
17

1

Computers, People,
and Programming

“Specialization is for insects.”

—R. A. Heinlein

In this chapter, we present some of the things that we think

make programming important, interesting, and fun. We also

present a few fundamental ideas and ideals. We hope to debunk a

couple of popular myths about programming and programmers.

This is a chapter to skim for now and to return to later when you

are struggling with some programming problem and wondering

if it’s all worth it.

Stroustrup_book.indb 17Stroustrup_book.indb 17 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING18

1.1 Introduction
Like most learning, learning how to program is a chicken and egg problem: We
want to get started, but we also want to know why what we are about to learn
matters. We want to learn a practical skill, but also make sure it is not just a pass-
ing fad. We want to know that we are not going to waste our time, but don’t want
to be bored by still more hype and moralizing. For now, just read as much of this
chapter as seems interesting and come back later when you feel the need to refresh
your memory of why the technical details matter outside the classroom.

This chapter is a personal statement of what we find interesting and important
about programming. It explains what motivates us to keep going in this field after
decades. This is a chapter to read to get an idea of possible ultimate goals and an
idea of what kind of person a programmer might be. A beginner’s technical book
inevitably contains much pretty basic stuff. In this chapter, we lift our eyes from
the technical details and consider the big picture: Why is programming a worth-
while activity? What is the role of programming in our civilization? Where can
a programmer make contributions to be proud of? Where does programming fit
into the greater world of software development, deployment, and maintenance?
When people talk about “computer science,” “software engineering,” “informa-
tion technology,” etc., where does programming fit into the picture? What does a
programmer do? What skills does a good programmer have?

To a student, the most urgent reason for understanding an idea, a technique,
or a chapter may be to pass a test with a good grade — but there has to be more to
learning than that! To someone working in the software industry, the most urgent

1.1 Introduction

1.2 Software

1.3 People

1.4 Computer science

1.5 Computers are everywhere
1.5.1 Screens and no screens
1.5.2 Shipping
1.5.3 Telecommunications
1.5.4 Medicine
1.5.5 Information
1.5.6 A vertical view
1.5.7 So what?

1.6 Ideals for programmers

Stroustrup_book.indb 18Stroustrup_book.indb 18 5/8/15 10:29 AM5/8/15 10:29 AM

1.2 SOFTWARE 19

reason for understanding an idea, a technique, or a chapter may be to find some-
thing that can help with the current project and that will not annoy the boss who
controls the next paycheck, promotions, and firings — but there has to be more to
learning than that! We work best when we feel that our work in some small way
makes the world a better place for people to live in. For tasks that we perform over
a period of years (the “things” that professions and careers are made of), ideals
and more abstract ideas are crucial.

Our civilization runs on software. Improving software and finding new uses
for software are two of the ways an individual can help improve the lives of many.
Programming plays an essential role in that.

1.2 Software
Good software is invisible. You can’t see it, feel it, weigh it, or knock on it. Software
is a collection of programs running on some computer. Sometimes, we can see the
computer. Often, we can see only something that contains the computer, such as a
telephone, a camera, a bread maker, a car, or a wind turbine. We can see what that
software does. We can be annoyed or hurt if it doesn’t do what it is supposed to
do. We can be annoyed or hurt if what it is supposed to do doesn’t suit our needs.

How many computers are there in the world? We don’t know; billions at
least. There may be more computers in the world than people. We need to count
servers, desktop computers, laptops, tablets, smartphones, and computers embed-
ded in “gadgets.”

How many computers do you (more or less directly) use every day? There
are more than 30 computers in my car, two in my cell phone, one in my MP3
player, and one in my camera. Then there is my laptop (on which the page you
are reading is being written) and my desktop machine. The air-conditioning con-
troller that keeps the summer heat and humidity at bay is a simple computer.
There is one controlling the computer science department’s elevator. If you use a
modern television, there will be at least one computer in there somewhere. A bit
of web surfing gets you into direct contact with dozens — possibly hundreds — of
servers through a telecommunications system consisting of many thousands of
computers — telephone switches, routers, and so on.

No, I do not drive around with 30 laptops on the backseat of my car! The
point is that most computers do not look like the popular image of a computer
(with a screen, a keyboard, a mouse, etc.); they are small “parts” embedded
in the equipment we use. So, that car has nothing that looks like a computer,
not even a screen to display maps and driving directions (though such gadgets
are popular in other cars). However, its engine contains quite a few comput-
ers, doing things like fuel injection control and temperature monitoring. The
power-assisted steering involves at least one computer, the radio and the security

Stroustrup_book.indb 19Stroustrup_book.indb 19 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING20

system contain some, and we suspect that even the open/close controls of the
windows are computer controlled. Newer models even have computers that con-
tinuously monitor tire pressure.

How many computers do you depend on for what you do during a day?
You eat; if you live in a modern city, getting the food to you is a major effort re-
quiring minor miracles of planning, transport, and storage. The management of
the distribution networks is of course computerized, as are the communication
systems that stitch them all together. Modern farming is highly computerized;
next to the cow barn you find computers used to monitor the herd (ages, health,
milk production, etc.), farm equipment is increasingly computerized, and the
number of forms required by the various branches of government can make any
honest farmer cry. If something goes wrong, you can read all about it in your
newspaper; of course, the articles in that paper were written on computers, set
on the page by computers, and (if you still read the “dead tree edition”) printed
by computerized equipment — often after having been electronically transmitted
to the printing plant. Books are produced in the same way. If you have to com-
mute, the traffic flows are monitored by computers in a (usually vain) attempt
to avoid traffic jams. You prefer to take the train? That train will also be com-
puterized; some even operate without a driver, and the train’s subsystems, such
as announcements, braking, and ticketing, involve lots of computers. Today’s
entertainment industry (music, movies, television, stage shows) is among the
largest users of computers. Even non-cartoon movies use (computer) animation
heavily; music and photography are also digital (i.e., using computers) for both
recording and delivery. Should you become ill, the tests your doctor orders will
involve computers, the medical records are often computerized, and most of
the medical equipment you’ll encounter if you are sent to a hospital to be cured
contains computers. Unless you happen to be staying in a cottage in the woods
without access to any electrically powered gadgets (including light bulbs), you
use energy. Oil is found, extracted, processed, and distributed through a system
using computers every step along the way, from the drill bit deep in the ground
to your local gas (petrol) pump. If you pay for that gas with a credit card, you
again exercise a whole host of computers. It is the same story for coal, gas, solar,
and wind power.

