
379

11

Customizing
Input and Output

“Keep it simple:
as simple as possible,

but no simpler.”

—Albert Einstein

In this chapter, we concentrate on how to adapt the general

iostream framework presented in Chapter 10 to specific needs

and tastes. This involves a lot of messy details dictated by human

sensibilities to what they read and also practical constraints on

the uses of files. The final example shows the design of an input

stream for which you can specify the set of separators.

Stroustrup_book.indb 379Stroustrup_book.indb 379 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT380

11.1 Regularity and irregularity
The iostream library — the input/output part of the ISO C++ standard library —
provides a unified and extensible framework for input and output of text. By
“text” we mean just about anything that can be represented as a sequence of char-
acters. Thus, when we talk about input and output we can consider the integer
1234 as text because we can write it using the four characters 1, 2, 3, and 4.

So far, we have treated all input sources as equivalent. Sometimes, that’s not
enough. For example, files differ from other input sources (such as communica-
tions connections) in that we can address individual bytes. Similarly, we worked
on the assumption that the type of an object completely determined the lay-
out of its input and output. That’s not quite right and wouldn’t be sufficient.
For example, we often want to specify the number of digits used to represent a
floating-point number on output (its precision). This chapter presents a number
of ways in which we can tailor input and output to our needs.

As programmers, we prefer regularity; treating all in-memory objects uni-
formly, treating all input sources equivalently, and imposing a single standard
on the way to represent objects entering and exiting the system give the clean-
est, simplest, most maintainable, and often the most efficient code. However, our
programs exist to serve humans, and humans have strong preferences. Thus, as
programmers we must strive for a balance between program complexity and ac-
commodation of users’ personal tastes.

11.2 Output formatting
People care a lot about apparently minor details of the output they have to read.
For example, to a physicist 1.25 (rounded to two digits after the dot) can be very

 11.1 Regularity and irregularity

 11.2 Output formatting
 11.2.1 Integer output

 11.2.2 Integer input

 11.2.3 Floating-point output

 11.2.4 Precision

 11.2.5 Fields

 11.3 File opening and positioning
 11.3.1 File open modes

 11.3.2 Binary fi les

 11.3.3 Positioning in fi les

 11.4 String streams

 11.5 Line-oriented input

 11.6 Character classification

 11.7 Using nonstandard separators

 11.8 And there is so much more

Stroustrup_book.indb 380Stroustrup_book.indb 380 4/22/14 9:42 AM4/22/14 9:42 AM

11.2 OUTPUT FORMATTING 381

different from 1.24670477, and to an accountant (1.25) can be legally different
from (1.2467) and totally different from 1.25 (in financial documents, parentheses
are sometimes used to indicate losses, that is, negative values). As programmers,
we aim at making our output as clear and as close as possible to the expectations
of the “consumers” of our program. Output streams (ostreams) provide a variety
of ways for formatting the output of built-in types. For user-defined types, it is up
to the programmer to define suitable << operations.

There seem to be an infinite number of details, refinements, and options for
output and quite a few for input. Examples are the character used for the deci-
mal point (usually dot or comma), the way to output monetary values, a way to
represent true as the word true (or vrai or sandt) rather than the number 1 when
output, ways to deal with non-ASCII character sets (such as Unicode), and a way
to limit the number of characters read into a string. These facilities tend to be
uninteresting until you need them, so we’ll leave their description to manuals and
specialized works such as Langer, Standard C++ IOStreams and Locales; Chapters 38
and 39 of The C++ Programming Language by Stroustrup; and §22 and §27 of the
ISO C++ standard. Here we’ll present the most frequently useful features and a
few general concepts.

11.2.1 Integer output
Integer values can be output as octal (the base-8 number system), decimal (our
usual base-10 number system), and hexadecimal (the base-16 number system). If
you don’t know about these systems, read §A.2.1.1 before proceeding here. Most
output uses decimal. Hexadecimal is popular for outputting hardware-related in-
formation. The reason is that a hexadecimal digit exactly represents a 4-bit value.
Thus, two hexadecimal digits can be used to present the value of an 8-bit byte,
four hexadecimal digits give the value of 2 bytes (that’s often a half word), and
eight hexadecimal digits can present the value of 4 bytes (that’s often the size of
a word or a register). When C++’s ancestor C was first designed (in the 1970s),
octal was popular for representing bit patterns, but now it’s rarely used.

We can specify the output (decimal) value 1234 to be decimal, hexadecimal
(often called “hex”), and octal:

cout << 1234 << "\t(decimal)\n"
 << hex << 1234 << "\t(hexadecimal)\n"
 << oct << 1234 << "\t(octal)\n";

The '\t' character is “tab” (short for “tabulation character”). This prints

1234 (decimal)
4d2 (hexadecimal)
2322 (octal)

Stroustrup_book.indb 381Stroustrup_book.indb 381 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT382

The notations << hex and << oct do not output values. Instead, << hex informs
the stream that any further integer values should be displayed in hexadecimal and
<< oct informs the stream that any further integer values should be displayed in
octal. For example:

cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n';
cout << 1234 << '\n'; // the octal base is still in effect

This produces

1234 4d2 2322
2322 // integers will continue to show as octal until changed

Note that the last output is octal; that is, oct, hex, and dec (for decimal) persist
(“stick,” “are sticky”) — they apply to every integer value output until we tell the
stream otherwise. Terms such as hex and oct that are used to change the behavior
of a stream are called manipulators.

TRY THIS

Output your birth year in decimal, hexadecimal, and octal form. Label each
value. Line up your output in columns using the tab character. Now output
your age.

Seeing values of a base different from 10 can often be confusing. For example,
unless we tell you otherwise, you’ll assume that 11 represents the (decimal) number
11, rather than 9 (11 in octal) or 17 (11 in hexadecimal). To alleviate such problems,
we can ask the ostream to show the base of each integer printed. For example:

cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n';
cout << showbase << dec; // show bases
cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n';

This prints

1234 4d2 2322
1234 0x4d2 02322

So, decimal numbers have no prefix, octal numbers have the prefix 0, and hexa-
decimal values have the prefix 0x (or 0X). This is exactly the notation for integer
literals in C++ source code. For example:

T

Stroustrup_book.indb 382Stroustrup_book.indb 382 4/22/14 9:42 AM4/22/14 9:42 AM

11.2 OUTPUT FORMATTING 383

cout << 1234 << '\t' << 0x4d2 << '\t' << 02322 << '\n';

In decimal form, this will print

1234 1234 1234

As you might have noticed, showbase persists, just like oct and hex. The manipu-
lator noshowbase reverses the action of showbase, reverting to the default, which
shows each number without its base.

