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18

Vectors and Arrays

“Caveat emptor!”

—Good advice

This chapter describes how vectors are copied and accessed 

through subscripting. To do that, we discuss copying in 

general and consider vector’s relation to the lower-level notion of 

arrays. We present arrays’ relation to pointers and consider the 

problems arising from their use. We also present the five essential 

operations that must be considered for every type: construction, 

default construction, copy construction, copy assignment, and 

destruction. In addition, a container needs a move constructor 

and a move assignment.
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CHAPTER 18 • VECTORS AND ARRAYS628

18.1 Introduction
To get into the air, a plane has to accelerate along the runway until it moves fast 
enough to “jump” into the air. While the plane is lumbering along the runway, 
it is little more than a particularly heavy and awkward truck. Once in the air, it 
soars to become an altogether different, elegant, and efficient vehicle. It is in its 
true element.

In this chapter, we are in the middle of a “run” to gather enough program-
ming language features and techniques to get away from the constraints and dif-
ficulties of plain computer memory. We want to get to the point where we can 
program using types that provide exactly the properties we want based on logical 
needs. To “get there” we have to overcome a number of fundamental constraints 
related to access to the bare machine, such as the following:

• An object in memory is of fi xed size.
• An object in memory is in one specifi c place.
• The computer provides only a few fundamental operations on such ob-

jects (such as copying a word, adding the values from two words, etc.).

Basically, those are the constraints on the built-in types and operations of C++ (as 
inherited through C from hardware; see §22.2.5 and Chapter 27). In Chapter 17, 
we saw the beginnings of a vector type that controls all access to its elements and 
provides us with operations that seem “natural” from the point of view of a user, 
rather than from the point of view of hardware.

This chapter focuses on the notion of copying. This is an important but rather 
technical point: What do we mean by copying a nontrivial object? To what extent 
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18.2  INITIALIZATION 629

are the copies independent after a copy operation? What copy operations are 
there? How do we specify them? And how do they relate to other fundamental 
operations, such as initialization and cleanup?

Inevitably, we get to discuss how memory is manipulated when we don’t 
have higher-level types such as vector and string. We examine arrays and point-
ers, their relationship, their use, and the traps and pitfalls of their use. This is 
essential information to anyone who gets to work with low-level uses of C++ 
or C code.

Please note that the details of vector are peculiar to vectors and the C++ 
ways of building new higher-level types from lower-level ones. However, every 
“higher-level” type (string, vector, list, map, etc.) in every language is somehow 
built from the same machine primitives and reflects a variety of resolutions to the 
fundamental problems described here.

18.2 Initialization
Consider our vector as it was at the end of Chapter 17:

class vector {
          int sz;                            // the size
          double* elem;           // a pointer to the elements
public:
          vector(int s)                                                             // constructor
                    :sz{s}, elem{new double[s]} { /* . . . */ }  // allocates memory
          ~vector()                                                                   // destructor
                    { delete[]  elem; }                                         // deallocates memory
          // . . .
};

That’s fine, but what if we want to initialize a vector to a set of values that are not 
defaults? For example:

vector v1 = {1.2, 7.89, 12.34 };

We can do that, and it is much better than initializing to default values and then 
assigning the values we really want:

vector v2(2);           // tedious and error-prone
v2[0] = 1.2;
v2[1] = 7.89;
v2[2] = 12.34;
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CHAPTER 18 • VECTORS AND ARRAYS630

Compared to v1, the “initialization” of v2 is tedious and error-prone (we delib-
erately got the number of elements wrong in that code fragment). Using push_
back() can save us from mentioning the size:

vector v3;               // tedious and repetitive
v2.push_back(1.2);
v2.push_back(7.89);
v2.push_back(12.34);

But this is still repetitive, so how do we write a constructor that accepts an initial-
izer list as its argument? A { }-delimited list of elements of type T is presented to 
the programmer as an object of the standard library type initializer_list<T>, a list 
of Ts, so we can write

class vector {
          int sz;                          // the size
          double* elem;          // a pointer to the elements
public:
          vector(int s)                 // constructor (s is the element count)
                    :sz{s}, elem{new double[sz]}    // uninitialized memory for elements
          {
                    for (int i = 0; i<sz; ++i) elem[i] = 0.0;  // initialize
          }

          vector(initializer_list<double> lst)             // initializer-list constructor
                    :sz{lst.size()}, elem{new double[sz]}    // uninitialized memory 
                  // for elements
          {
                    copy( lst.begin(),lst.end(),elem);  // initialize (using std::copy(); §B.5.2)
          }
          // . . .
};

We used the standard library copy algorithm (§B.5.2). It copies a sequence of ele-
ments specified by its first two arguments (here, the beginning and the end of the 
initializer_list) to a sequence of elements starting with its third argument (here, 
the vector’s elements starting at elem).

Now we can write

vector v1 = {1,2,3};    // three elements 1.0, 2.0, 3.0
vector v2(3);               // three elements each with the (default) value 0.0
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18.3  COPYING 631

Note how we use ( ) for an element count and { } for element lists. We need a 
notation to distinguish them. For example:

vector v1 {3};      // one element with the value 3.0
vector v2(3);       // three elements each with the (default) value 0.0

This is not very elegant, but it is effective. If there is a choice, the compiler will in-
terpret a value in a { } list as an element value and pass it to the initializer-list con-
structor as an element of an initializer_list.

In most cases — including all cases we will encounter in this book — the = 
before an { } initializer list is optional, so we can write

vector v11 = {1,2,3};    // three elements 1.0, 2.0, 3.0
vector v12 {1,2,3};       // three elements 1.0, 2.0, 3.0

The difference is purely one of style.
Note that we pass initializer_list<double> by value. That was deliberate and 

required by the language rules: an initializer_list is simply a handle to elements 
allocated “elsewhere” (see §B.6.4).

18.3 Copying
Consider again our incomplete vector:

class vector {
          int sz;                     // the size
          double* elem;       // a pointer to the elements
public:
          vector(int s)                                                                // constructor
                    :sz{s}, elem{new double[s]} { /* . . . */ }    // allocates memory
          ~vector()                                                                     // destructor
                    { delete[]  elem; }                                        // deallocates memory
          // . . .
};

Let’s try to copy one of these vectors:

void f(int n)
{
          vector v(3);           // define a vector of 3 elements
          v.set(2,2.2);             // set v[2] to 2.2
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CHAPTER 18 • VECTORS AND ARRAYS632

          vector v2 = v;           // what happens here?
          // . . .
}

Ideally, v2 becomes a copy of v (that is, = makes copies); that is, v2.size()==v.size()
and v2[i]==v[i] for all is in the range [0:v.size()). Furthermore, all memory is re-
turned to the free store upon exit from f(). That’s what the standard library vector
does (of course), but it’s not what happens for our still-far-too-simple vector. Our 
task is to improve our vector to get it to handle such examples correctly, but first 
let’s figure out what our current version actually does. Exactly what does it do 
wrong? How? And why? Once we know that, we can probably fix the problems. 
More importantly, we have a chance to recognize and avoid similar problems 
when we see them in other contexts.