The examples so far are all “operational”; they are directly involved in what
you are doing. Once removed from that is the important and interesting area of
design. The clothes you wear, the telephone you talk into, and the coffee machine
that dispenses your favorite brew were designed and manufactured using comput-
ers. The superior quality of modern photographic lenses and the exquisite shapes
in the design of modern everyday gadgets and utensils owe almost everything to
computer-based design and production methods. The craftsmen/designers/ artists/
engineers who design our environment have been freed from many physical con-

Stroustrup_book.indb 20Stroustrup_book.indb 20 5/8/15 10:29 AM5/8/15 10:29 AM

1.3 PEOPLE 21

straints previously considered fundamental. If you get ill, the medicines given to
cure you will have been designed using computers.

Finally, research — science itself — relies heavily on computers. The telescopes
that probe the secrets of distant stars could not be designed, built, or operated
without computers, and the masses of data they produce couldn’t be analyzed
and understood without computers. An individual biology field researcher may
not be heavily computerized (unless, of course, a camera, a digital tape recorder, a
telephone, etc. are used), but back in the lab, the data has to be stored, analyzed,
checked against computer models, and communicated to fellow scientists. Mod-
ern chemistry and biology — including medical research — use computers to an
extent undreamed of a few years ago and still unimagined by most people. The
human genome was sequenced by computers. Or — let’s be precise — the human
genome was sequenced by humans using computers. In all of these examples, we
see computers as something that enables us to do something we would have had
a harder time doing without computers.

Every one of those computers runs software. Without software, they would
just be expensive lumps of silicon, metal, and plastic: doorstops, boat anchors,
and space heaters. Every line of that software was written by some individual.
Every one of those lines that was actually executed was minimally reasonable, if
not correct. It’s amazing that it all works! We are talking about billions of lines of
code (program text) in hundreds of programming languages. Getting all that to
work took a staggering amount of effort and involved an unimaginable number of
skills. We want further improvements to essentially every service and gadget we
depend on. Just think of any one service and gadget you rely on; what would you
like to see improved? If nothing else, we want our services and gadgets smaller
(or bigger), faster, more reliable, with more features, easier to use, with higher
capacity, better looking, and cheaper. The likelihood is that the improvement you
thought of requires some programming.

1.3 People
Computers are built by people for the use of people. A computer is a very generic
tool; it can be used for an unimaginable range of tasks. It takes a program to make
it useful to someone. In other words, a computer is just a piece of hardware until
someone — some programmer — writes code for it to do something useful. We of-
ten forget about the software. Even more often, we forget about the programmer.

Hollywood and similar “popular culture” sources of disinformation have as-
signed largely negative images to programmers. For example, we have all seen the
solitary, fat, ugly nerd with no social skills who is obsessed with video games and
breaking into other people’s computers. He (almost always a male) is as likely to

Stroustrup_book.indb 21Stroustrup_book.indb 21 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING22

want to destroy the world as he is to want to save it. Obviously, milder versions of
such caricatures exist in real life, but in our experience they are no more frequent
among software developers than they are among lawyers, police officers, car sales-
men, journalists, artists, or politicians.

Think about the applications of computers you know from your own life.
Were they done by a loner in a dark room? Of course not; the creation of a
successful piece of software, computerized gadget, or system involves dozens,
hundreds, or thousands of people performing a bewildering set of roles: for
example, programmers, (program) designers, testers, animators, focus group
managers, experimental psychologists, user interface designers, analysts, system
administrators, customer relations people, sound engineers, project managers,
quality engineers, statisticians, hardware interface engineers, requirements engi-
neers, safety officers, mathematicians, sales support personnel, troubleshooters,
network designers, methodologists, software tools managers, software librarians,
etc. The range of roles is huge and made even more bewildering by the titles
varying from organization to organization: one organization’s “engineer” may
be another organization’s “programmer” and yet another organization’s “devel-
oper,” “member of technical staff,” or “architect.” There are even organizations
that let their employees pick their own titles. Not all of these roles directly involve
programming. However, we have personally seen examples of people perform-
ing each of the roles mentioned while reading or writing code as an essential
part of their job. Additionally, a programmer (performing any of these roles,
and more) may over a short period of time interact with a wide range of people
from application areas, such as biologists, engine designers, lawyers, car sales-
men, medical researchers, historians, geologists, astronauts, airplane engineers,
lumberyard managers, rocket scientists, bowling alley builders, journalists, and
animators (yes, this is a list drawn from personal experience). Someone may also
be a programmer at times and fill non-programming roles at other stages of a
professional career.

The myth of a programmer being isolated is just that: a myth. People who
like to work on their own choose areas of work where that is most feasible and
usually complain bitterly about the number of “interruptions” and meetings.
People who prefer to interact with other people have an easier time because
modern software development is a team activity. The implication is that social
and communication skills are essential and valued far more than the stereotypes
indicate. On a short list of highly desirable skills for a programmer (however you
realistically define programmer), you find the ability to communicate well — with
people from a wide variety of backgrounds — informally, in meetings, in writing,
and in formal presentations. We are convinced that until you have completed a
team project or two, you have no idea of what programming is and whether you
really like it. Among the things we like about programming are all the nice and

Stroustrup_book.indb 22Stroustrup_book.indb 22 5/8/15 10:29 AM5/8/15 10:29 AM

1.3 PEOPLE 23

interesting people we meet and the variety of places we get to visit as part of our
professional lives.