In summary, the integer output manipulators are:

Integer output manipulations

oct use base-8 (octal) notation

dec use base-10 (decimal) notation

hex use base-16 (hexadecimal) notation

showbase prefix 0 for octal and 0x for hexadecimal

noshowbase don’t use prefixes

11.2.2 Integer input
By default, >> assumes that numbers use the decimal notation, but you can tell it
to read hexadecimal or octal integers:

int a;
int b;
int c;
int d;
cin >> a >> hex >> b >> oct >> c >> d;
cout << a << '\t' << b << '\t' << c << '\t' << d << '\n';

If you type in

1234 4d2 2322 2322

this will print

1234 1234 1234 1234

Note that this implies that oct, dec, and hex “stick” for input, just as they do for
output.

Stroustrup_book.indb 383Stroustrup_book.indb 383 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT384

TRY THIS

Complete the code fragment above to make it into a program. Try the sug-
gested input; then type in

1234 1234 1234 1234

Explain the results. Try other inputs to see what happens.

You can get >> to accept and correctly interpret the 0 and 0x prefixes. To do that,
you “unset” all the defaults. For example:

cin.unsetf(ios::dec); // don’t assume decimal (so that 0x can mean hex)
cin.unsetf(ios::oct); // don’t assume octal (so that 12 can mean twelve)
cin.unsetf(ios::hex); // don’t assume hexadecimal (so that 12 can mean twelve)

The stream member function unsetf() clears the flag (or flags) given as argument.
Now, if you write

cin >>a >> b >> c >> d;

and enter

1234 0x4d2 02322 02322

you get

1234 1234 1234 1234

11.2.3 Floating-point output
If you deal directly with hardware, you’ll need hexadecimal (or possibly octal)
notation. Similarly, if you deal with scientific computation, you must deal with the
formatting of floating-point values. They are handled using iostream manipula-
tors in a manner very similar to that of integer values. For example:

cout << 1234.56789 << "\t\t(defaultfloat)\n" // \t\t to line up columns
 << fixed << 1234.56789 << "\t(fixed)\n"
 << scientific << 1234.56789 << "\t(scientific)\n";

T

Stroustrup_book.indb 384Stroustrup_book.indb 384 4/22/14 9:42 AM4/22/14 9:42 AM

11.2 OUTPUT FORMATTING 385

This prints

1234.57 (general)
1234.567890 (fixed)
1.234568e+003 (scientific)

The manipulators fixed, scientific, and defaultfloat are used to select floating-point
formats; defaultfloat is the default format (also known as the general format). Now,
we can write

cout << 1234.56789 << '\t'
 << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';
cout << 1234.56789 << '\n'; // floating format “sticks”
cout << defaultfloat << 1234.56789 << '\t' // the default format for

// floating-point output
 << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';

This prints

1234.57 1234.567890 1.234568e+003
1.234568e+003 // scientific manipulator “sticks”
1234.57 1234.567890 1.234568e+003

In summary, the basic floating-point output-formatting manipulators are:

Floating-point formats

fixed use fixed-point notation

scientific use mantissa and exponent notation; the mantissa is always in the [1:10)
range; that is, there is a single nonzero digit before the decimal point

defaultfloat choose fixed or scientific to give the numerically most accurate
representation, within the precision of defaultfloat

11.2.4 Precision
By default, a floating-point value is printed using six total digits using the
defaultfloat format. The most appropriate format is chosen and the number is
rounded to give the best approximation that can be printed using only six digits
(the default precision for the defaultfloat format). For example:

1234.567 prints as 1234.57

1.2345678 prints as 1.23457

Stroustrup_book.indb 385Stroustrup_book.indb 385 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT386

The rounding rule is the usual 4/5 rule: 0 to 4 round down (toward zero) and 5
to 9 round up (away from zero). Note that floating-point formatting applies only
to floating-point numbers, so

1234567 prints as 1234567 (because it’s an integer)
1234567.0 prints as 1.23457e+006

In the latter case, the ostream determines that 1234567.0 cannot be printed using
the fixed format using only six digits and switches to scientific format to pre-
serve the most accurate representation. Basically the defaultfloat format chooses
between scientific and fixed formats to present the user with the most accurate
representation of a floating-point value within the precision of the general format,
which defaults to six total digits.

TRY THIS

Write some code to print the number 1234567.89 three times, first using
 defaultfloat, then fixed, then scientific. Which output form presents the user
with the most accurate representation? Explain why.

A programmer can set the precision using the manipulator setprecision(). For
example:

cout << 1234.56789 << '\t'
 << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';
cout << defaultfloat << setprecision(5)
 << 1234.56789 << '\t'
 << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';
cout << defaultfloat << setprecision(8)
 << 1234.56789 << '\t'
 << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';

This prints (note the rounding)

1234.57 1234.567890 1.234568e+003
1234.6 1234.56789 1.23457e+003
1234.5679 1234.56789000 1.23456789e+003

The precision is defined as:

T

Stroustrup_book.indb 386Stroustrup_book.indb 386 4/22/14 9:42 AM4/22/14 9:42 AM

11.2 OUTPUT FORMATTING 387

Floating-point precision

defaultfloat precision is the total number of digits

scientific precision is the number of digits after the decimal point

fixed precision is the number of digits after the decimal point

Use the default (defaultfloat format with precision 6) unless there is a reason not
to. The usual reason not to is “Because we need greater accuracy of the output.”

11.2.5 Fields
Using scientific and fixed formats, a programmer can control exactly how much
space a value takes up on output. That’s clearly useful for printing tables, etc. The
equivalent mechanism for integer values is called fields. You can specify exactly
how many character positions an integer value or string value will occupy using
the “set field width” manipulator setw(). For example:

cout << 123456 // no field used
 <<'|'<< setw(4) << 123456 << '|' // 123456 doesn’t fit in a 4-char field
 << setw(8) << 123456 << '|' // set field width to 8
 << 123456 << "|\n"; // field sizes don’t stick

This prints

123456|123456| 123456|123456|

Note first the two spaces before the third occurrence of 123456. That’s what we
would expect for a six-digit number in an eight-character field. However, 123456
did not get truncated to fit into a four-character field. Why not? |1234| or |3456|
might be considered plausible outputs for the four-character field. However, that
would have completely changed the value printed without any warning to the
poor reader that something had gone wrong. The ostream doesn’t do that; in-
stead it breaks the output format. Bad formatting is almost always preferable
to “bad output data.” In the most common uses of fields (such as printing out a
table), the “overflow” is visually very noticeable, so that it can be corrected.