The default meaning of copying for a class is “Copy all the data members.” 
That often makes perfect sense. For example, we copy a Point by copying its co-
ordinates. But for a pointer member, just copying the members causes problems. 
In particular, for the vectors in our example, it means that after the copy, we have
v.sz==v2.sz and v.elem==v2.elem so that our vectors look like this:

3 2.2 v: 

3 v2: 

0.00.0

That is, v2 doesn’t have a copy of v’s elements; it shares v’s elements. We could 
write

v.set(1,99);              // set v[1] to 99
v2.set(0,88);             // set v2[0] to 88
cout << v.get(0) << ' ' << v2.get(1);

The result would be the output 88 99. That wasn’t what we wanted. Had there 
been no “hidden” connection between v and v2, we would have gotten the output
0 0, because we never wrote to v[0] or to v2[1]. You could argue that the behavior 
we got is “interesting,” “neat!” or “sometimes useful,” but that is not what we 
intended or what the standard library vector provides. Also, what happens when 
we return from f() is an unmitigated disaster. Then, the destructors for v and v2 
are implicitly called; v’s destructor frees the storage used for the elements using

delete[]  elem;

and so does v2’s destructor. Since elem points to the same memory location in both 
v and v2, that memory will be freed twice with likely disastrous results (§17.4.6). 
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18.3  COPYING 633

18.3.1 Copy constructors
So, what do we do? We’ll do the obvious: provide a copy operation that copies 
the elements and make sure that this copy operation gets called when we initialize 
one vector with another. 

Initialization of objects of a class is done by a constructor. So, we need a con-
structor that copies. Unsurprisingly, such a constructor is called a copy constructor. 
It is defined to take as its argument a reference to the object from which to copy. 
So, for class vector we need

vector(const vector&);

This constructor will be called when we try to initialize one vector with another. 
We pass by reference because we (obviously) don’t want to copy the argument of 
the constructor that defines copying. We pass by const reference because we don’t 
want to modify our argument (§8.5.6). So we refine vector like this:

class vector {
          int sz;
          double* elem;
public:
          vector(const vector&) ;          // copy constructor: define copy
          // . . .
}; 

The copy constructor sets the number of elements (sz) and allocates memory for 
the elements (initializing elem) before copying element values from the argument 
vector:

vector:: vector(const vector& arg)
// allocate elements, then initialize them by copying
          :sz{arg.sz}, elem{new double[arg.sz]}
{
          copy(arg,arg+sz,elem);  // std::copy(); see §B.5.2
}

Given this copy constructor, consider again our example:

vector v2 = v;

This definition will initialize v2 by a call of vector’s copy constructor with v as its 
argument. Again given a vector with three elements, we now get

3 2.2v:

3 2.2v2:
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CHAPTER 18 • VECTORS AND ARRAYS634

Given that, the destructor can do the right thing. Each set of elements is correctly 
freed. Obviously, the two vectors are now independent so that we can change the 
value of elements in v without affecting v2 and vice versa. For example: 

v.set(1,99);                       // set v[1] to 99
v2.set(0,88);                      // set v2[0] to 88
cout << v.get(0) << ' ' << v2.get(1); 

This will output 0 0.
Instead of saying

vector v2 = v;

we could equally well have said

vector v2 {v};

When v (the initializer) and v2 (the variable being initialized) are of the same type 
and that type has copying conventionally defined, those two notations mean ex-
actly the same thing and you can use whichever notation you like better. 

18.3.2 Copy assignments
We handle copy construction (initialization), but we can also copy vectors by as-
signment. As with copy initialization, the default meaning of copy assignment is 
memberwise copy, so with vector as defined so far, assignment will cause a double 
deletion (exactly as shown for copy constructors in §18.3.1) plus a memory leak. 
For example:

void f2(int n)
{
          vector v(3);            // define a vector 
          v.set(2,2.2);
          vector v2(4);
          v2 = v;                       // assignment: what happens here?
          // . . .
}

We would like v2 to be a copy of v (and that’s what the standard library vector
does), but since we have said nothing about the meaning of assignment of our 
vector, the default assignment is used; that is, the assignment is a memberwise 
copy so that v2’s sz and elem become identical to v’s sz and elem, respectively. 
We can illustrate that like this:
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18.3  COPYING 635

3 2.2v:
2nd

1st

3v2:

When we leave f2(), we have the same disaster as we had when leaving f() in §18.3 
before we added the copy constructor: the elements pointed to by both v and v2 
are freed twice (using delete[]). In addition, we have leaked the memory initially 
allocated for v2’s four elements. We “forgot” to free those. The remedy for this 
copy assignment is fundamentally the same as for the copy initialization (§18.3.1). 
We define an assignment that copies properly:

class vector {
          int sz;
          double* elem;
public:
          vector& operator=(const vector&) ;     // copy assignment
          // . . .
}; 

vector& vector::operator=(const vector& a)
          // make this vector a copy of a
{
          double* p = new double[a.sz];       // allocate new space
          copy(a.elem,a.elem+a.sz,elem);     // copy elements
          delete[]  elem;                                          // deallocate old space
          elem = p;                                               // now we can reset elem
          sz = a.sz;
          return *this;                 // return a self-reference (see §17.10)
}

Assignment is a bit more complicated than construction because we must deal 
with the old elements. Our basic strategy is to make a copy of the elements from 
the source vector:

          double* p = new double[a.sz];       // allocate new space
          copy(a.elem,a.elem+a.sz,elem);     // copy elements

Then we free the old elements from the target vector:

delete[]  elem;                                       // deallocate old space
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Finally, we let elem point to the new elements:

elem = p;                            // now we can reset elem
sz = a.sz;

We can represent the result graphically like this:

3 2.2

2.2

v:
Given back to
the free store by
delete[ ]

2nd

1st

3v2:

We now have a vector that doesn’t leak memory and doesn’t free (delete[]) any 
memory twice.

When implementing the assignment, you could consider simplifying the code 
by freeing the memory for the old elements before creating the copy, but it is usu-
ally a very good idea not to throw away information before you know that you 
can replace it. Also, if you did that, strange things would happen if you assigned 
a vector to itself:

vector v(10);
                    v = v;      // self-assignment

Please check that our implementation handles that case correctly (if not with op-
timal efficiency).

18.3.3 Copy terminology
Copying is an issue in most programs and in most programming languages. The 
basic issue is whether you copy a pointer (or reference) or copy the information 
pointed to (referred to):

• Shallow copy copies only a pointer so that the two pointers now refer to the 
same object. That’s what pointers and references do.

• Deep copy copies what a pointer points to so that the two pointers now refer 
to distinct objects. That’s what vectors, strings, etc. do. We defi ne copy 
constructors and copy assignments when we want deep copy for objects 
of our classes.

Here is an example of shallow copy:
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int* p = new int{77};
int* q = p;           // copy the pointer p
*p = 88;                // change the value of the int pointed to by p and q

We can illustrate that like this:

p: q: 
(copy of p) 

88 

In contrast, we can do a deep copy:

int* p = new int{77};
int* q = new int{*p};    // allocate a new int, then copy the value pointed to by p
*p = 88;                           // change the value of the int pointed to by p

We can illustrate that like this:

p: q: 

88 77 

Using this terminology, we can say that the problem with our original vector was 
that it did a shallow copy, rather than copying the elements pointed to by its elem
pointer. Our improved vector, like the standard library vector, does a deep copy 
by allocating new space for the elements and copying their values. Types that 
provide shallow copy (like pointers and references) are said to have pointer seman-
tics or reference semantics (they copy addresses). Types that provide deep copy (like 
string and vector) are said to have value semantics (they copy the values pointed to). 
From a user perspective, types with value semantics behave as if no pointers were 
involved — just values that can be copied. One way of thinking of types with value 
semantics is that they “work just like integers” as far as copying is concerned.