One implication of all this is that people with a wide variety of skills, interests,
and work habits are essential for producing good software. Our quality of life
depends on those people — sometimes even our life itself. No one person could
fill all the roles we mention here; no sensible person would want every role. The
point is that you have a wider choice than you could possibly imagine; not that
you have to make any particular choice. As an individual you will “drift” toward
areas of work that match your skills, talents, and interests.

We talk about “programmers” and “programming,” but obviously program-
ming is only part of the overall picture. The people who design a ship or a cell
phone don’t think of themselves as programmers. Programming is an important
part of software development, but not all there is to software development. Sim-
ilarly, for most products, software development is an important part of product
development, but not all there is to product development.

We do not assume that you — our reader — want to become a professional pro-
grammer and spend the rest of your working life writing code. Even the best pro-
grammers — especially the best programmers — spend most of their time not writing
code. Understanding problems takes serious time and often requires significant
intellectual effort. That intellectual challenge is what many programmers refer to
when they say that programming is interesting. Many of the best programmers
also have degrees in subjects not usually considered part of computer science. For
example, if you work on software for genomic research, you will be much more
effective if you understand some molecular biology. If you work on programs for
analyzing medieval literature, you could be much better off reading a bit of that
literature and maybe even knowing one or more of the relevant languages. In par-
ticular, a person with an “all I care about is computers and programming” attitude
will be incapable of interacting with his or her non-programmer colleagues. Such
a person will not only miss out on the best parts of human interactions (i.e., life)
but also be a bad software developer.

So, what do we assume? Programming is an intellectually challenging set of
skills that are part of many important and interesting technical disciplines. In ad-
dition, programming is an essential part of our world, so not knowing the basics
of programming is like not knowing the basics of physics, history, biology, or
literature. Someone totally ignorant of programming is reduced to believing in
magic and is dangerous in many technical roles. If you read Dilbert, think of the
pointy-haired boss as the kind of manager you don’t want to meet or (far worse)
become. In addition, programming can be fun.

But what do we assume you might use programming for? Maybe you will
use programming as a key tool in your further studies and work without be-
coming a professional programmer. Maybe you will interact with other people

Stroustrup_book.indb 23Stroustrup_book.indb 23 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING24

professionally and personally in ways where a basic knowledge of programming
will be an advantage, maybe as a designer, writer, manager, or scientist. Maybe
you will do programming at a professional level as part of your studies or work.
Even if you do become a professional programmer it is unlikely that you will do
nothing but programming.

You might become an engineer focusing on computers or a computer scien-
tist, but even then you will not “program all the time.” Programming is a way of
presenting ideas in code — a way of aiding problem solving. It is nothing — ab-
solutely a waste of time — unless you have ideas that are worth presenting and
problems worth solving.

This is a book about programming and we have promised to help you learn
how to program, so why do we emphasize non-programming subjects and the
limited role of programming? A good programmer understands the role of code
and programming technique in a project. A good programmer is (at most times)
a good team player and tries hard to understand how the code and its production
best support the overall project. For example, imagine that I worked on a new MP3
player (maybe to be part of a smartphone or a tablet) and all that I cared about was
the beauty of my code and the number of neat features I could provide. I would
probably insist on the largest, most powerful computer to run my code. I might dis-
dain the theory of sound encoding because it is “not programming.” I would stay in
my lab, rather than go out to meet potential users, who undoubtedly would have
bad tastes in music anyway and would not appreciate the latest advances in GUI
(graphical user interface) programming. The likely result would be disaster for
the project. A bigger computer would mean a costlier MP3 player and most likely
a shorter battery life. Encoding is an essential part of handling music digitally, so
failing to pay attention to advances in encoding techniques could lead to increased
memory requirements for each song (encodings differ by as much as 100% for
the same-quality output). A disregard for users’ preferences — however odd and
archaic they may seem to you — typically leads to the users choosing some other
product. An essential part of writing a good program is to understand the needs
of the users and the constraints that those needs place on the implementation (i.e.,
the code). To complete this caricature of a bad programmer, we just have to add
a tendency to deliver late because of an obsession with details and an excessive
confidence in the correctness of lightly tested code. We encourage you to become
a good programmer, with a broad view of what it takes to produce good software.
That’s where both the value to society and the keys to personal satisfaction lie.

1.4 Computer science
Even by the broadest definition, programming is best seen as a part of something
greater. We can see it as a subdiscipline of computer science, computer engineering,
software engineering, information technology, or any other software-related disci-

Stroustrup_book.indb 24Stroustrup_book.indb 24 5/8/15 10:29 AM5/8/15 10:29 AM

1.5 COMPUTERS ARE EVERYWHERE 25

pline. We see programming as an enabling technology for those computer and
information fields of science and engineering, as well as for physics, biology, med-
icine, history, literature, and any other academic or research field.

Consider computer science. A 1995 U.S. government “blue book” defines
it like this: “The systematic study of computing systems and computation. The
body of knowledge resulting from this discipline contains theories for under-
standing computing systems and methods; design methodology, algorithms,
and tools; methods for the testing of concepts; methods of analysis and ver-
ification; and knowledge representation and implementation.” As we would
expect, the Wikipedia entry is less formal: “Computer science, or computing
science, is the study of the theoretical foundations of information and computa-
tion and their implementation and application in computer systems. Computer
science has many sub-fields; some emphasize the computation of specific results
(such as computer graphics), while others (such as computational complexity
theory) relate to properties of computational problems. Still others focus on
the challenges in implementing computations. For example, programming lan-
guage theory studies approaches to describing computations, while computer
programming applies specific programming languages to solve specific compu-
tational problems.”