Fields can also be used for floating-point numbers and strings. For example:

cout << 12345 <<'|'<< setw(4) << 12345 << '|'
 << setw(8) << 12345 << '|' << 12345 << "|\n";
cout << 1234.5 <<'|'<< setw(4) << 1234.5 << '|'
 << setw(8) << 1234.5 << '|' << 1234.5 << "|\n";

Stroustrup_book.indb 387Stroustrup_book.indb 387 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT388

cout << "asdfg" <<'|'<< setw(4) << "asdfg" << '|'
 << setw(8) << "asdfg" << '|' << "asdfg" << "|\n";

This prints

12345|12345| 12345|12345|
1234.5|1234.5| 1234.5|1234.5|
asdfg|asdfg| asdfg|asdfg|

Note that the field width “doesn’t stick.” In all three cases, the first and the last
values are printed in the default “as many characters as it takes” format. In other
words, unless you set the field width immediately before an output operation, the
notion of “field” is not used.

TRY THIS

Make a simple table including the last name, first name, telephone number,
and email address for yourself and at least five of your friends. Experiment
with different field widths until you are satisfied that the table is well presented.

11.3 File opening and positioning
As seen from C++, a file is an abstraction of what the operating system pro-
vides. As described in §10.3, a file is simply a sequence of bytes numbered from
0 upward:

0: 1: 2:

The question is how we access those bytes. Using iostreams, this is largely de-
termined when we open a file and associate a stream with it. The properties of
a stream determine what operations we can perform after opening the file, and
their meaning. The simplest example of this is that if we open an istream for a
file, we can read from the file, whereas if we open a file with an ostream, we can
write to it.

11.3.1 File open modes
You can open a file in one of several modes. By default, an ifstream opens its file
for reading and an ofstream opens its file for writing. That takes care of most
common needs. However, you can choose between several alternatives:

T

Stroustrup_book.indb 388Stroustrup_book.indb 388 4/22/14 9:42 AM4/22/14 9:42 AM

11.3 FILE OPENING AND POSITIONING 389

File stream open modes

ios_base::app append (i.e., add to the end of the file)

ios_base::ate “at end” (open and seek to end)

ios_base::binary binary mode — beware of system-specific behavior

ios_base::in for reading

ios_base::out for writing

ios_base::trunc truncate file to 0 length

A file mode is optionally specified after the name of the file. For example:

ofstream of1 {name1}; // defaults to ios_base::out
ifstream if1 {name2}; // defaults to ios_base::in

ofstream ofs {name, ios_base::app}; // ofstreams by default include
 // io_base::out
fstream fs {"myfile", ios_base::in|ios_base::out}; // both in and out

The | in that last example is the “bitwise or” operator (§A.5.5) that can be used to
combine modes as shown. The app option is popular for writing log files where
you always add to the end.

In each case, the exact effect of opening a file may depend on the operating
system, and if an operating system cannot honor a request to open a file in a cer-
tain way, the result will be a stream that is not in the good() state:

if (!fs) // oops: we couldn’t open that file that way

The most common reason for a failure to open a file for reading is that the file
doesn’t exist (at least not with the name we used):

ifstream ifs {"redungs"};
if (!ifs) // error: can’t open “readings” for reading

In this case, we guess that a spelling error might be the problem.
Note that typically, an operating system will create a new file if you try to

open a nonexistent file for output, but (fortunately) not if you try to open a non-
existent file for input:

ofstream ofs {"no-such-file"}; // create new file called no-such-file
ifstream ifs {"no-file-of-this-name"}; // error: ifs will not be good()

Stroustrup_book.indb 389Stroustrup_book.indb 389 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT390

Try not to be clever with file open modes. Operating systems don’t handle “un-
usual” mode consistently. When you can, stick to reading from files opened as
istreams and writing to files opened as ostreams.

11.3.2 Binary fi les
In memory, we can represent the number 123 as an integer value or as a string
value. For example:

int n = 123;
string s = "123";

In the first case, 123 is stored as a (binary) number in an amount of memory that
is the same as for all other ints (4 bytes, that is, 32 bits, on a PC). Had we chosen
the value 12345 instead, the same 4 bytes would have been used. In the second
case, 123 is stored as a string of three characters. Had we chosen the string value
"12345" it would have used five characters (plus the fixed overhead for managing
a string). We could illustrate this like this (using the ordinary decimal and char-
acter representation, rather than the binary representation actually used within
the computer):

1 2 3 ? ? ? ? ?123 as characters:

1 2 3 4 5 ? ? ?12345 as characters:

123123 as binary:

1234512345 as binary:

When we use a character representation, we must use some character to represent
the end of a number in memory, just as we do on paper: 123456 is one number
and 123 456 are two numbers. On “paper,” we use the space character to repre-
sent the end of the number. In memory, we could do the same:

1 2 3 4 5 6 ?123456 as characters:

1 2 3 4 5 6123 456 as characters:

The distinction between storing fixed-size binary representation (e.g., an int) and
variable-size character string representation (e.g., a string) also occurs in files. By
default, iostreams deal with character representations; that is, an istream reads a
sequence of characters and turns it into an object of the desired type. An ostream
takes an object of a specified type and transforms it into a sequence of characters
which it writes out. However, it is possible to request istream and ostream to

Stroustrup_book.indb 390Stroustrup_book.indb 390 4/22/14 9:42 AM4/22/14 9:42 AM

11.3 FILE OPENING AND POSITIONING 391

simply copy bytes to and from files. That’s called binary I/O and is requested by
opening a file with the mode ios_base::binary. Here is an example that reads and
writes binary files of integers. The key lines that specifically deal with “binary”
are explained below:

int main()
{
 // open an istream for binary input from a file:
 cout << "Please enter input file name\n";
 string iname;
 cin >> iname;
 ifstream ifs {iname,ios_base::binary}; // note: stream mode
 // binary tells the stream not to try anything clever with the bytes
 if (!ifs) error("can't open input file ",ina me);

 // open an ostream for binary output to a file:
 cout << "Please enter output file name\n";
 string oname;
 cin >> oname;
 ofstream ofs {oname,ios_base::binary}; // note: stream mode
 // binary tells the stream not to try anything clever with the bytes
 if (!ofs) error("can't open output file ",oname);

 vector<int> v;

 // read from binary file:
 for(int x; ifs.read(as_bytes(x),sizeof(int));) // note: reading bytes
 v.push_back(x);

 // . . . do something with v . . .