18.3.4 Moving
If a vector has a lot of elements, it can be expensive to copy. So, we should copy 
vectors only when we need to. Consider an example:

vector fill(istream& is)
{
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          vector res;
          for (double x; is>>x; ) res.push_back(x);
          return res; 
}

void use()
{
          vector vec = fill(cin);
          // … use vec …
}

Here, we fill the local vector res from the input stream and return it to use(). 
Copying res out of fill() and into vec could be expensive. But why copy? We don’t 
want a copy! We can never use the original (res) after the return. In fact, res is de-
stroyed as part of the return from fill(). So how can we avoid the copy? Consider 
again how a vector is represented in memory:

res:

elements

100000

We would like to “steal” the representation of res to use for vec. In other words, 
we would like vec to refer to the elements of res without any copy. 

After moving res’s element pointer and element count to vec, res holds no 
elements. We have successfully moved the value from res out of fill() to vec. Now, 
res can be destroyed (simply and efficiently) without any undesirable side effects:

We have successfully moved 100,000 doubles out of fill() and into its caller at the 
cost of four single-word assignments.

How do we express such a move in C++ code? We define move operations 
to complement the copy operations:

class vector {
          int sz;
          double* elem;
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public:
          vector(vector&& a);                  // move constructor
          vector& operator=(vector&&);    // move assignment
          // . . .
          }; 

The funny && notation is called an “rvalue reference.” We use it for defining 
move operations. Note that move operations do not take const arguments; that 
is, we write (vector&&) and not (const vector&&). Part of the purpose of a move 
operation is to modify the source, to make it “empty.” The definitions of move 
operations tend to be simple. They tend to be simpler and more efficient than 
their copy equivalents. For vector, we get

vector::vector(vector&& a)
          :sz{a.sz}, elem{a.elem}    // copy a’s elem and sz
{
          a.sz = 0;                                 // make a the empty vector
          a.elem = nullptr;
}

vector& vector::operator=(vector&& a) // move a to this vector
{
          delete[]  elem;               // deallocate old space
          elem = a.elem;              // copy a’s elem and sz
          sz = a.sz;
          a.elem = nullptr;         // make a the empty vector
          a.sz = 0;
          return *this;                 // return a self-reference (see §17.10)
}

By defining a move constructor, we make it easy and cheap to move around large 
amounts of information, such as a vector with many elements. Consider again:

vector fill(istream& is)
{
          vector res;
          for (double x; is>>x; ) res.push_back(x);
          return res; 
}

The move constructor is implicitly used to implement the return. The compiler 
knows that the local value returned (res) is about to go out of scope, so it can 
move from it, rather than copying.
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The importance of move constructors is that we do not have to deal with 
pointers or references to get large amounts of information out of a function. Con-
sider this flawed (but conventional) alternative:

vector* fill2(istream& is)
{
          vector* res = new vector;
          for (double x; is>>x; ) res->push_back(x);
          return res; 
}

void use2()
{
          vector* vec = fill(cin);
          // … use vec …
          delete vec;
}

Now we have to remember to delete the vector. As described in §17.4.6, deleting 
objects placed on the free store is not as easy to do consistently and correctly as 
it might seem.

18.4 Essential operations
We have now reached the point where we can discuss how to decide which con-
structors a class should have, whether it should have a destructor, and whether 
you need to provide copy and move operations. There are seven essential opera-
tions to consider:

• Constructors from one or more arguments
• Default constructor
• Copy constructor (copy object of same type)
• Copy assignment (copy object of same type) 
• Move constructor (move object of same type)
• Move assignment (move object of same type)
• Destructor 

Usually we need one or more constructors that take arguments needed to initial-
ize an object. For example:
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string s {"cat.jpg"};                        // initialize s to the character string “cat.jpg”
Image ii {Point{200,300},"cat.jpg"};  // initialize a Point with the 

// coordinates{200,300},
             // then display the contents of file 

// cat.jpg at that Point

The meaning/use of an initializer is completely up to the constructor. The stan-
dard string’s constructor uses a character string as an initial value, whereas Im-
age’s constructor uses the string as the name of a file to open. Usually we use a 
constructor to establish an invariant (§9.4.3). If we can’t define a good invariant 
for a class that its constructors can establish, we probably have a poorly designed 
class or a plain data structure.

Constructors that take arguments are as varied as the classes they serve. The 
remaining operations have more regular patterns.

How do we know if a class needs a default constructor? We need a default 
constructor if we want to be able to make objects of the class without specifying 
an initializer. The most common example is when we want to put objects of a class 
into a standard library vector. The following works only because we have default 
values for int, string, and vector<int>:

vector<double> vi(10);         // vector of 10 doubles, each initialized to 0.0
vector<string> vs(10);         // vector of 10 strings, each initialized to “”
vector<vector<int>> vvi(10); // vector of 10 vectors, each initialized to vector{}

So, having a default constructor is often useful. The question then becomes: 
“When does it make sense to have a default constructor?” An answer is: “When 
we can establish the invariant for the class with a meaningful and obvious default 
value.” For value types, such as int and double, the obvious value is 0 (for  double, 
that becomes 0.0). For string, the empty string, "", is the obvious choice. For 
 vector, the empty vector serves well. For every type T, T{} is the default value, if 
a default exists. For example, double{} is 0.0, string{} is "", and vector<int>{} is 
the empty vector of ints.

A class needs a destructor if it acquires resources. A resource is something 
you “get from somewhere” and that you must give back once you have finished 
using it. The obvious example is memory that you get from the free store (using 
new) and have to give back to the free store (using delete or delete[]). Our vec-
tor acquires memory to hold its elements, so it has to give that memory back; 
therefore, it needs a destructor. Other resources that you might encounter as your 
programs increase in ambition and sophistication are files (if you open one, you 
also have to close it), locks, thread handles, and sockets (for communication with 
processes and remote computers). 
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Another sign that a class needs a destructor is simply that it has members that 
are pointers or references. If a class has a pointer or a reference member, it often 
needs a destructor and copy operations.

A class that needs a destructor almost always also needs a copy constructor 
and a copy assignment. The reason is simply that if an object has acquired a 
resource (and has a pointer member pointing to it), the default meaning of copy 
(shallow, memberwise copy) is almost certainly wrong. Again, vector is the clas-
sic example.

Similarly, a class that needs a destructor almost always also needs a move 
constructor and a move assignment. The reason is simply that if an object has ac-
quired a resource (and has a pointer member pointing to it), the default meaning 
of copy (shallow, memberwise copy) is almost certainly wrong and the usual rem-
edy (copy operations that duplicate the complete object state) can be expensive. 
Again, vector is the classic example.

In addition, a base class for which a derived class may have a destructor needs 
a virtual destructor (§17.5.2).

