are the way they are, what it costs
to use them, and where they can be reasonably applied. This can lead to
overrigid following of familiar patterns of work and become a barrier to
further learning.

Naturally, we do not claim that these other approaches are never useful. In fact,
we use several of these for specific subtopics where their strengths can be ap-
preciated. However, as general approaches to learning programming aimed
at real-world use, we reject them and apply our alternative: concrete-first and
depth-first with an emphasis on concepts and techniques.

0.2.2 Programming and programming language
We teach programming first and treat our chosen programming language as sec-
ondary, as a tool. Our general approach can be used with any general-purpose pro-
gramming language. Our primary aim is to help you learn general concepts,

Stroustrup_book.indb 10Stroustrup_book.indb 10 4/22/14 9:41 AM4/22/14 9:41 AM

0.2 A PHILOSOPHY OF TEACHING AND LEARNING 11

principles, and techniques. However, those cannot be appreciated in isolation. For
example, details of syntax, the kinds of ideas that can be directly expressed, and
tool support differ from programming language to programming language. How-
ever, many of the fundamental techniques for producing bug-free code, such as
writing logically simple code (Chapters 5 and 6), establishing invariants (§9.4.3),
and separating interfaces from implementation details (§9.7 and §14.1–2), vary
little from programming language to programming language.

Programming and design techniques must be learned using a programming
language. Design, code organization, and debugging are not skills you can acquire
in the abstract. You need to write code in some programming language and gain
practical experience with that. This implies that you must learn the basics of a
programming language. We say “the basics” because the days when you could
learn all of a major industrial language in a few weeks are gone for good. The
parts of C++ we present were chosen as the subset that most directly supports
the production of good code. Also, we present C++ features that you can’t avoid
encountering either because they are necessary for logical completeness or are
common in the C++ community.

0.2.3 Portability
It is common to write C++ to run on a variety of machines. Major C++ applica-
tions run on machines we haven’t ever heard of! We consider portability and the
use of a variety of machine architectures and operating systems most important.
Essentially every example in this book is not only ISO Standard C++, but also
portable. Unless specifically stated, the code we present should work on every C++
implementation and has been tested on several machines and operating systems.

The details of how to compile, link, and run a C++ program differ from sys-
tem to system. It would be tedious to mention the details of every system and ev-
ery compiler each time we need to refer to an implementation issue. In Appendix
C, we give the most basic information about getting started using Visual Studio
and Microsoft C++ on a Windows machine.

If you have trouble with one of the popular, but rather elaborate, IDEs (in-
tegrated development environments), we suggest you try working from the com-
mand line; it’s surprisingly simple. For example, here is the full set of commands
needed to compile, link, and execute a simple program consisting of two source
files, my_file1.cpp and my_file2.cpp, using the GNU C++ compiler on a Unix
or Linux system:

c++ –o my_program my_file1.cpp my_file2.cpp
./my_program

Yes, that really is all it takes.

Stroustrup_book.indb 11Stroustrup_book.indb 11 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER12

0.3 Programming and computer science
Is programming all that there is to computer science? Of course not! The only
reason we raise this question is that people have been known to be confused about
this. We touch upon major topics from computer science, such as algorithms and
data structures, but our aim is to teach programming: the design and implemen-
tation of programs. That is both more and less than most accepted notions of
computer science:

• More, because programming involves many technical skills that are not
usually considered part of any science

• Less, because we do not systematically present the foundation for the parts
of computer science we use

The aim of this book is to be part of a course in computer science (if becoming a
computer scientist is your aim), to be the foundation for the first of many courses
in software construction and maintenance (if your aim is to become a program-
mer or a software engineer), and in general to be part of a greater whole.

We rely on computer science throughout and we emphasize principles, but
we teach programming as a practical skill based on theory and experience, rather
than as a science.