 // write to binary file:
 for(int x : v)
 ofs.write(as_bytes(x),sizeof(int)); // note: writing bytes
 return 0;
}

We open the files using ios_base::binary as the stream mode:

ifstream ifs {iname, ios_base::binary};

ofstream ofs {oname, ios_base::binary};

Stroustrup_book.indb 391Stroustrup_book.indb 391 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT392

In both cases, we chose the trickier, but often more compact, binary representa-
tion. When we move from character-oriented I/O to binary I/O, we give up our
usual >> and << operators. Those operators specifically turn values into character
sequences using the default conventions (e.g., the string "asdf" turns into the char-
acters a, s, d, f and the integer 123 turns into the characters 1, 2, 3). If we wanted
that, we wouldn’t need to say binary — the default would suffice. We use binary
only if we (or someone else) thought that we somehow could do better than the
default. We use binary to tell the stream not to try anything clever with the bytes.

What “cleverness” might we do to an int? The obvious is to store a 4-byte int
in 4 bytes; that is, we can look at the representation of the int in memory (a se-
quence of 4 bytes) and transfer those bytes to the file. Later, we can read those
bytes back the same way and reassemble the int:

ifs.read(as_bytes(i),sizeof(int)) // note: reading bytes
ofs.write(as_bytes(v[i]),sizeof(int)) // note: writing bytes

The ostream write() and the istream read() both take an address (supplied here
by as_bytes()) and a number of bytes (characters) which we obtained by using the
operator sizeof. That address should refer to the first byte of memory holding the
value we want to read or write. For example, if we had an int with the value 1234,
we would get the 4 bytes (using hexadecimal notation) 00, 00, 04, d2:

00 00 04 d2

as_bytes(i)

i:

The as_bytes() function is needed to get the address of the first byte of an object’s
representation. It can — using language facilities yet to be explained (§17.8 and
§19.3) — be defined like this:

template<class T>
char* as_bytes(T& i) // treat a T as a sequence of bytes
{
 void* addr = &i; // get the address of the first byte
 // of memory used to store the object
 return static_cast<char*>(addr); // treat that memory as bytes
}

The (unsafe) type conversion using static_cast is necessary to get to the “raw
bytes” of a variable. The notion of addresses will be explored in some detail in
Chapters 17 and 18. Here, we just show how to treat any object in memory as a
sequence of bytes for the use of read() and write().

Stroustrup_book.indb 392Stroustrup_book.indb 392 4/22/14 9:42 AM4/22/14 9:42 AM

11.3 FILE OPENING AND POSITIONING 393

This binary I/O is messy, somewhat complicated, and error-prone. However,
as programmers we don’t always have the freedom to choose file formats, so occa-
sionally we must use binary I/O simply because that’s the format someone chose
for the files we need to read or write. Alternatively, there may be a good logical
reason for choosing a non-character representation. A typical example is an image
or a sound file, for which there is no reasonable character representation: a pho-
tograph or a piece of music is basically just a bag of bits.

The character I/O provided by default by the iostream library is portable,
human readable, and reasonably supported by the type system. Use it when you
have a choice and don’t mess with binary I/O unless you really have to.

11.3.3 Positioning in fi les
Whenever you can, just read and write files from the beginning to the end. That’s
the easiest and least error-prone way. Many times, when you feel that you have
to make a change to a file, the better solution is to produce a new file containing
the change.

However, if you must, you can use positioning to select a specific place in a
file for reading or writing. Basically, every file that is open for reading has a “read/
get position” and every file that is open for writing has a “write/put position”:

0: 1:
A file: . . .

2 Put position: 6 Get position:

y

This can be used like this:

fstream fs {name}; // open for input and output
if (!fs) error("can't open ",name);

fs.seekg(5); // move reading position (g for “get”) to 5 (the 6th character)
char ch;
fs>>ch; // read and increment reading position
cout << "character[5] is " << ch << ' (' << int(ch) << ")\n";

fs.seekp(1); // move writing position (p for “put”) to 1
fs<<'y'; // write and increment writing position

Note that seekg() and seekp() increment their respective positions, so the figure
represents the state of the program after execution.

Stroustrup_book.indb 393Stroustrup_book.indb 393 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT394

Please be careful: there is next to no run-time error checking when you use
positioning. In particular, it is undefined what happens if you try to seek (using
seekg() or seekp()) beyond the end of a file, and operating systems really do differ
in what happens then.

11.4 String streams
You can use a string as the source of an istream or the target for an ostream. An
istream that reads from a string is called an istringstream and an ostream that
stores characters written to it in a string is called an ostringstream. For example,
an istringstream is useful for extracting numeric values from a string:

double str_to_double(string s)
 // if possible, convert characters in s to floating-point value
{
 istringstream is {s}; // make a stream so that we can read from s
 double d;
 is >> d;
 if (!is) error("double format error: ",s);
 return d;
}

double d1 = str_to_double("12.4"); // testing
double d2 = str_to_double("1.34e–3");
double d3 = str_to_double("twelve point three"); // will call error()

If we try to read beyond the end of an istringstream’s string, the istringstream
will go into eof() state. This means that we can use “the usual input loop” for an
istringstream; an istringstream really is a kind of istream.

Conversely, an ostringstream can be useful for formatting output for a sys-
tem that requires a simple string argument, such as a GUI system (see §16.5). For
example:

void my_code(string label, Temperature temp)
{
 // . . .
 ostringstream os; // stream for composing a message
 os << setw(8) << label << ": "
 << fixed << setprecision(5) << temp.temp << temp.unit;
 someobject.display(Point(100,100), os.str().c_str());
 // . . .
}

Stroustrup_book.indb 394Stroustrup_book.indb 394 4/22/14 9:42 AM4/22/14 9:42 AM

11.5 LINE-ORIENTED INPUT 395

The str() member function of ostringstream returns the string composed by out-
put operations to an ostringstream. The c_str() is a member function of string
that returns a C-style string as required by many system interfaces.