18.4.1 Explicit constructors
A constructor that takes a single argument defines a conversion from its argument 
type to its class. This can be most useful. For example:

class complex {
public:
          complex(double);            // defines double-to-complex conversion
          complex(double,double);
          // . . .
};

complex z1 = 3.14;              // OK: convert 3.14 to (3.14,0)
complex z2 = complex{1.2, 3.4};

However, implicit conversions should be used sparingly and with caution, be-
cause they can cause unexpected and undesirable effects. For example, our vector, 
as defined so far, has a constructor that takes an int. This implies that it defines a 
conversion from int to vector. For example:

class vector {
           // . . .
          vector(int);
          // . . .
};

Stroustrup_book.indb   642Stroustrup_book.indb   642 4/22/14   9:42 AM4/22/14   9:42 AM



18.4  ESSENTIAL OPERATIONS 643

vector v = 10;                  // odd: makes a vector of 10 doubles 
v = 20;                                 // eh? Assigns a new vector of 20 doubles to v

void f(const vector&);
f(10);                                  // eh? Calls f with a new vector of 10 doubles

It seems we are getting more than we have bargained for. Fortunately, it is simple 
to suppress this use of a constructor as an implicit conversion. A constructor-
defined explicit provides only the usual construction semantics and not the im-
plicit conversions. For example:

class vector {
          // . . .
          explicit vector(int);
          // . . .
};

vector v = 10;                     // error: no int-to-vector conversion
v = 20;                                 // error: no int-to-vector conversion
vector v0(10);                     // OK

void f(const vector&);
f(10);                                   // error: no int-to-vector<double> conversion
f(vector(10));                      // OK

To avoid surprising conversions, we — and the standard — define vector’s single-
argument constructors to be explicit. It’s a pity that constructors are not explicit
by default; if in doubt, make any constructor that can be invoked with a single 
argument explicit.

18.4.2 Debugging constructors and destructors
Constructors and destructors are invoked at well-defined and predictable points 
of a program’s execution. However, we don’t always write explicit calls, such as 
vector(2); rather we do something, such as declaring a vector, passing a vector
as a by-value argument, or creating a vector on the free store using new. This 
can cause confusion for people who think in terms of syntax. There is not just a 
single syntax that triggers a constructor. It is simpler to think of constructors and 
destructors this way:

• Whenever an object of type X is created, one of X’s constructors is invoked.
• Whenever an object of type X is destroyed, X’s destructor is invoked.
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A destructor is called whenever an object of its class is destroyed; that happens 
when names go out of scope, the program terminates, or delete is used on a 
pointer to an object. A constructor (some appropriate constructor) is invoked 
whenever an object of its class is created; that happens when a variable is initial-
ized, when an object is created using new (except for built-in types), and whenever 
an object is copied. 

But when does that happen? A good way to get a feel for that is to add print 
statements to constructors, assignment operations, and destructors and then just 
try. For example:

struct X {                // simple test class
     int val;

          void out(const string& s, int nv)
                    { cerr << this << "–>" << s << ": " << val << " (" << nv << ")\n"; }

          X(){ out("X()",0); val=0; }                   // default constructor
          X(int v) { val=v; out( "X(int)",v); }
          X(const X& x){ val=x.val; out("X(X&) ",x.val); }     // copy constructor
          X& operator=(const X& a)           // copy assignment
                    { out("X::operator=()",a.val); val=a.val; return *this; }
          ~X() { out("~X()",0); }                     // destructor
};

Anything we do with this X will leave a trace that we can study. For example:

X glob(2);               // a global variable

X copy(X a) { return a; }

X copy2(X a) { X aa = a; return aa; }

X& ref_to(X& a) { return a; }

X* make(int i) { X a(i); return new X(a); }

struct XX { X a; X b; };

int main()
{
          X loc {4};          // local variable
          X loc2 {loc};    // copy construction
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          loc = X{5};                   // copy assignment
          loc2 = copy(loc);         // call by value and return
          loc2 = copy2(loc);
          X loc3 {6};
          X& r = ref_to(loc);     // call by reference and return
          delete make(7); 
          delete make(8);
          vector<X> v(4);            // default values
          XX loc4;
          X* p = new X{9};           // an X on the free store
          delete p;
          X* pp = new X[5];      // an array of Xs on the free store
          delete[]  pp;
}

Try executing that.

TRY THIS

We really mean it: do run this example and make sure you understand the 
result. If you do, you’ll understand most of what there is to know about 
construction and destruction of objects.

Depending on the quality of your compiler, you may note some “missing 
copies” relating to our calls of copy() and copy2(). We (humans) can see that those 
functions do nothing: they just copy a value unmodified from input to output. If 
a compiler is smart enough to notice that, it is allowed to eliminate the calls to the 
copy constructor. In other words, a compiler is allowed to assume that a copy con-
structor copies and does nothing but copy. Some compilers are smart enough to 
eliminate many spurious copies. However, compilers are not guaranteed to be that 
smart, so if you want portable performance, consider move operations (§18.3.4).

Now consider: Why should we bother with this “silly class X”? It’s a bit like 
the finger exercises that musicians have to do. After doing them, other things — 
things that matter — become easier. Also, if you have problems with constructors 
and destructors, you can insert such print statements in constructors for your real 
classes to see that they work as intended. For larger programs, this exact kind 
of tracing becomes tedious, but similar techniques apply. For example, you can 
determine whether you have a memory leak by seeing if the number of construc-
tions minus the number of destructions equals zero. Forgetting to define copy con-
structors and copy assignments for classes that allocate memory or hold pointers 
to objects is a common — and easily avoidable — source of problems.

T
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If your problems get too big to handle by such simple means, you will have 
learned enough to be able to start using the professional tools for finding such 
problems; they are often referred to as “leak detectors.” The ideal, of course, is not 
to leak memory by using techniques that avoid such leaks.

18.5 Access to vector elements
So far (§17.6), we have used set() and get() member functions to access elements. 
Such uses are verbose and ugly. We want our usual subscript notation: v[i]. The 
way to get that is to define a member function called operator[] . Here is our first 
(naive) try:

class vector {
          int sz;                            // the size
          double* elem;             // a pointer to the elements
public:
          // . . .
          double operator[](int n) { return elem[n]; }     // return element
};

That looks good and especially it looks simple, but unfortunately it is too simple. 
Letting the subscript operator (operator[]()) return a value enables reading but 
not writing of elements:

vector v(10);
double x = v[2];              // fine
v[3] = x;                          // error: v[3] is not an lvalue

Here, v[i] is interpreted as a call v.operator[](i), and that call returns the value of 
v’s element number i. For this overly naive vector, v[3] is a floating-point value, 
not a floating-point variable.

TRY THIS

Make a version of this vector that is complete enough to compile and see 
what error message your compiler produces for v[3]=x;.