Programming is a tool; it is a fundamental tool for expressing solutions to
fundamental and practical problems so that they can be tested, improved through
experiment, and used. Programming is where ideas and theories meet reality.
This is where computer science can become an experimental discipline, rather
than pure theory, and impact the world. In this context, as in many others, it is
essential that programming is an expression of well-tried practices as well as the
theories. It must not degenerate into mere hacking: just get some code written,
any old way that meets an immediate need.

1.5 Computers are everywhere
Nobody knows everything there is to know about computers or software. This
section just gives you a few examples. Maybe you’ll see something you like. At
least you might be convinced that the scope of computer use — and through that,
programming — is far larger than any individual can fully grasp.

Most people think of a computer as a small gray box attached to a screen and
a keyboard. Such computers tend to be good at games, messaging and email, and
playing music. Other computers, called laptops, are used on planes by bored busi-
nessmen to look at spreadsheets, play games, and watch videos. This caricature is
just the tip of the iceberg. Most computers work out of our sight and are part of
the systems that keep our civilization going. Some fill rooms; others are smaller
than a small coin. Many of the most interesting computers don’t directly interact
with a human through a keyboard, mouse, or similar gadget.

Stroustrup_book.indb 25Stroustrup_book.indb 25 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING26

1.5.1 Screens and no screens
The idea of a computer as a fairly large rectangular box with a screen and a keyboard
is common and often hard to shake off. However, consider these two computers:

Both of these “gadgets” (which happen to be watches) are primarily computers.
In fact, we conjecture that they are essentially the same model computer with
different I/O (input/output) systems. The left one drives a small screen (similar
to the screens on conventional computers, but smaller) and the second drives
little electric motors controlling traditional clock hands and a disk of numbers
for day-of-month readout. Their input systems are the four buttons (more easily
seen on the right-hand watch) and a radio receiver, used for synchronization with
very high-precision “atomic” clocks. Most of the programs controlling these two
computers are shared between them.

1.5.2 Shipping
These two photos show a large marine diesel engine and the kind of huge ship
that it may power:

Stroustrup_book.indb 26Stroustrup_book.indb 26 5/8/15 10:29 AM5/8/15 10:29 AM

1.5 COMPUTERS ARE EVERYWHERE 27

Consider where computers and software play key roles here:

• Design: Of course, the ship and the engine were both designed using com-
puters. The list of uses is almost endless and includes architectural and
engineering drawings, general calculations, visualization of spaces and
parts, and simulations of the performance of parts.

• Construction: A modern shipyard is heavily computerized. The assembly
of a ship is carefully planned using computers, and the work is guided
by computers. Welding is done by robots. In particular, a modern dou-
ble-hulled tanker couldn’t be built without little welding robots to do the
welding from within the space between the hulls. There just isn’t room
for a human in there. Cutting steel plates for a ship was one of the world’s
fi rst CAD/CAM (computer-aided design and computer-aided manufac-
ture) applications.

• The engine: The engine has electronic fuel injection and is controlled by a
few dozen computers. For a 100,000-horsepower engine (like the one in the
photo), that’s a nontrivial task. For example, the engine management com-
puters continuously adjust fuel mix to minimize the pollution that would
result from a badly tuned engine. Many of the pumps associated with the
engine (and other parts of the ship) are themselves computerized.

• Management: Ships sail where there is cargo to pick up and to deliver.
The scheduling of fl eets of ships is a continuing process (computerized,
of course) so that routings change with the weather, with supply and de-
mand, and with space and loading capacity of harbors. There are even
websites where you can watch the position of major merchant vessels at
any time. The ship in the photo happens to be a container vessel (one of
the largest such in the world; 397m long and 56m wide), but other kinds
of large modern ships are managed in similar ways.

• Monitoring: An oceangoing ship is largely autonomous; that is, its crew can
handle most contingencies likely to arise before the next port. However,
they are also part of a globe-spanning network. The crew has access to
reasonably accurate weather information (from and through — comput-
erized — satellites). They have a GPS (global positioning system) and
computer-controlled and computer-enhanced radar. If the crew needs a
rest, most systems (including the engine, radar, etc.) can be monitored
(via satellite) from a shipping-line control room. If anything unusual is
spotted, or if the connection “back home” is broken, the crew is notifi ed.

Consider the implication of a failure of one of the hundreds of computers ex-
plicitly mentioned or implied in this brief description. Chapter 25 (“Embedded
Systems Programming”) examines this in slightly more detail. Writing code for
a modern ship is a skilled and interesting activity. It is also useful. The cost of

Stroustrup_book.indb 27Stroustrup_book.indb 27 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING28

sea transport is really amazingly low. You appreciate that when you buy some-
thing that wasn’t manufactured locally. Sea transport has always been cheaper
than land transport; these days one of the reasons is serious use of computers
and information.

1.5.3 Telecommunications
These two photos show a telephone switch and a telephone (that also happens
to be a camera, an MP3 player, an FM radio, a web browser, and much more):

Consider where computers and software play key roles here. You pick up a tele-
phone and “dial,” the person you dialed answers, and you talk. Or maybe you
get to leave a voicemail, or maybe you send a photo from your phone camera,
or maybe you send a text message (hit Send and let the phone do the dialing).
Obviously the phone is a computer. This is especially obvious if the phone (like
most mobile phones) has a screen and allows more than traditional “plain old
telephone services,” such as web browsing. Actually, such phones tend to contain
several computers: one to manage the screen, one to talk to the phone system,
and maybe more.