The stringstreams are generally used when we want to separate actual I/O
from processing. For example, a string argument for str_to_double() will usually
originate in a file (e.g., a web log) or from a keyboard. Similarly, the message we
composed in my_code() will eventually end up written to an area of a screen. For
example, in §11.7, we use a stringstream to filter undesirable characters out of our
input. Thus, stringstreams can be seen as a mechanism for tailoring I/O to special
needs and tastes.

A simple use of an ostringstream is to construct strings by concatenation. For
example:

int seq_no = get_next_number(); // get the number of a log file
ostringstream name;
name << "myfile" << seq_no << ".log"; // e.g., myfile17.log
ofstream logfile{name.str()}; // e.g., open myfile17.log

Usually, we initialize an istringstream with a string and then read the charac-
ters from that string using input operations. Conversely, we typically initialize an
 ostringstream to the empty string and then fill it using output operations. There
is a more direct way of accessing characters in a stringstream that is sometimes
useful: ss.str() returns a copy of ss’s string, and ss.str(s) sets ss’s string to a copy
of s. §11.7 shows an example where ss.str(s) is essential.

11.5 Line-oriented input
A >> operator reads into objects of a given type according to that type’s standard
format. For example, when reading into an int, >> will read until it encounters
something that’s not a digit, and when reading into a string, >> will read until it
encounters whitespace. The standard library istream library also provides facili-
ties for reading individual characters and whole lines. Consider:

string name;
cin >> name; // input: Dennis Ritchie
cout << name << '\n'; // output: Dennis

What if we wanted to read everything on that line at once and decide how to
format it later? That could be done using the function getline(). For example:

string name;
getline(cin,name); // input: Dennis Ritchie
cout << name << '\n'; // output: Dennis Ritchie

Stroustrup_book.indb 395Stroustrup_book.indb 395 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT396

Now we have the whole line. Why would we want that? A good answer would be
“Because we want to do something that can’t be done by >>.” Often, the answer is
a poor one: “Because the user typed a whole line.” If that’s the best you can think
of, stick to >>, because once you have the line entered, you usually have to parse
it somehow. For example:

string first_name;
string second_name;
stringstream ss {name};
ss>>first_name; // input Dennis
ss>>second_name; // input Ritchie

Reading directly into first_name and second_name would have been simpler.
One common reason for wanting to read a whole line is that the definition of

whitespace isn’t always appropriate. Sometimes, we want to consider a newline
as different from other whitespace characters. For example, a text communication
with a game might consider a line a sentence, rather than relying on conventional
punctuation:

go left until you see a picture on the wall to your right
remove the picture and open the door behind it. take the bag from there

In that case, we’d first read a whole line and then extract individual words from
that.

string command;
getline(cin,command); // read the line

stringstream ss {command};
vector<string> words;
for (string s; ss>>s;)
 words.push_back(s); // extract the individual words

On the other hand, had we had a choice, we would most likely have preferred to
rely on some proper punctuation rather than a line break.

11.6 Character classifi cation
Usually, we read integers, floating-point numbers, words, etc. as defined by for-
mat conventions. However, we can — and sometimes must — go down a level of
abstraction and read individual characters. That’s more work, but when we read
individual characters, we have full control over what we are doing. Consider

Stroustrup_book.indb 396Stroustrup_book.indb 396 4/22/14 9:42 AM4/22/14 9:42 AM

11.6 CHARACTER CLASSIFICATION 397

tokenizing an expression (§7.8.2). For example, we want 1+4*x<=y/z*5 to be sep-
arated into the eleven tokens

1 + 4 * x <= y / z * 5

We could use >> to read the numbers, but trying to read the identifiers as strings
would cause x<=y to be read as one string (since < and = are not whitespace char-
acters) and z* to be read as one string (since * isn’t a whitespace character either).
Instead, we could write

for (char ch; cin.get(ch);) {
 if (isspace(ch)) { // if ch is whitespace
 // do nothing (i.e., skip whitespace)
 }
 if (isdigit(ch)) {
 // read a number
 }
 else if (isalpha(ch)) {
 // read an identifier
 }
 else {
 // deal with operators
 }
}

The istream::get() function reads a single character into its argument. It does not
skip whitespace. Like >>, get() returns a reference to its istream so that we can
test its state.

When we read individual characters, we usually want to classify them: Is
this character a digit? Is this character uppercase? And so forth. There is a set of
standard library functions for that:

Character classifi cation

isspace(c) Is c whitespace (' ', '\t', '\n', etc.)?
isalpha(c) Is c a letter ('a'.. 'z', 'A'.. 'Z') (note: not '_')?
isdigit(c) Is c a decimal digit ('0'.. '9')?
isxdigit(c) Is c a hexadecimal digit (decimal digit or 'a'.. 'f' or 'A'.. 'F')?
isupper(c) Is c an uppercase letter?
islower(c) Is c a lowercase letter?
isalnum(c) Is c a letter or a decimal digit?
iscntrl(c) Is c a control character (ASCII 0..31 and 127)?

Stroustrup_book.indb 397Stroustrup_book.indb 397 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT398

Character classifi cation (continued)

ispunct(c) Is c not a letter, digit, whitespace, or invisible control character?
isprint(c) Is c printable (ASCII ' '.. '~')?
isgraph(c) Is isalpha(c) or isdigit(c) or ispunct(c) (note: not space)?

Note that the classifications can be combined using the “or” operator (||). For exam-
ple, isalnum(c) means isalpha(c)||isdigit(c); that is, “Is c either a letter or a digit?”

In addition, the standard library provides two useful functions for getting rid
of case differences:

Character case

toupper(c) c or c’s uppercase equivalent
tolower(c) c or c’s lowercase equivalent

These are useful when you want to ignore case differences. For example, in input
from a user Right, right, and rigHT most likely mean the same thing (rigHT most
likely being the result of an unfortunate hit on the Caps Lock key). After applying
tolower() to each character in each of those strings, we get right for each. We can
do that for an arbitrary string:

void tolower(string& s) // put s into lower case
{
 for (char& x : s) x = tolower(x);
}

We use pass-by-reference (§8.5.5) to actually change the string. Had we wanted
to keep the old string we could have written a function to make a lowercase copy.
Prefer tolower() to toupper() because that works better for text in some natural
languages, such as German, where not every lowercase character has an upper-
case equivalent.