Our next try is to let operator[]  return a pointer to the appropriate element:

class vector {
          int sz;                      // the size
          double* elem;             // a pointer to the elements

T
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public:
          // . . .
          double* operator[](int n) { return &elem[n]; }    // return pointer
};

Given that definition, we can write

vector v(10);
for (int i=0; i<v.size(); ++i) {            // works, but still too ugly
          *v[i] = i;   
          cout << *v[i];
}

Here, v[i] is interpreted as a call v.operator[](i), and that call returns a pointer to 
v’s element number i. The problem is that we have to write * to dereference that 
pointer to get to the element. That’s almost as bad as having to write set() and 
get(). Returning a reference from the subscript operator solves this problem:

class vector {
          // . . .
          double& operator[ ](int n) { return elem[n]; }    // return reference
};

Now we can write

vector v(10);
for (int i=0; i<v.size(); ++i) {       // works!
          v[i] = i;                                   // v[i] returns a reference element i
          cout << v[i];
}

We have achieved the conventional notation: v[i] is interpreted as a call  v.operator[]
(i), and that returns a reference to v’s element number i.

18.5.1 Overloading on const
The operator[]() defined so far has a problem: it cannot be invoked for a const 
vector. For example:

void f(const vector& cv)
{
          double d = cv[1];       // error, but should be fine
          cv[1] = 2.0;                  // error (as it should be)
}
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The reason is that our vector::operator[]() could potentially change a vector. It 
doesn’t, but the compiler doesn’t know that because we “forgot” to tell it. The 
solution is to provide a version that is a const member function (see §9.7.4). That’s 
easily done:

class vector {
          // . . .
          double& operator[](int n);           // for non-const vectors
          double operator[](int n) const;   // for const vectors
};

We obviously couldn’t return a double& from the const version, so we re-
turned a double value. We could equally well have returned a const double&, but 
since a double is a small object there would be no point in returning a reference 
(§8.5.6), so we decided to pass it back by value. We can now write

void ff(const vector& cv, vector& v)
{
          double d = cv[1];               // fine (uses the const [])
          cv[1] = 2.0;                          // error (uses the const [])
          double d = v[1];                 // fine (uses the non-const [])
          v[1] = 2.0;                            // fine (uses the non-const [])
}

Since vectors are often passed by const reference, this const version of operator[]
() is an essential addition.

18.6 Arrays
For a while, we have used array to refer to a sequence of objects allocated on the 
free store. We can also allocate arrays elsewhere as named variables. In fact, they 
are common

• As global variables (but global variables are most often a bad idea)
• As local variables (but arrays have serious limitations there)
• As function arguments (but an array doesn’t know its own size)
• As class members (but member arrays can be hard to initialize)

Now, you might have detected that we have a not-so-subtle bias in favor of vectors 
over arrays. Use std::vector where you have a choice — and you have a choice 
in most contexts. However, arrays existed long before vectors and are roughly 
equivalent to what is offered in other languages (notably C), so you must know 
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arrays, and know them well, to be able to cope with older code and with code 
written by people who don’t appreciate the advantages of vector.

So, what is an array? How do we define an array? How do we use an array? 
An array is a homogeneous sequence of objects allocated in contiguous memory; 
that is, all elements of an array have the same type and there are no gaps between 
the objects of the sequence. The elements of an array are numbered from 0 up-
ward. In a declaration, an array is indicated by “square brackets”:

const int max = 100;
int gai[max];                  // a global array (of 100 ints); “lives forever”

void f(int n)
{
          char lac[20];        // local array; “lives” until the end of scope
          int lai[60];
          double lad[n];    // error: array size not a constant
          // . . .
}

Note the limitation: the number of elements of a named array must be known at 
compile time. If you want the number of elements to be a variable, you must put 
it on the free store and access it through a pointer. That’s what vector does with 
its array of elements.

Just like the arrays on the free store, we access named arrays using the sub-
script and dereference operators ([ ] and *). For example: 

void f2()
{
          char lac[20];          // local array; “lives” until the end of scope
          
          lac[7] = 'a';
          *lac = 'b';             // equivalent to lac[0]='b'
          
          lac[–2] = 'b';      // huh?
          lac[200] = 'c';       // huh?
}

This function compiles, but we know that “compiles” doesn’t mean “works cor-
rectly.” The use of [ ] is obvious, but there is no range checking, so f2() compiles, 
and the result of writing to lac[–2] and lac[200] is (as for all out-of-range access) 
usually disastrous. Don’t do it. Arrays do not range check. Again, we are dealing 
directly with physical memory here; don’t expect “system support.”
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But couldn’t the compiler see that lac has just 20 elements so that lac[200] is 
an error? A compiler could, but as far as we know no production compiler does. 
The problem is that keeping track of array bounds at compile time is impossible 
in general, and catching errors in the simplest cases (like the one above) only is 
not very helpful.

18.6.1 Pointers to array elements
A pointer can point to an element of an array. Consider:

double ad[10];
double* p = &ad[5];            // point to ad[5]

We now have a pointer p to the double known as ad[5]:

p: 

ad: 

We can subscript and dereference that pointer:

*p =7;
p[2] = 6;
p[–3] = 9;

We get

p: 

ad: 9 7 6 

That is, we can subscript the pointer with both positive and negative numbers. 
As long as the resulting element is in range, all is well. However, access outside 
the range of the array pointed into is illegal (as with free-store-allocated arrays; 
see §17.4.3). Typically, access outside an array is not detected by the compiler and 
(sooner or later) is disastrous.
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Once a pointer points into an array, addition and subscripting can be used to 
make it point to another element of the array. For example:

p += 2;               // move p 2 elements to the right

We get

p: 

ad: 9 7 6 

And

p –= 5;            // move p 5 elements to the left

We get

p: 

ad: 9 7 6 

Using +, – , +=, and –= to move pointers around is called pointer arithmetic. Obvi-
ously, if we do that, we have to take great care to ensure that the result is not a 
pointer to memory outside the array:

p += 1000;               // insane: p points into an array with just 10 elements
double d = *p;        // illegal: probably a bad value
                                    // (definitely an unpredictable value)
*p = 12.34;               // illegal: probably scrambles some unknown data

Unfortunately, not all bad bugs involving pointer arithmetic are that easy to spot. 
The best policy is usually simply to avoid pointer arithmetic.

The most common use of pointer arithmetic is incrementing a pointer (using 
++) to point to the next element and decrementing a pointer (using ––) to point 
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to the previous element. For example, we could print the value of ad’s elements 
like this:

for (double* p = &ad[0]; p<&ad[10]; ++p) cout << *p << '\n';

Or backward:

for (double* p = &ad[9]; p>=&ad[0]; ––p) cout << *p << '\n';

This use of pointer arithmetic is not uncommon. However, we find the last (“back-
ward”) example quite easy to get wrong. Why &ad[9] and not &ad[10]? Why >=
and not >? These examples could equally well (and equally efficiently) be done 
using subscripting. Such examples could be done equally well using subscripting 
into a vector, which is more easily range checked.

Note that most real-world uses of pointer arithmetic involve a pointer passed 
as a function argument. In that case, the compiler doesn’t have a clue how many 
elements are in the array pointed into: you are on your own. That is a situation 
we prefer to stay away from whenever we can.

Why does C++ have (allow) pointer arithmetic at all? It can be such a bother 
and doesn’t provide anything new once we have subscripting. For example:

double* p1 = &ad[0];
double* p2 = p1+7;
double* p3 = &p1[7];
if (p2 != p3) cout << "impossible!\n";

Mainly, the reason is historical. These rules were crafted for C decades ago and 
can’t be removed without breaking a lot of code. Partly, there can be some con-
venience gained by using pointer arithmetic in some important low-level applica-
tions, such as memory managers.