0.4 Creativity and problem solving
The primary aim of this book is to help you to express your ideas in code, not
to teach you how to get those ideas. Along the way, we give many examples of
how we can address a problem, usually through analysis of a problem followed
by gradual refinement of a solution. We consider programming itself a form of
problem solving: only through complete understanding of a problem and its solu-
tion can you express a correct program for it, and only through constructing and
testing a program can you be certain that your understanding is complete. Thus,
programming is inherently part of an effort to gain understanding. However, we
aim to demonstrate this through examples, rather than through “preaching” or
presentation of detailed prescriptions for problem solving.

0.5 Request for feedback
We don’t think that the perfect textbook can exist; the needs of individuals differ
too much for that. However, we’d like to make this book and its supporting mate-
rials as good as we can make them. For that, we need feedback; a good textbook
cannot be written in isolation from its readers. Please send us reports on errors,
typos, unclear text, missing explanations, etc. We’d also appreciate suggestions

Stroustrup_book.indb 12Stroustrup_book.indb 12 4/22/14 9:41 AM4/22/14 9:41 AM

0.7 BIOGRAPHIES 13

for better exercises, better examples, and topics to add, topics to delete, etc. Con-
structive comments will help future readers and we’ll post errata on our support
website: www.stroustrup.com/Programming.

0.6 References
Along with listing the publications mentioned in this chapter, this section also
includes publications you might find helpful.

Becker, Pete, ed. The C++ Standard. ISO/IEC 14882:2011.
Blanchette, Jasmin, and Mark Summerfield. C++ GUI Programming with Qt 4, Sec-

ond Edition. Prentice Hall, 2008. ISBN 0132354160.
Koenig, Andrew, and Barbara E. Moo. Accelerated C++: Practical Programming by

Example. Addison-Wesley, 2000. ISBN 020170353X.
Meyers, Scott. Effective C++: 55 Specific Ways to Improve Your Programs and Designs,

Third Edition. Addison-Wesley, 2005. ISBN 0321334876.
Schmidt, Douglas C., and Stephen D. Huston. C++ Network Programming, Vol-

ume 1: Mastering Complexity with ACE and Patterns. Addison-Wesley, 2001. ISBN
0201604647.

Schmidt, Douglas C., and Stephen D. Huston. C++ Network Programming, Vol-
ume 2: Systematic Reuse with ACE and Frameworks. Addison-Wesley, 2002. ISBN
0201795256.

Stroustrup, Bjarne. The Design and Evolution of C++. Addison-Wesley, 1994. ISBN
0201543303.

Stroustrup, Bjarne. “Learning Standard C++ as a New Language.” C/C++ Users
Journal, May 1999.

Stroustrup, Bjarne. The C++ Programming Language, Fourth Edition. Addison-Wesley,
2013. ISBN 0321563840.

Stroustrup, Bjarne. A Tour of C++. Addison-Wesley, 2013. ISBN 0321958314.
Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solu-

tions. Addison-Wesley, 1999. ISBN 0201615622.

A more comprehensive list of references can be found in the Bibliography section
at the back of the book.

0.7 Biographies
You might reasonably ask, “Who are these guys who want to teach me how to
program?” So here is some biographical information. I, Bjarne Stroustrup, wrote
this book, and together with Lawrence “Pete” Petersen, I designed and taught
the university-level beginner’s (first-year) course that was developed concurrently
with the book, using drafts of the book.

Stroustrup_book.indb 13Stroustrup_book.indb 13 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER14

Bjarne Stroustrup
I’m the designer and original implementer of the
C++ programming language. I have used the lan-
guage, and many other programming languages,
for a wide variety of programming tasks over the
last 40 years or so. I just love elegant and efficient
code used in challenging applications, such as ro-
bot control, graphics, games, text analysis, and
networking. I have taught design, programming,
and C++ to people of essentially all abilities and
interests. I’m a founding member of the ISO stan-
dards committee for C++ where I serve as the
chair of the working group for language evolution.

This is my first introductory book. My other books, such as The C++ Pro-
gramming Language and The Design and Evolution of C++, were written for experi-
enced programmers.