11.7 Using nonstandard separators
This section provides a semi-realistic example of the use of iostreams to solve a
real problem. When we read strings, words are by default separated by whitespace.
Unfortunately, istream doesn’t offer a facility for us to define what characters
make up whitespace or in some other way directly change how >> reads a string.
So, what do we do if we need another definition of whitespace? Consider the

Stroustrup_book.indb 398Stroustrup_book.indb 398 4/22/14 9:42 AM4/22/14 9:42 AM

11.7 USING NONSTANDARD SEPARATORS 399

example from §4.6.3 where we read in “words” and compared them. Those words
were whitespace-separated, so if we read

As planned, the guests arrived; then,

We would get the “words”

As
planned,
the
guests
arrived;
then,

This is not what we’d find in a dictionary: planned, and arrived; are not words.
They are words plus distracting and irrelevant punctuation characters. For most
purposes we must treat punctuation just like whitespace. How might we get rid
of such punctuation? We could read characters, remove the punctuation charac-
ters — or turn them into whitespace — and then read the “cleaned-up” input again:

string line;
getline(cin,line); // read into line
for (char& ch : line) // replace each punctuation character by a space
 switch(ch) {
 case ';': case '.': case ',': case '?': case '!':
 ch = ' ';
 }

stringstream ss(line); // make an istream ss reading from line
vector<string> vs;
for (string word; ss>>word;) // read words without punctuation characters
 vs.push_back(word);

Using that to read the line, we get the desired

As
planned
the
guests
arrived
then

Stroustrup_book.indb 399Stroustrup_book.indb 399 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT400

Unfortunately, the code above is messy and rather special-purpose. What would
we do if we had another definition of punctuation? Let’s provide a more general
and useful way of removing unwanted characters from an input stream. What
would that be? What would we like our user code to look like? How about

ps.whitespace(";:,."); // treat semicolon, colon, comma, and dot as whitespace
for (string word; ps>>word;)
 vs.push_back(word);

How would we define a stream that would work like ps? The basic idea is to read
words from an ordinary input stream and then treat the user-specified “whitespace”
characters as whitespace; that is, we do not give “whitespace” characters to the
user, we just use them to separate words. For example,

as.not

should be the two words

as
not

We can define a class to do that for us. It must get characters from an istream and
have a >> operator that works just like istream’s except that we can tell it which
characters it should consider to be whitespace. For simplicity, we will not provide
a way of treating existing whitespace characters (space, newline, etc.) as non-
whitespace; we’ll just allow a user to specify additional “whitespace” characters.
Nor will we provide a way to completely remove the designated characters from
the stream; as before, we will just turn them into whitespace. Let’s call that class
Punct_stream:

class Punct_stream { // like an istream, but the user can add to
 // the set of whitespace characters
public:
 Punct_stream(istream& is)
 : source{is}, sensitive{true} { }

 void whitespace(const string& s) // make s the whitespace set
 { white = s; }
 void add_white(char c) { white += c; } // add to the whitespace set
 bool is_whitespace(char c); // is c in the whitespace set?

Stroustrup_book.indb 400Stroustrup_book.indb 400 4/22/14 9:42 AM4/22/14 9:42 AM

11.7 USING NONSTANDARD SEPARATORS 401

 void case_sensitive(bool b) { sensitive = b; }
 bool is_case_sensitive() { return sensitive; }

 Punct_stream& operator>>(string& s);
 operator bool();
private:
 istream& source; // character source
 istringstream buffer; // we let buffer do our formatting
 string white; // characters considered “whitespace”
 bool sensitive; // is the stream case-sensitive?
};

The basic idea is — just as in the example above — to read a line at a time from the
 istream, convert “whitespace” characters into spaces, and then use the istringstream
to do formatting. In addition to dealing with user-defined whitespace, we have
given Punct_stream a related facility: if we ask it to, using case_sensitive(), it can
convert case-sensitive input into non-case-sensitive input. For example, if we ask,
we can get a Punct_stream to read

Man bites dog!

as

man
bites
dog

Punct_stream’s constructor takes the istream to be used as a character source and
gives it the local name source. The constructor also defaults the stream to the
usual case-sensitive behavior. We can make a Punct_stream that reads from cin
regarding semicolon, colon, and dot as whitespace, and that turns all characters
into lower case:

Punct_stream ps {cin}; // ps reads from cin
ps.whitespace(";:."); // semicolon, colon, and dot are also whitespace
ps.case_sensitive(false); // not case-sensitive

Obviously, the most interesting operation is the input operator >>. It is also by far
the most difficult to define. Our general strategy is to read a whole line from the
istream into a string (called line). We then convert all of “our” whitespace charac-
ters to the space character (' '). That done, we put the line into the istringstream

Stroustrup_book.indb 401Stroustrup_book.indb 401 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT402

called buffer. Now we can use the usual whitespace-separating >> to read from
buffer. The code looks a bit more complicated than this because we simply try
reading from the buffer and try to fill it only when we find it empty:

Punct_stream& Punct_stream::operator>>(string& s)
{
 while (!(buffer>>s)) { // try to read from buffer
 if (buffer.bad() || !source.good()) return *this;
 buffer.clear();

 string line;
 getline(source,line); // get a line from source

 // do character replacement as needed:
 for (char& ch : line)
 if (is_whitespace(ch))
 ch = ' '; // to space
 else if (!sensitive)
 ch = tolower(ch); // to lower case

 buffer.str(line); // put string into stream
 }
 return *this;
}

Let’s consider this bit by bit. Consider first the somewhat unusual

while (!(buffer>>s)) {

If there are characters in the istringstream called buffer, the read buffer>>s will
work, and s will receive a “whitespace”-separated word; then there is nothing
more to do. That will happen as long as there are characters in buffer for us to
read. However, when buffer>>s fails — that is, if !(buffer>>s) — we must replenish
buffer from source. Note that the buffer>>s read is in a loop; after we have tried
to replenish buffer, we need to try another read, so we get

while (!(buffer>>s)) { // try to read from buffer
 if (buffer.bad() || !source.good()) return *this;
 buffer.clear();

 // replenish buffer
}

Stroustrup_book.indb 402Stroustrup_book.indb 402 4/22/14 9:42 AM4/22/14 9:42 AM

11.7 USING NONSTANDARD SEPARATORS 403

If buffer is bad() or the source has a problem, we give up; otherwise, we clear
buffer and try again. We need to clear buffer because we get into that “replenish
loop” only if a read failed, typically because we hit eof() for buffer; that is, there
were no more characters in buffer for us to read. Dealing with stream state is
always messy and it is often the source of subtle errors that require tedious debug-
ging. Fortunately the rest of the replenish loop is pretty straightforward:

string line;
getline(source,line); // get a line from source

// do character replacement as needed:
for (char& ch : line)
 if (is_whitespace(ch))
 ch = ' '; // to space
 else if (!sensitive)
 ch = tolower(ch); // to lower case

buffer.str(line); // put string into stream

We read a line into line. Then we look at each character of that line to see if we
need to change it. The is_whitespace() function is a member of Punct_stream,
which we’ll define later. The tolower() function is a standard library function
doing the obvious, such as turning A into a (see §11.6).