18.6.2 Pointers and arrays
The name of an array refers to all the elements of the array. Consider:

char ch[100];

The size of ch, sizeof(ch), is 100. However, the name of an array turns into (“de-
cays to”) a pointer with the slightest excuse. For example:

char* p = ch;

Here p is initialized to &ch[0] and sizeof(p) is something like 4 (not 100).
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This can be useful. For example, consider a function strlen() that counts the 
number of characters in a zero-terminated array of characters:

int strlen(const char* p)        // similar to the standard library strlen()
{
          int count = 0;
          while (*p) { ++count; ++p; }
          return count;
}

We can now call this with strlen(ch) as well as strlen(&ch[0]). You might point out 
that this is a very minor notational advantage, and we’d have to agree.

One reason for having array names convert to pointers is to avoid acciden-
tally passing large amounts of data by value. Consider:

int strlen(const char a[])       // similar to the standard library strlen()
{
          int count = 0;
          while (a[count]) { ++count; }
          return count;
}

char lots [100000];

void f()
{
          int nchar = strlen(lots);
          // . . .
}

Naively (and quite reasonably), you might expect this call to copy the 100,000 
characters specified as the argument to strlen(), but that’s not what happens. In-
stead, the argument declaration char p[]  is considered equivalent to char* p, and 
the call strlen(lots) is considered equivalent to strlen(&lots[0]). This saves you 
from an expensive copy operation, but it should surprise you. Why should it sur-
prise you? Because in every other case, when you pass an object and don’t explic-
itly declare an argument to be passed by reference (§8.5.3–6), that object is copied.

Note that the pointer you get from treating the name of an array as a pointer 
to its first element is a value and not a variable, so you cannot assign to it:

char ac[10];
ac = new char [20];               // error: no assignment to array name
&ac[0] = new char [20];          // error: no assignment to pointer value
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Finally! A problem that the compiler will catch!
As a consequence of this implicit array-name-to-pointer conversion, you can’t 

even copy arrays using assignment:

int x[100];
int y[100];
// . . .
x = y;                             // error
int z[100] = y;                  // error

This is consistent, but often a bother. If you need to copy an array, you must write 
some more elaborate code to do so. For example:

for (int i=0; i<100; ++i) x[i]=y[i];   // copy 100 ints
memcpy(x,y,100*sizeof(int));       // copy 100*sizeof(int) bytes
copy(y,y+100, x);                            // copy 100 ints

Note that the C language doesn’t support anything like vector, so in C, you must 
use arrays extensively. This implies that a lot of C++ code uses arrays (§27.1.2). 
In particular, C-style strings (zero-terminated arrays of characters; see §27.5) are 
very common. 

If we want assignment, we have to use something like the standard library 
vector. The vector equivalent to the copying code above is

vector<int> x(100);
vector<int> y(100);
// . . .
x = y;                     // copy 100 ints

18.6.3 Array initialization
An array of chars can be initialized with a string literal. For example:

char ac[]  = "Beorn";               // array of 6 chars

Count those characters. There are five, but ac becomes an array of six characters 
because the compiler adds a terminating zero character at the end of a string 
literal: 

'B' 'e' 'o' 'r' 'n' 0 ac: 

Stroustrup_book.indb   654Stroustrup_book.indb   654 4/22/14   9:42 AM4/22/14   9:42 AM



18.6  ARRAYS 655

A zero-terminated string is the norm in C and many systems. We call such a zero-
terminated array of characters a C-style string. All string literals are C-style strings. 
For example:

char* pc = "Howdy";               // pc points to an array of 6 chars

Graphically:

'H' 'o' 'w' 'd' 'y' 0 

pc: 

Note that the char with the numeric value 0 is not the character '0' or any other 
letter or digit. The purpose of that terminating zero is to allow functions to find 
the end of the string. Remember: An array does not know its size. Relying on the 
terminating zero convention, we can write

int strlen(const char* p)              // similar to the standard library strlen()
{
          int n = 0;
          while (p[n]) ++n;
          return n;
}

Actually, we don’t have to define strlen() because it is a standard library function 
defined in the <string.h> header (§27.5, §B.11.3). Note that strlen() counts the 
characters, but not the terminating 0; that is, you need n+1 chars to store n char-
acters in a C-style string.

Only character arrays can be initialized by literal strings, but all arrays can be 
initialized by a list of values of their element type. For example:

int ai[]  = { 1, 2, 3, 4, 5, 6 };              // array of 6 ints
int ai2[100] = {0,1,2,3,4,5,6,7,8,9};  // the last 90 elements are initialized to 0
double ad[100] = { };                            // all elements initialized to 0.0
char chars[]  = {'a', 'b', 'c'};              // no terminating 0!

Note that the number of elements of ai is six (not seven) and the number of el-
ements for chars is three (not four) — the “add a 0 at the end” rule is for literal 
character strings only. If an array isn’t given a size, that size is deduced from the 
initializer list. That’s a rather useful feature. If there are fewer initializer values 
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than array elements (as in the definitions of ai2 and ad), the remaining elements 
are initialized by the element type’s default value.

18.6.4 Pointer problems
Like arrays, pointers are often overused and misused. Often, the problems people 
get themselves into involve both pointers and arrays, so we’ll summarize the prob-
lems here. In particular, all serious problems with pointers involve trying to access 
something that isn’t an object of the expected type, and many of those problems 
involve access outside the bounds of an array. Here we will consider

• Access through the null pointer
• Access through an uninitialized pointer
• Access off the end of an array
• Access to a deallocated object
• Access to an object that has gone out of scope

In all cases, the practical problem for the programmer is that the actual access 
looks perfectly innocent; it is “just” that the pointer hasn’t been given a value that 
makes the use valid. Worse (in the case of a write through the pointer), the prob-
lem may manifest itself only a long time later when some apparently unrelated 
object has been corrupted. Let’s consider examples:

Don’t access through the null pointer:

int* p = nullptr;
*p = 7;            // ouch!

Obviously, in real-world programs, this typically occurs when there is some code 
in between the initialization and the use. In particular, passing p to a function and 
receiving it as the result from a function are common examples. We prefer not to 
pass null pointers around, but if you have to, test for the null pointer before use:

int* p = fct_that_can_return_a_nullptr();

if (p == nullptr) { 
          // do something
}
else {
          // use p
          *p = 7;
}
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and

void fct_that_can_receive_a_nullptr(int* p)
{
          if (p == nullptr) {
                    // do something
          }
          else {
                    // use p
                    *p = 7;
          }
}

Using references (§17.9.1) and using exceptions to signal errors (§5.6 and §19.5) 
are the main tools for avoiding null pointers.

Do initialize your pointers:

int* p;
*p = 9;            // ouch!

In particular, don’t forget to initialize pointers that are class members.
Don’t access nonexistent array elements:

int a[10];
int* p = &a[10];
*p = 11;           // ouch!
a[10] = 12;       // ouch!

Be careful with the first and last elements of a loop, and try not to pass arrays 
around as pointers to their first elements. Instead use vectors. If you really must 
use an array in more than one function (passing it as an argument), then be extra 
careful and pass its size along.