The part of the phone that manages the screen, does web browsing, etc. is
probably the most familiar to computer users: it just runs a graphical user in-
terface to “all the usual stuff.” What is unknown to and largely unsuspected by
most users is the huge system that the little phone talks to while doing its job. I
dial a number in Texas, but you are on vacation in New York City, yet within
seconds your phone rings and I hear your “Hello!” over the roar of city traffic.
Many phones can perform that trick for essentially any two locations on earth
and we just take it for granted. How did my phone find yours? How is the sound
transmitted? How is the sound encoded into data packets? The answer could fill

Stroustrup_book.indb 28Stroustrup_book.indb 28 5/8/15 10:29 AM5/8/15 10:29 AM

1.5 COMPUTERS ARE EVERYWHERE 29

many books much thicker than this one, but it involves a combination of hard-
ware and software on hundreds of computers scattered over the geographical
area in question. If you are unlucky, a few telecommunications satellites (them-
selves computerized systems) are also involved — “unlucky” because we cannot
perfectly compensate for the 20,000-mile detour out into space; the speed of light
(and therefore the speed of your voice) is finite (light fiber cables are much better:
shorter, faster, and carrying much more data). Most of this works remarkably
well; the backbone telecommunications systems are 99.9999% reliable (for exam-
ple, 20 minutes of downtime in 20 years — that’s 20/(20*365*24*60). The trouble
we have tends to be in the communications between our mobile phone and the
nearest main telephone switch.

There is software for connecting the phones, for chopping our spoken words
into data packets to be sent over wires and radio links, for routing those messages,
for recovering from all kinds of failures, for continuously monitoring the quality
and reliability of the services, and of course for billing. Even keeping track of all
the physical pieces of the system requires serious amounts of clever software:
What talks to what? What parts go into a new system? When do you need to do
some preventive maintenance?

Arguably the backbone telecommunications system of the world, consisting
of semi-independent but interconnected systems, is the largest and most compli-
cated man-made artifact. To make things a bit more real: remember, this is not
just boring old telephony with a few new bells and whistles. The various infra-
structures have merged. They are also what the internet (the web) runs on, what
our banking and trading systems run on, and what carry our television programs
to the broadcasting stations. So, we can add another couple of photos to illustrate
telecommunications:

The room is the “trading floor” of the American stock exchange on New York’s
Wall Street and the map is a representation of parts of the internet backbones (a
complete map would be too messy to be useful).

As it happens, we also like digital photography and the use of computers to
draw specialized maps to visualize knowledge.

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING30

1.5.4 Medicine
These two photos show a CAT (computed axial tomography) scanner and an
operating theater for computer-aided surgery (also called “robot-assisted surgery”
or “robotic surgery”):

Consider where computers and software play key roles here. The scanners basi-
cally are computers; the pulses they send out are controlled by a computer, and the
readings are nothing but gibberish until quite sophisticated algorithms are applied
to convert them to something we recognize as a (three-dimensional) image of the
relevant part of a human body. To do computerized surgery, we must go several
steps further. A wide variety of imaging techniques are used to let the surgeon see
the inside of the patient, to see the point of surgery with significant enlargement
or in better light than would otherwise be possible. With the aid of a computer
a surgeon can use tools that are too fine for a human hand to hold or in a place
where a human hand could not reach without unnecessary cutting. The use of
minimally invasive surgery (laparoscopic surgery) is a simple example of this that
has minimized the pain and recovery time for millions of people. The computer
can also help steady the surgeon’s “hand” to allow for more delicate work than
would otherwise be possible. Finally, a “robotic” system can be operated remotely,
thus making it possible for a doctor to help someone remotely (over the internet).
The computers and programming involved are mind-boggling, complex, and in-
teresting. The user interface, equipment control, and imaging challenges alone will
keep thousands of researchers, engineers, and programmers busy for decades.

We heard of a discussion among a large group of medical doctors about
which new tool had provided the most help to them in their work: The CAT
scanner? The MRI scanner? The automated blood analysis machines? The
high-resolution ultrasound machines? PDAs? After some discussion, a surpris-
ing “winner” of this “competition” emerged: instant access to patient records.
Knowing the medical history of a patient (earlier illnesses, medicines tried earlier,
allergies, hereditary problems, general health, current medication, etc.) simplifies
the problem of diagnosis and minimizes the chance of mistakes.

Stroustrup_book.indb 30Stroustrup_book.indb 30 5/8/15 10:29 AM5/8/15 10:29 AM

1.5 COMPUTERS ARE EVERYWHERE 31

1.5.5 Information
These two photos show an ordinary PC (well, two) and part of a server farm:

We have focused on “gadgets” for the usual reason: you cannot see, feel, or hear
software. We cannot present you with a photograph of a neat program, so we
show you a “gadget” that runs one. However, much software deals directly with
“information.” So let’s consider “ordinary uses” of “ordinary computers” running
“ordinary software.”

A “server farm” is a collection of computers providing web services. Organi-
zations running state-of-the-art server farms (such as Google, Amazon, and Mi-
crosoft) are somewhat close-mouthed about the details of their servers, and the
specifications of server farms change constantly (so most of the information you
find on the web is outdated). However, the specifications are amazing and should
convince anyone that there is more to programming than simply computing a few
numbers on a laptop:

• Google uses about a million servers (each more powerful than your lap-
top) in 25 to 50 “data centers.”

• Such a data center is housed in a warehouse that might measure 60m*
100m (that’s about 200ft*330ft) or more.

• In 2011, the New York Times reported that Google’s data centers draw
about 260 million watts continuously (about the same amount of energy
as Las Vegas).

• Assume a server machine to be a 3GHz quad-core with 24GB of main
memory. That would imply about 12*1015Hz of compute power (about
12,000,000,000,000,000 instructions per second) with 24*1015 bytes of
main memory (about 24,000,000,000,000,000 8-bit bytes), and maybe
4TB of disk per server, giving 4*1018 bytes of storage.