Once we have a properly processed line, we need to get it into our
 istringstream. That’s what buffer.str(line) does; it can be read as “Set the istring-
stream buffer’s string to line.”

Note that we “forgot” to test the state of source after reading from it using
getline(). We don’t need to because we will eventually reach the !source.good()
test at the top of the loop.

As ever, we return a reference to the stream itself, *this, as the result of >>;
see §17.10.

Testing for whitespace is easy; we just compare a character to each character
of the string that holds our whitespace set:

bool Punct_stream::is_whitespace(char c)
{
 for (char w : white)
 if (c==w) return true;
 return false;
}

Stroustrup_book.indb 403Stroustrup_book.indb 403 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT404

Remember that we left the istringstream to deal with the usual whitespace char-
acters (e.g., newline and space) in the usual way, so we don’t need to do anything
special about those.

This leaves one mysterious function:

Punct_stream::operator bool()
{
 return !(source.fail() || source.bad()) && source.good();
}

The conventional use of an istream is to test the result of >>. For example:

while (ps>>s) { /* . . . */ }

That means that we need a way of looking at the result of ps>>s as a Boolean
value. The result of ps>>s is a Punct_stream, so we need a way of implicitly
turning a Punct_stream into a bool. That’s what Punct_stream’s operator bool()
does. A member function called operator bool() defines a conversion to bool. In
particular, it returns true if the operation on the Punct_stream succeeded.

Now we can write our program:

int main()
 // given text input, produce a sorted list of all words in that text
 // ignore punctuation and case differences
 // eliminate duplicates from the output
{
 Punct_stream ps {cin};
 ps.whitespace(";:,.?!()\"{}<>/&$@#%^*|~"); // note \“ means ” in string
 ps.case_sensitive(false);

 cout << "please enter words\n";
 vector<string> vs;
 for (string word; ps>>word;)
 vs.push_back(word); // read words

 sort(vs.begin(),vs.end()); // sort in lexicographical order
 for (int i=0; i<vs.size(); ++i) // write dictionary
 if (i==0 || vs[i]!=vs[i–1]) cout << vs[i] << '\n';
}

This will produce a properly sorted list of words from input. The test

if (i==0 || vs[i]!=vs[i–1])

Stroustrup_book.indb 404Stroustrup_book.indb 404 4/22/14 9:42 AM4/22/14 9:42 AM

11.7 USING NONSTANDARD SEPARATORS 405

will suppress duplicates. Feed this program the input

There are only two kinds of languages: languages that people complain
about, and languages that people don't use.

and it will output

about
and
are
complain
don't
kind
languages
of
only
people
that
there
two
use

Why did we get don't and not dont? We left the single quote out of the whitespace()
call.

Caution: Punct_stream behaves like an istream in many important and useful
ways, but it isn’t really an istream. For example, we can’t ask for its state using
 rdstate(), eof() isn’t defined, and we didn’t bother providing a >> that reads integers.
Importantly, we cannot pass a Punct_stream to a function expecting an istream.
Could we define a Punct_istream that really is an istream? We could, but we don’t
yet have the programming experience, the design concepts, and the language fa-
cilities required to pull off that stunt (if you — much later — want to return to this
problem, you have to look up stream buffers in an expert-level guide or manual).

Did you find Punct_stream easy to read? Did you find the explanations easy
to follow? Do you think you could have written it yourself? If you were a genuine
novice a few days ago, the honest answer is likely to be “No, no, no!” or even
“NO, no! Nooo!! — Are you crazy?” We understand — and the answer to the last
question/outburst is “No, at least we think not.” The purpose of the example is

• To show a somewhat realistic problem and solution
• To show what can be achieved with relatively modest means
• To provide an easy-to-use solution to an apparently easy problem
• To illustrate the distinction between the interface and the implementation

Stroustrup_book.indb 405Stroustrup_book.indb 405 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT406

To become a programmer, you need to read code, and not just carefully polished
solutions to educational problems. This is an example. In another few days or
weeks, this will become easy for you to read, and you will be looking at ways to
improve the solution.

One way to think of this example is as equivalent to a teacher having dropped
some genuine English slang into an English-for-beginners course to give a bit of
color and enliven the proceedings.

11.8 And there is so much more
The details of I/O seem infinite. They probably are, since they are limited only
by human inventiveness and capriciousness. For example, we have not considered
the complexity implied by natural languages. What is written as 12.35 in English
will be conventionally represented as 12,35 in most other European languages.
Naturally, the C++ standard library provides facilities for dealing with that and
many other natural-language-specific aspects of I/O. How do you write Chinese
characters? How do you compare strings written using Malayalam characters?
There are answers, but they are far beyond the scope of this book. If you need
to know, look in more specialized or advanced books (such as Langer, Standard
C++ IOStreams and Locales, and Stroustrup, The C++ Programming Language) and
in library and system documentation. Look for “locale”; that’s the term usually
applied to facilities for dealing with natural language differences.

Another source of complexity is buffering: the standard library iostreams rely
on a concept called streambuf. For advanced work — whether for performance
or functionality — with iostreams these streambufs are unavoidable. If you feel
the need to define your own iostreams or to tune iostreams to new data sources/
sinks, see Chapter 38 of The C++ Programming Language by Stroustrup or your
system documentation.

When using C++, you may also encounter the C standard printf()/scanf()
family of I/O functions. If you do, look them up in §27.6, §B.10.2, or in the ex-
cellent C textbook by Kernighan and Ritchie (The C Programming Language) or one
of the innumerable sources on the web. Each language has its own I/O facilities;
they all vary, most are quirky, but most reflect (in various odd ways) the same
fundamental concepts that we have presented in Chapters 10 and 11.