Don’t access through a deleted pointer:

int* p = new int{7};
// . . .
delete p;
// . . .
*p = 13;         // ouch!

The delete p or the code after it may have scribbled all over *p or used it for 
something else. Of all of these problems, we consider this one the hardest to 
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systematically avoid. The most effective defense against this problem is not to have 
“naked” news that require “naked” deletes: use new and delete in constructors 
and destructors or use a container, such as Vector_ref (§E.4), to handle deletes.

Don’t return a pointer to a local variable:

int* f()
{
          int x = 7;
          // . . .
          return &x;
}

// . . .

int* p = f();
// . . .
*p = 15;            // ouch!

The return from f() or the code after it may have scribbled all over *p or used it 
for something else. The reason for that is that the local variables of a function are 
allocated (on the stack) upon entry to the function and deallocated again at the 
exit from the function. In particular, destructors are called for local variables of 
classes with destructors (§17.5.1). Compilers could catch most problems related to 
returning pointers to local variables, but few do. 

Consider a logically equivalent example:

vector& ff()
{
          vector x(7);     // 7 elements
          // . . .
          return x;
}       // the vector x is destroyed here

// . . .

vector& p = ff();
// . . .
p[4] = 15;           // ouch!

Quite a few compilers catch this variant of the return problem.
It is common for programmers to underestimate these problems. However, 

many experienced programmers have been defeated by the innumerable varia-
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tions and combinations of these simple array and pointer problems. The solution 
is not to litter your code with pointers, arrays, news, and deletes. If you do, 
“being careful” simply isn’t enough in realistically sized programs. Instead, rely 
on vectors, RAII (“Resource Acquisition Is Initialization”; see §19.5), and other 
systematic approaches to the management of memory and other resources.

18.7 Examples: palindrome
Enough technical examples! Let’s try a little puzzle. A palindrome is a word that is 
spelled the same from both ends. For example, anna, petep, and malayalam are palin-
dromes, whereas ida and homesick are not. There are two basic ways of determining 
whether a word is a palindrome:

• Make a copy of the letters in reverse order and compare that copy to the 
original.

• See if the fi rst letter is the same as the last, then see if the second letter is 
the same as the second to last, and keep going until you reach the middle.

Here, we’ll take the second approach. There are many ways of expressing this 
idea in code depending on how we represent the word and how we keep track 
of how far we have come with the comparison of characters. We’ll write a little 
program that tests whether words are palindromes in a few different ways just to 
see how different language features affect the way the code looks and works.

18.7.1 Palindromes using string
First, we try a version using the standard library string with int indices to keep 
track of how far we have come with our comparison:

bool is_palindrome(const string& s)
{
          int first = 0;                       // index of first letter
          int last = s.length()–1;    // index of last letter
          while (first < last) {            // we haven’t reached the middle
                    if (s[first]!=s[last]) return false;
                    ++first;              // move forward

–– last;              // move backward
          }
          return true;
}

We return true if we reach the middle without finding a difference. We suggest 
that you look at this code to convince yourself that it is correct when there are no 
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letters in the string, just one letter in the string, an even number of letters in the 
string, and an odd number of letters in the string. Of course, we should not just 
rely on logic to see that our code is correct. We should also test. We can exercise 
is_palindrome() like this:

int main()
{
          for (string s; cin>>s; ) {
                    cout << s << " is";
                    if (!is_palindrome(s)) cout << " not";
                    cout << " a palindrome\n";
          }
}

Basically, the reason we are using a string is that “strings are good for dealing with 
words.” It is simple to read a whitespace-separated word into a string, and a string 
knows its size. Had we wanted to test is_palindrome() with strings containing 
whitespace, we could have read using getline() (§11.5). That would have shown 
ah ha and as df fd sa to be palindromes.

18.7.2 Palindromes using arrays
What if we didn’t have strings (or vectors), so that we had to use an array to store 
the characters? Let’s see:

bool is_palindrome(const char s[], int n)
          // s points to the first character of an array of n characters
{
          int first = 0;                        // index of first letter
          int last = n–1;                   // index of last letter
          while (first < last) {               // we haven’t reached the middle
                    if (s[first]!=s[last]) return false;
                    ++first;               // move forward
                    –– last;               // move backward
          }
          return true;
}

To exercise is_palindrome(), we first have to get characters read into the array. 
One way to do that safely (i.e., without risk of overflowing the array) is like this:

istream& read_word(istream& is, char* buffer, int max)
          // read at most max–1 characters from is into buffer
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{
          is.width(max);         // read at most max–1 characters in the next >>
          is >> buffer;             // read whitespace-terminated word,
                                            // add zero after the last character read into buffer
          return is;
}

Setting the istream’s width appropriately prevents buffer overflow for the next >> 
operation. Unfortunately, it also means that we don’t know if the read terminated 
by whitespace or by the buffer being full (so that we need to read more charac-
ters). Also, who remembers the details of the behavior of width() for input? The 
standard library string and vector are really better as input buffers because they 
expand to fit the amount of input. The terminating 0 character is needed because 
most popular operations on arrays of characters (C-style strings) assume 0 termi-
nation. Using read_word() we can write

int main()
{
          constexpr int max = 128;
          for (char s[max]; read_word(cin,s,max); ) { 
                    cout << s << " is";
                    if (!is_palindrome(s,strlen(s))) cout << " not";
                    cout << " a palindrome\n";
          }
}

The strlen(s) call returns the number of characters in the array after the call of read_
word(), and cout<<s outputs the characters in the array up to the terminating 0.

We consider this “array solution” significantly messier than the “string solu-
tion,” and it gets much worse if we try to seriously deal with the possibility of long 
strings. See exercise 10.

18.7.3 Palindromes using pointers
Instead of using indices to identify characters, we could use pointers:

bool is_palindrome(const char* first, const char* last)
          // first points to the first letter, last to the last letter
{
          while (first < last) {          // we haven’t reached the middle
                    if (*first!=*last) return false;
                    ++first;              // move forward
                    –– last;              // move backward
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          }
          return true;
}

Note that we can actually increment and decrement pointers. Increment makes 
a pointer point to the next element of an array and decrement makes a pointer 
point to the previous element. If the array doesn’t have such a next element or 
previous element, you have a serious uncaught out-of-range error. That’s another 
problem with pointers.

We call this is_palindrome() like this:

int main()
{
          const int max = 128;
          for (char s[max]; read_word(cin,s,max); ) { 
                    cout << s << " is";
                    if (!is_palindrome(&s[0],&s[strlen(s)–1])) cout << " not";
                    cout << " a palindrome\n";
          }
}

Just for fun, we rewrite is_palindrome() like this:

bool is_palindrome(const char* first, const char* last)
          // first points to the first letter, last to the last letter
{
          if (first<last) {
                    if (*first!=*last) return false;
                    return is_palindrome(first+1,last–1 );
          }
          return true;
}

This code becomes obvious when we rephrase the definition of palindrome: a word 
is a palindrome if the first and the last characters are the same and if the substring 
you get by removing the first and the last characters is a palindrome.
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Drill
In this chapter, we have two drills: one to exercise arrays and one to exercise vectors 
in roughly the same manner. Do both and compare the effort involved in each.