Stroustrup_book.indb 31Stroustrup_book.indb 31 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING32

We may be underestimating the amounts, and by the time you read this, we
almost certainly are. In particular, efforts to minimize energy usage seem to be
driving machine architectures toward more processors per server and more cores
per processor. A GB is a gigabyte, that is, about 109 characters. A TB, a terabyte,
is about 1000GB, that is, about 1012 characters. A PB, a petabyte (that is, 1015
bytes), is becoming a more common measure. This is a pretty extreme example,
but every major company runs programs on the web to interact with its users/
customers. Examples are Amazon (book and other sales), Amadeus (airline tick-
eting and automobile rental), and eBay (online auctions). Millions of companies,
organizations, and individuals also have a presence on the web. Most don’t run
their own software, but many do and much of that is not trivial.

The other, and more traditional, massive computing effort involves ac-
counting, order processing, payroll, record keeping, billing, inventory manage-
ment, personnel records, student records, patient records, etc. — the records that
essentially every organization (commercial and noncommercial, governmental
and private) keeps. These records are the backbone of their respective organi-
zations. As a computing effort, processing such records seems simple: mostly
some information (records) is just stored and retrieved and very little is done to
it. Examples include

• Is my 12:30 fl ight to Chicago still on time?
• Has Gilbert Sullivan had the measles?
• Has the coffeemaker that Juan Valdez ordered been shipped?
• What kind of kitchen chair did Jack Sprat buy in 1996 (or so)?
• How many phone calls originated from the 212 area code in August of

2012?
• What was the number of coffeepots sold in January and for what total

price?

The sheer scale of the databases involved makes these systems highly complex.
To that add the need to respond quickly (often in less than two seconds for indi-
vidual queries) and to be correct (at least most of the time). These days, it is not
uncommon for people to talk about terabytes of data (a byte is the amount of
memory needed to hold an ordinary character). That’s traditional “data process-
ing” and it is merging with “the web” because most access to the databases is now
through web interfaces.

This kind of computer use is often referred to as information processing. It fo-
cuses on data — often lots of data. This leads to challenges in the organization and
transmission of data and lots of interesting work on how to present vast amounts
of data in a comprehensible form: “user interface” is a very important aspect of
handling data. For example, think of analyzing a work of older literature (say,
Chaucer’s Canterbury Tales or Cervantes’ Don Quixote) to figure out what the author

Stroustrup_book.indb 32Stroustrup_book.indb 32 5/8/15 10:29 AM5/8/15 10:29 AM

1.5 COMPUTERS ARE EVERYWHERE 33

actually wrote by comparing dozens of versions. We need to search through the
texts with a variety of criteria supplied by the person doing the analysis and to
display the results in a way that aids the discovery of salient points. Thinking of
text analysis, publishing comes to mind: today, just about every article, book, bro-
chure, newspaper, etc. is produced on a computer. Designing software to support
that well is for most people still a problem that lacks a really good solution.

1.5.6 A vertical view
It is sometimes claimed that a paleontologist can reconstruct a complete dinosaur
and describe its lifestyle and natural environment from studying a single small
bone. That may be an exaggeration, but there is something to the idea of looking
at a simple artifact and thinking about what it implies. Consider this photo show-
ing the landscape of Mars taken by a camera on one of NASA’s Mars Rovers:

If you want to do “rocket science,” becoming a good programmer is one way. The
various space programs employ lots of software designers, especially ones who
can also understand some of the physics, math, electrical engineering, mechanical
engineering, medical engineering, etc. that underlie the manned and unmanned
space programs. Getting those two Rovers to drive around on Mars for years is
one of the greatest technological triumphs of our civilization. One (Spirit) sent data
back for six years and the other (Opportunity) is still working at the time of writing
and will have its tenth anniversary on Mars in January 2014. Their estimated
design life was three months.

The photo was transmitted to earth through a communication channel with
a 25-minute transmission delay each way; there is a lot of clever programming
and advanced math to make sure that the picture is transmitted using the minimal
number of bits without losing any of them. On earth, the photo is then rendered
using algorithms to restore color and minimize distortion due to the optics and
electronic sensors.

The control programs for the Mars Rovers are of course programs — the Rov-
ers drive autonomously for 24 hours at a time and follow instructions sent from
earth the day before. The transmission is managed by programs.

Stroustrup_book.indb 33Stroustrup_book.indb 33 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING34

The operating systems used for the various computers involved in the Rov-
ers, the transmission, and the photo reconstruction are programs, as are the ap-
plications used to write this chapter. The computers on which these programs
run are designed and produced using CAD/CAM (computer-aided design and
computer-aided manufacture) programs. The chips that go into those computers
are produced on computerized assembly lines constructed using precision tools,
and those tools also use computers (and software) in their design and manufac-
ture. The quality control for those long construction processes involves serious
computation. All that code was written by humans in a high-level programming
language and translated into machine code by a compiler, which is itself such a
program. Many of these programs interact with users using GUIs and exchange
da ta using input/output streams.

Finally, a lot of programming goes into image processing (including the pro-
cessing of the photos from the Mars Rovers), animation, and photo editing (there
are versions of the Rover photos floating around on the web featuring “Martians”).

1.5.7 So what?
What do all these “fancy and complicated” applications and software systems
have to do with learning programming and using C++? The connection is simply
that many programmers do get to work on projects like these. These are the kinds
of things that good programming can help achieve. Also, every example used in
this chapter involved C++ and at least some of the techniques we describe in this
book. Yes, there are C++ programs in MP3 players, in ships, in wind turbines, on
Mars, and in the human genome project. For more applications using C++, see
www.stroustrup.com/applications.html.

1.6 Ideals for programmers
What do we want from our programs? What do we want in general, as opposed
to a particular feature of a particular program? We want correctness and as part of
that, reliability. If the program doesn’t do what it is supposed to do, and do so in
a way so that we can rely on it, it is at best a serious nuisance, at worst a danger.
We want it to be well designed so that it addresses a real need well; it doesn’t really
matter that a program is correct if what it does is irrelevant to us or if it correctly
does something in a way that annoys us. We also want it to be affordable; I might
prefer a Rolls-Royce or an executive jet to my usual forms of transport, but unless
I’m a zillionaire, cost will enter into my choices.