The standard library I/O facilities are summarized in Appendix B.
The related topic of graphical user interfaces (GUIs) is described in Chap-

ters 12–16.

Stroustrup_book.indb 406Stroustrup_book.indb 406 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 REVIEW 407

Drill
 1. Start a program called Test_output.cpp. Declare an integer birth_year

and assign it the year you were born.
 2. Output your birth_year in decimal, hexadecimal, and octal form.
 3. Label each value with the name of the base used.
 4. Did you line up your output in columns using the tab character? If not,

do it.
 5. Now output your age.
 6. Was there a problem? What happened? Fix your output to decimal.
 7. Go back to 2 and cause your output to show the base for each output.
 8. Try reading as octal, hexadecimal, etc.:

cin >> a >>oct >> b >> hex >> c >> d;
cout << a << '\t'<< b << '\t'<< c << '\t'<< d << '\n' ;

Run this code with the input

1234 1234 1234 1234

Explain the results.
 9. Write some code to print the number 1234567.89 three times, first using

defaultfloat, then fixed, then scientific forms. Which output form pre-
sents the user with the most accurate representation? Explain why.

 10. Make a simple table including last name, first name, telephone number,
and email address for yourself and at least five of your friends. Experi-
ment with different field widths until you are satisfied that the table is well
presented.

Review
 1. Why is I/O tricky for a programmer?
 2. What does the notation << hex do?
 3. What are hexadecimal numbers used for in computer science? Why?
 4. Name some of the options you may want to implement for formatting

integer output.
 5. What is a manipulator?
 6. What is the prefix for decimal? For octal? For hexadecimal?
 7. What is the default output format for floating-point values?
 8. What is a field?
 9. Explain what setprecision() and setw() do.
 10. What is the purpose of file open modes?
 11. Which of the following manipulators does not “stick”: hex, scientific,

setprecision(), showbase, setw?

Stroustrup_book.indb 407Stroustrup_book.indb 407 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT408

 12. What is the difference between character I/O and binary I/O?
 13. Give an example of when it would probably be beneficial to use a binary

file instead of a text file.
 14. Give two examples where a stringstream can be useful.
 15. What is a file position?
 16. What happens if you position a file position beyond the end of file?
 17. When would you prefer line-oriented input to type-specific input?
 18. What does isalnum(c) do?

Terms
binary hexadecimal octal
character classifi cation irregularity output formatting
decimal line-oriented input regularity
defaultfl oat manipulator scientifi c
fi le positioning nonstandard separator setprecision()
fi xed noshowbase showbase

Exercises
 1. Write a program that reads a text file and converts its input to all lower

case, producing a new file.
 2. Write a program that given a file name and a word outputs each line that

contains that word together with the line number. Hint: getline().
 3. Write a program that removes all vowels from a file (“disemvowels”). For

example, Once upon a time! becomes nc pn tm!. Surprisingly often, the
result is still readable; try it on your friends.

 4. Write a program called multi_input.cpp that prompts the user to enter
several integers in any combination of octal, decimal, or hexadecimal,
using the 0 and 0x base suffixes; interprets the numbers correctly; and
converts them to decimal form. Then your program should output the
values in properly spaced columns like this:

 0x43 hexadecimal converts to 67 decimal
 0123 octal converts to 83 decimal
 65 decimal converts to 65 decimal

 5. Write a program that reads strings and for each string outputs the char-
acter classification of each character, as defined by the character classifica-
tion functions presented in §11.6. Note that a character can have several
classifications (e.g., x is both a letter and an alphanumeric).

 6. Write a program that replaces punctuation with whitespace. Consider
. (dot), ; (semicolon), , (comma), ? (question mark), - (dash), ' (single

Stroustrup_book.indb 408Stroustrup_book.indb 408 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 EXERCISES 409

quote) punctuation characters. Don’t modify characters within a pair of
double quotes ("). For example, “ - don't use the as-if rule.” becomes
“ don t use the as if rule ”.

 7. Modify the program from the previous exercise so that it replaces don't
with do not, can't with cannot, etc.; leaves hyphens within words intact
(so that we get “ do not use the as-if rule ”); and converts all characters
to lower case.

 8. Use the program from the previous exercise to make a dictionary (as an
alternative to the approach in §11.7). Run the result on a multi-page text
file, look at the result, and see if you can improve the program to make a
better dictionary.

 9. Split the binary I/O program from §11.3.2 into two: one program that
converts an ordinary text file into binary and one program that reads
binary and converts it to text. Test these programs by comparing a text
file with what you get by converting it to binary and back.

 10. Write a function vector<string> split(const string& s) that returns a vector
of whitespace-separated substrings from the argument s.

 11. Write a function vector<string> split(const string& s, const string& w)
that returns a vector of whitespace-separated substrings from the argu-
ment s, where whitespace is defined as “ordinary whitespace” plus the
characters in w.

 12. Reverse the order of characters in a text file. For example, asdfghjkl be-
comes lkjhgfdsa. Warning: There is no really good, portable, and efficient
way of reading a file backward.

 13. Reverse the order of words (defined as whitespace-separated strings) in a
file. For example, Norwegian Blue parrot becomes parrot Blue Norwegian.
You are allowed to assume that all the strings from the file will fit into
memory at once.

 14. Write a program that reads a text file and writes out how many characters
of each character classification (§11.6) are in the file.

 15. Write a program that reads a file of whitespace-separated numbers and
outputs a file of numbers using scientific format and precision 8 in four
fields of 20 characters per line.

 16. Write a program to read a file of whitespace-separated numbers and out-
put them in order (lowest value first), one value per line. Write a value
only once, and if it occurs more than once write the count of its occur-
rences on its line. For example, 7 5 5 7 3 117 5 should give

3
5 3
7 2
117

Stroustrup_book.indb 409Stroustrup_book.indb 409 4/22/14 9:42 AM4/22/14 9:42 AM

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT410

Postscript

Input and output are messy because our human tastes and conventions have
not followed simple-to-state rules and straightforward mathematical laws. As pro-
grammers, we are rarely in a position to dictate that our users depart from their
preferences, and when we are, we should typically be less arrogant than to think
that we can provide a simple alternative to conventions built up over time. Conse-
quently, we must expect, accept, and adapt to a certain messiness of input and out-
put while still trying to keep our programs as simple as possible — but no simpler.

Stroustrup_book.indb 410Stroustrup_book.indb 410 4/22/14 9:42 AM4/22/14 9:42 AM