Array drill:

 1. Define a global int array ga of ten ints initialized to 1, 2, 4, 8, 16, etc.
 2. Define a function f() taking an int array argument and an int argument 

indicating the number of elements in the array.
 3. In f():
  a. Define a local int array la of ten ints.
  b. Copy the values from ga into la.
  c. Print out the elements of la.
  d.  Define a pointer p to int and initialize it with an array allocated on the 

free store with the same number of elements as the argument array.
  e. Copy the values from the argument array into the free-store array.
  f. Print out the elements of the free-store array.
  g. Deallocate the free-store array.
 4. In main():
  a. Call f() with ga as its argument.
  b.  Define an array aa with ten elements, and initialize it with the first ten 

factorial values (1, 2*1, 3*2*1, 4*3*2*1, etc.).
  c. Call f() with aa as its argument.

Standard library vector drill:

 1. Define a global vector<int> gv; initialize it with ten ints, 1, 2, 4, 8, 16, etc.
 2. Define a function f() taking a vector<int> argument.
 3. In f():
  a.  Define a local vector<int> lv with the same number of elements as the 

argument vector.
  b. Copy the values from gv into lv.
  c. Print out the elements of lv.
  d.  Define a local vector<int> lv2; initialize it to be a copy of the argument 

vector.
  e. Print out the elements of lv2.
 4. In main():
  a. Call f() with gv as its argument.
  b.  Define a vector<int> vv, and initialize it with the first ten factorial val-

ues (1, 2*1, 3*2*1, 4*3*2*1, etc.).
  c. Call f() with vv as its argument.
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Review
 1. What does “Caveat emptor!” mean?
 2. What is the default meaning of copying for class objects? 
 3. When is the default meaning of copying of class objects appropriate? 

When is it inappropriate?
 4. What is a copy constructor?
 5. What is a copy assignment?
 6. What is the difference between copy assignment and copy initialization?
 7. What is shallow copy? What is deep copy?
 8. How does the copy of a vector compare to its source?
 9. What are the five “essential operations” for a class?
 10. What is an explicit constructor? Where would you prefer one over the 

(default) alternative?
 11. What operations may be invoked implicitly for a class object?
 12. What is an array?
 13. How do you copy an array?
 14. How do you initialize an array?
 15. When should you prefer a pointer argument over a reference argument? 

Why?
 16. What is a C-style string?
 17. What is a palindrome?

Terms
array deep copy move assignment 
array initialization default constructor move construction 
copy assignment essential operations palindrome 
copy constructor explicit constructor shallow copy

Exercises
 1. Write a function, char* strdup(const char*), that copies a C-style string 

into memory it allocates on the free store. Do not use any standard li-
brary functions. Do not use subscripting; use the dereference operator * 
instead.

 2. Write a function, char* findx(const char* s, const char* x), that finds the 
first occurrence of the C-style string x in s. Do not use any standard li-
brary functions. Do not use subscripting; use the dereference operator * 
instead.

 3. Write a function, int strcmp(const char* s1, const char* s2), that compares 
C-style strings. Let it return a negative number if s1 is lexicographically 
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before s2, zero if s1 equals s2, and a positive number if s1 is lexicograph-
ically after s2. Do not use any standard library functions. Do not use 
subscripting; use the dereference operator * instead.

 4. Consider what happens if you give strdup(), findx(), and strcmp() an argu-
ment that is not a C-style string. Try it! First figure out how to get a char* 
that doesn’t point to a zero-terminated array of characters and then use 
it (never do this in real — non-experimental — code; it can create havoc). 
Try it with free-store-allocated and stack-allocated “fake C-style strings.” 
If the results still look reasonable, turn off debug mode. Redesign and 
re-implement those three functions so that they take another argument 
giving the maximum number of elements allowed in argument strings. 
Then, test that with correct C-style strings and “bad” strings.

 5. Write a function, string cat_dot(const string& s1, const string& s2), 
that concatenates two strings with a dot in between. For example, cat_
dot("Niels", "Bohr") will return a string containing Niels.Bohr.

 6. Modify cat_dot() from the previous exercise to take a string to be used as 
the separator (rather than dot) as its third argument.

 7. Write versions of the cat_dot()s from the previous exercises to take 
C-style strings as arguments and return a free-store-allocated C-style string 
as the result. Do not use standard library functions or types in the im-
plementation. Test these functions with several strings. Be sure to free 
(using delete) all the memory you allocated from free store (using new). 
Compare the effort involved in this exercise with the effort involved for 
exercises 5 and 6.

 8. Rewrite all the functions in §18.7 to use the approach of making a back-
ward copy of the string and then comparing; for example, take "home", 
generate "emoh", and compare those two strings to see that they are 
different, so home isn’t a palindrome.

 9. Consider the memory layout in §17.4. Write a program that tells the order 
in which static storage, the stack, and the free store are laid out in memory. 
In which direction does the stack grow: upward toward higher addresses 
or downward toward lower addresses? In an array on the free store, are 
elements with higher indices allocated at higher or lower addresses?

 10. Look at the “array solution” to the palindrome problem in §18.7.2. Fix it 
to deal with long strings by (a) reporting if an input string was too long 
and (b) allowing an arbitrarily long string. Comment on the complexity 
of the two versions.

 11. Look up (e.g., on the web) skip list and implement that kind of list. This is 
not an easy exercise.

 12. Implement a version of the game “Hunt the Wumpus.” “Hunt the Wum-
pus” (or just “Wump”) is a simple (non-graphical) computer game origi-
nally invented by Gregory Yob. The basic premise is that a rather smelly 
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monster lives in a dark cave consisting of connected rooms. Your job is to 
slay the wumpus using bow and arrow. In addition to the wumpus, the 
cave has two hazards: bottomless pits and giant bats. If you enter a room 
with a bottomless pit, it’s the end of the game for you. If you enter a room 
with a bat, the bat picks you up and drops you into another room. If you 
enter the room with the wumpus or he enters yours, he eats you. When 
you enter a room you will be told if a hazard is nearby:

“I smell the wumpus”: It’s in an adjoining room.
“I feel a breeze”: One of the adjoining rooms is a bottomless pit.
“I hear a bat”: A giant bat is in an adjoining room.

   For your convenience, rooms are numbered. Every room is con-
nected by tunnels to three other rooms. When entering a room, you are 
told something like “You are in room 12; there are tunnels to rooms 1, 13, 
and 4; move or shoot?” Possible answers are m13 (“Move to room 13”) 
and s13–4–3 (“Shoot an arrow through rooms 13, 4, and 3”). The range 
of an arrow is three rooms. At the start of the game, you have five arrows. 
The snag about shooting is that it wakes up the wumpus and he moves to 
a room adjoining the one he was in — that could be your room.

   Probably the trickiest part of the exercise is to make the cave by 
selecting which rooms are connected with which other rooms. You’ll 
probably want to use a random number generator (e.g., randint() from 
std_lib_facilities.h) to make different runs of the program use different 
caves and to move around the bats and the wumpus. Hint: Be sure to 
have a way to produce a debug output of the state of the cave.

Postscript
The standard library vector is built from lower-level memory management fa-
cilities, such as pointers and arrays, and its primary role is to help us avoid the 
complexities of those facilities. Whenever we design a class, we must consider 
initialization, copying, and destruction.
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