These are aspects of software (gadgets, systems) that can be appreciated from
the outside, by non-programmers. They must be ideals for programmers and we
must keep them in mind at all times, especially in the early phases of development,

Stroustrup_book.indb 34Stroustrup_book.indb 34 5/8/15 10:29 AM5/8/15 10:29 AM

1.6 IDEALS FOR PROGRAMMERS 35

if we want to produce successful software. In addition, we must concern ourselves
with ideals related to the code itself: our code must be maintainable; that is, its struc-
ture must be such that someone who didn’t write it can understand it and make
changes. A successful program “lives” for a long time (often for decades) and will
be changed again and again. For example, it will be moved to new hardware, it
will have new features added, it will be modified to use new I/O facilities (screens,
video, sound), to interact using new natural languages, etc. Only a failed program
will never be modified. To be maintainable, a program must be simple relative
to its requirements, and the code must directly represent the ideas expressed.
Complexity — the enemy of simplicity and maintainability — can be intrinsic to
a problem (in that case we just have to deal with it), but it can also arise from
poor expression of ideas in code. We must try to avoid that through good coding
style — style matters!

This doesn’t sound too difficult, but it is. Why? Programming is fundamen-
tally simple: just tell the machine what it is supposed to do. So why can program-
ming be most challenging? Computers are fundamentally simple; they can just do
a few operations, such as adding two numbers and choosing the next instruction
to execute based on a comparison of two numbers. The problem is that we don’t
want computers to do simple things. We want “the machine” to do things that
are difficult enough for us to want help with them, but computers are nitpicking,
unforgiving, dumb beasts. Furthermore, the world is more complex than we’d
like to believe, so we don’t really know the implications of what we request. We
just want a program to “do something like this” and don’t want to be bothered
with technical details. We also tend to assume “common sense.” Unfortunately,
common sense isn’t all that common among humans and is totally absent in
computers (though some really well-designed programs can imitate it in specific,
well-understood cases).

This line of thinking leads to the idea that “programming is understanding”:
when you can program a task, you understand it. Conversely, when you under-
stand a task thoroughly, you can write a program to do it. In other words, we
can see programming as part of an effort to thoroughly understand a topic. A
program is a precise representation of our understanding of a topic.

When you program, you spend significant time trying to understand the task
you are trying to automate.

We can describe the process of developing a program as having four stages:

• Analysis: What’s the problem? What does the user want? What does the
user need? What can the user afford? What kind of reliability do we need?

• Design: How do we solve the problem? What should be the overall struc-
ture of the system? Which parts does it consist of? How do those parts
communicate with each other? How does the system communicate with
its users?

Stroustrup_book.indb 35Stroustrup_book.indb 35 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING36

• Programming: Express the solution to the problem (the design) in code.
Write the code in a way that meets all constraints (time, space, money, re-
liability, and so on). Make sure that the code is correct and maintainable.

• Testing: Make sure the system works correctly under all circumstances
required by systematically trying it out.

Programming plus testing is often called implementation. Obviously, this simple split
of software development into four parts is a simplification. Thick books have
been written on each of these four topics and more books still about how they re-
late to each other. One important thing to note is that these stages of development
are not independent and do not occur strictly in sequence. We typically start with
analysis, but feedback from testing can help improve the programming; prob-
lems with getting the program working may indicate a problem with the design;
and working with the design may suggest aspects of the problem that hitherto
had been overlooked in the analysis. Actually using the system typically exposes
weaknesses of the analysis.

The crucial concept here is feedback. We learn from experience and modify
our behavior based on what we learn. That’s essential for effective software de-
velopment. For any large project, we don’t know everything there is to know
about the problem and its solution before we start. We can try out ideas and get
feedback by programming, but in the earlier stages of development it is easier
(and faster) to get feedback by writing down design ideas, trying out those design
ideas, and using scenarios on friends. The best design tool we know of is a black-
board (use a whiteboard instead if you prefer chemical smells over chalk dust).
Never design alone if you can avoid it! Don’t start coding before you have tried
out your ideas by explaining them to someone. Discuss designs and programming
techniques with friends, colleagues, potential users, and so on before you head
for the keyboard. It is amazing how much you can learn from simply trying to
articulate an idea. After all, a program is nothing more than an expression (in
code) of some ideas.

Similarly, when you get stuck implementing a program, look up from the
keyboard. Think about the problem itself, rather than your incomplete solution.
Talk with someone: explain what you want to do and why it doesn’t work. It’s
amazing how often you find the solution just by carefully explaining the problem
to someone. Don’t debug (find program errors) alone if you don’t have to!

The focus of this book is implementation, and especially programming. We
do not teach “problem solving” beyond giving you plenty of examples of prob-
lems and their solutions. Much of problem solving is recognizing a known prob-
lem and applying a known solution technique. Only when most subproblems
are handled this way will you find the time to indulge in exciting and creative
“out-of-the-box thinking.” So, we focus on showing how to express ideas clearly
in code.

Stroustrup_book.indb 36Stroustrup_book.indb 36 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 REVIEW 37

Direct expression of ideas in code is a fundamental ideal of programming.
That’s really pretty obvious, but so far we are a bit short of good examples. We’ll
come back to this, repeatedly. When we want an integer in our code, we store it
in an int, which provides the basic integer operations. When we want a string of
characters, we store it in a string, which provides the most basic text manipulation
operations. At the most fundamental level, the ideal is that when we have an idea,
a concept, an entity, something we think of as a “thing,” something we can draw
on our whiteboard, something we can refer to in our discussions, something our
(non–computer science) textbook talks about, then we want that something to
exist in our program as a named entity (a type) providing the operations we think
appropriate for it. If we want to do math, we want a complex type for complex
numbers and a Matrix type for linear algebra. If we want to do graphics, we want
a Shape type, a Circle type, a Color type, and a Dialog_box. When we want to
deal with streams of data, say from a temperature sensor, we want an istream type
(i for input). Obviously, every such type should provide the appropriate opera-
tions and only the appropriate operations. These are just a few examples from this
book. Beyond that, we offer tools and techniques for you to build your own types
to directly represent whatever concepts you want in your program.