I was born into a blue-collar (working-class) family in Århus, Denmark, and
got my master’s degree in mathematics with computer science in my hometown
university. My Ph.D. in computer science is from Cambridge University, En-
gland. I worked for AT&T for about 25 years, first in the famous Computer
Science Research Center of Bell Labs — where Unix, C, C++, and so much more
was invented — and later in AT&T Labs–Research.

I’m a member of the U.S. National Academy of Engineering, a Fellow of the
ACM, and an IEEE Fellow. As the first computer scientist ever, I received the
2005 William Procter Prize for Scientific Achievement from Sigma Xi (the scien-
tific research society). In 2010, I received the University of Åarhus’s oldest and
most prestigious honor for contributions to science by a person associated with
the university, the Rigmor og Carl Holst-Knudsens Videnskapspris. In 2013, I was made
Honorary Doctor of Computer Science from the National Research University,
ITMO, St. Petersburg, Russia.

I do have a life outside work. I’m married and have two children, one a medi-
cal doctor and one a Post-doctoral Research Fellow. I read a lot (including history,
science fiction, crime, and current affairs) and like most kinds of music (including
classical, rock, blues, and country). Good food with friends is an essential part of
life, and I enjoy visiting interesting places and people, all over the world. To be
able to enjoy the good food, I run.

For more information, see my home pages: www.stroustrup.com. In particu-
lar, there you can find out how to pronounce my name.

Stroustrup_book.indb 14Stroustrup_book.indb 14 4/22/14 9:41 AM4/22/14 9:41 AM

0.7 BIOGRAPHIES 15

Lawrence “Pete” Petersen
In late 2006, Pete introduced himself as follows: “I
am a teacher. For almost 20 years, I have taught
programming languages at Texas A&M. I have
been selected by students for Teaching Excellence
Awards five times and in 1996 received the Dis-
tinguished Teaching Award from the Alumni As-
sociation for the College of Engineering. I am a
Fellow of the Wakonse Program for Teaching Ex-
cellence and a Fellow of the Academy for Educator
Development.

“As the son of an army officer, I was raised on
the move. After completing a degree in philosophy

at the University of Washington, I served in the army for 22 years as a Field Ar-
tillery Officer and as a Research Analyst for Operational Testing. I taught at the
Field Artillery Officers’ Advanced Course at Fort Sill, Oklahoma, from 1971 to
1973. In 1979 I helped organize a Test Officers’ Training Course and taught it as
lead instructor at nine different locations across the United States from 1978 to
1981 and from 1985 to 1989.

“In 1991 I formed a small software company that produced management
software for university departments until 1999. My interests are in teaching, de-
signing, and programming software that real people can use. I completed master’s
degrees in industrial engineering at Georgia Tech and in education curriculum
and instruction at Texas A&M. I also completed a master’s program in microcom-
puters from NTS. My Ph.D. is in information and operations management from
Texas A&M.

“My wife, Barbara, and I live in Bryan, Texas. We like to travel, garden, and
entertain; and we spend as much time as we can with our sons and their families,
and especially with our grandchildren, Angelina, Carlos, Tess, Avery, Nicholas,
and Jordan.”

Sadly, Pete died of lung cancer in 2007. Without him, the course would never
have succeeded.

Stroustrup_book.indb 15Stroustrup_book.indb 15 4/22/14 9:41 AM4/22/14 9:41 AM

CHAPTER 0 • NOTES TO THE READER16

Postscript
Most chapters p rovide a short “postscript” that attempts to give some perspective
on the information presented in the chapter. We do that with the realization that
the information can be — and often is — daunting and will only be fully compre-
hended after doing exercises, reading further chapters (which apply the ideas of
the chapter), and a later review. Don’t panic! Relax; this is natural and expected.
You won’t become an expert in a day, but you can become a reasonably compe-
tent programmer as you work your way through the book. On the way, you’ll
encounter much information, many examples, and many techniques that lots of
programmers have found stimulating and fun.

Stroustrup_book.indb 16Stroustrup_book.indb 16 4/22/14 9:41 AM4/22/14 9:41 AM