Programming is part practical, part theoretical. If you are just practical, you
will produce non-scalable, unmaintainable hacks. If you are just theoretical,
you will produce unusable (or unaffordable) toys.

For a different kind of view of the ideals of programming and a few people
who have contributed in major ways to software through work with program-
ming languages, see Chapter 22, “Ideals and History.”

Review
Review questions are intended to point you to the key ideas explained in a chap-
ter. One way to look at them is as a complement to the exercises: the exercises
focus on the practical aspects of programming, whereas the review questions try
to help you articulate the ideas and concepts. In that, they resemble good inter-
view questions.

 1. What is software?
 2. Why is software important?
 3. Where is software important?
 4. What could go wrong if some software fails? List some examples.
 5. Where does software play an important role? List some examples.
 6. What are some jobs related to software development? List some.
 7. What’s the difference between computer science and programming?
 8. Where in the design, construction, and use of a ship is software used?
 9. What is a server farm?

Stroustrup_book.indb 37Stroustrup_book.indb 37 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING38

 10. What kinds of queries do you ask online? List some.
 11. What are some uses of software in science? List some.
 12. What are some uses of software in medicine? List some.
 13. What are some uses of software in entertainment? List some.
 14. What general properties do we expect from good software?
 15. What does a software developer look like?
 16. What are the stages of software development?
 17. Why can software development be difficult? List some reasons.
 18. What are some uses of software that make your life easier?
 19. What are some uses of software that make your life more difficult?

Terms
These terms present the basic vocabulary of programming and of C++. If you
want to understand what people say about programming topics and to articulate
your own ideas, you should know what each means.

affordability customer programmer
analysis design programming
blackboard feedback software
CAD/CAM GUI stereotype
communication ideals testing
correctness implementation user

Exercises
 1. Pick an activity you do most days (such as going to class, eating dinner,

or watching television). Make a list of ways computers are directly or
indirectly involved.

 2. Pick a profession, preferably one that you have some interest in or some
knowledge of. Make a list of activities done by people in that profession
that involve computers.

 3. Swap your list from exercise 2 with a friend who picked a different profes-
sion and improve his or her list. When you have both done that, compare
your results. Remember: There is no perfect solution to an open-ended ex-
ercise; improvements are always possible.

 4. From your own experience, describe an activity that would not have been
possible without computers.

 5. Make a list of programs (software applications) that you have directly
used. List only examples where you obviously interact with a program
(such as when selecting a new song on an MP3 player) and not cases

Stroustrup_book.indb 38Stroustrup_book.indb 38 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 POSTSCRIPT 39

where there just might happen to be a computer involved (such as turning
the steering wheel of your car).

 6. Make a list of ten activities that people do that do not involve computers
in any way, even indirectly. This may be harder than you think!

 7. Identify five tasks for which computers are not used today, but for which
you think they will be used at some time in the future. Write a few sen-
tences to elaborate on each one that you choose.

 8. Write an explanation (at least 100 words, but fewer than 500) of why you
would like to be a computer programmer. If, on the other hand, you are
convinced that you would not like to be a programmer, explain that. In
either case, present well-thought-out, logical arguments.

 9. Write an explanation (at least 100 words, but fewer than 500) of what
role other than programmer you’d like to play in the computer industry
(independently of whether “programmer” is your first choice).

 10. Do you think computers will ever develop to be conscious, thinking be-
ings, capable of competing with humans? Write a short paragraph (at
least 100 words) supporting your position.

 11. List some characteristics that most successful programmers share. Then
list some characteristics that programmers are popularly assumed to have.

 12. Identify at least five kinds of applications for computer programs men-
tioned in this chapter and pick the one that you find the most interesting
and that you would most likely want to participate in someday. Write a
short paragraph (at least 100 words) explaining why you chose the one
you did.

 13. How much memory would it take to store (a) this page of text, (b) this
chapter, (c) all of Shakespeare’s work? Assume one byte of memory holds
one character and just try to be precise to about 20%.

 14. How much memory does your computer have? Main memory? Disk?

Postscript
Our civilization runs on software. Software is an area of unsurpassed diversity
and opportunities for interesting, socially useful, and profi table work. When you
approach software, do it in a principled and serious manner: you want to be part
of the solution, not add to the problems.

We are obviously in awe of the range of software that permeates our techno-
logical civilization. Not all applications of software do good, of course, but that is
another story. Here we wanted to emphasize how pervasive software is and how
much of what we rely on in our daily lives depends on software. It was all written
by people like us. All the scientists, mathematicians, engineers, programmers, etc.
who built the software briefly mentioned here started like you are starting.

Stroustrup_book.indb 39Stroustrup_book.indb 39 5/8/15 10:29 AM5/8/15 10:29 AM

CHAPTER 1 • COMPUTERS, PEOPLE, AND PROGRAMMING40

Now, let’s get back to the down-to-earth business of learning the technical
skills needed to program. If you start wondering if it is worth all your hard work
(most thoughtful people wonder about that sometime), come back and reread this
chapter, the Preface, and bits of Chapter 0 (“Notes to the Reader”). If you start
wondering if you can handle it all, remember that millions have succeeded in be-
coming competent programmers, designers, software engineers, etc. You can, too.

Stroustrup_book.indb 40Stroustrup_book.indb 40 5/8/15 10:29 AM5/8/15 10:29 AM

