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Ideals and History

“When someone says, 
‘I want a programming language 

in which I need only say what I wish done,’ 
give him a lollipop.”

—Alan Perlis

This chapter is a very brief and very selective history of 

programming languages and the ideals they have been de-

signed to serve. The ideals and the languages that express them 

are the basis for professionalism. Because C++ is the language 

we use in this book, we focus on C++ and languages that influ-

enced C++. The aim is to give a background and a perspective 

to the ideas presented in this book. For each language, we present 

its designer or designers: a language is not just an abstract cre-

ation, but a concrete solution designed by individuals in response 

to problems they faced at the time.
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22.1 History, ideals, and professionalism
“History is bunk,” Henry Ford famously declared. The contrary opinion has been 
widely quoted since antiquity: “He who does not know history is condemned to 
repeat it.” The problem is to choose which parts of history to know and which 
parts to discard: “95% of everything is bunk” is another relevant quote (with 
which we concur, though 95% is probably an underestimate). Our view of the 
relation of history to current practice is that there can be no professionalism with-
out some understanding of history. If you know too little of the background of 
your field, you are gullible because the history of any field of work is littered with 
plausible ideas that didn’t work. The “real meat” of history is ideas and ideals that 
have proved their worth in practical use.

We would have loved to talk about the origins of key ideas in many more 
languages and in all kinds of software, such as operating systems, databases, 
graphics, networking, the web, scripting, etc., but you’ll have to find those im-
portant and useful areas of software and programming elsewhere. We have 
barely enough space to scratch the surface of the ideals and history of program-
ming languages.

The ultimate aim of programming is always to produce useful systems. In the 
heat of discussions about programming techniques and programming languages, 
that’s easily forgotten. Don’t forget that! If you need a reminder, take another 
look at Chapter 1.

 22.1 History, ideals, and professionalism
 22.1.1 Programming language aims and philosophies

 22.1.2 Programming ideals

 22.1.3 Styles/paradigms

 22.2 Programming language history overview
 22.2.1 The earliest languages

 22.2.2 The roots of modern languages

 22.2.3 The Algol family

 22.2.4 Simula

 22.2.5 C

 22.2.6 C++

 22.2.7 Today

 22.2.8 Information sources
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22.1  HISTORY, IDEALS, AND PROFESSIONALISM 807

22.1.1 Programming language aims and philosophies
What is a programming language? What is a programming language supposed to 
do for us? Popular answers to “What is a programming language?” include

• A tool for instructing machines
• A notation for algorithms
• A means of communication among programmers
• A tool for experimentation
• A means of controlling computerized devices
• A way of expressing relationships among concepts
• A means of expressing high-level designs

Our answer is “All of the above — and more!” Clearly, we are thinking about 
general-purpose programming languages here, as we will throughout this chapter. 
In addition, there are special-purpose languages and domain-specific languages 
serving narrower and typically more precisely defined aims.

What properties of a programming language do we consider desirable?

• Portability
• Type safety
• Precisely defi ned
• High performance
• Ability to concisely express ideas
• Anything that eases debugging
• Anything that eases testing
• Access to all system resources
• Platform independence
• Runs on all platforms (e.g., Linux, Windows, smartphones, embedded 

systems)
• Stability over decades
• Prompt improvements in response to changes in application areas
• Ease of learning
• Small
• Support for popular programming styles (e.g., object-oriented program-

ming and generic programming)
• Whatever helps analysis of programs
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• Lots of facilities
• Supported by a large community
• Supportive of novices (students, learners)
• Comprehensive facilities for experts (e.g., infrastructure builders)
• Lots of software development tools available 
• Lots of software components available (e.g., libraries)
• Supported by an open software community
• Supported by major platform vendors (Microsoft, IBM, etc.)

Unfortunately, we can’t have all this at the same time. That’s sad because every 
one of these “properties” is objectively a good thing: each provides benefits, and a 
language that doesn’t provide them imposes added work and complications on its 
users. The reason we can’t have it all is equally fundamental: several of the prop-
erties are mutually exclusive. For example, you cannot be 100% platform indepen-
dent and also access all system resources; a program that accesses a resource that 
is not available on every platform cannot run everywhere. Similarly, we obviously 
want a language (and the tools and libraries we need to use it) that is small and 
easy to learn, but that can’t be achieved while providing comprehensive support 
for programming on all kinds of systems and for all kinds of application areas.

This is where ideals become important. Ideals are what guide the technical 
choices and trade-offs that every language, library, tool, and program designer 
must make. Yes, when you write a program you are a designer and must make 
design choices.

22.1.2 Programming ideals
The preface of The C++ Programming Language starts, “C++ is a general purpose 
programming language designed to make programming more enjoyable for the 
serious programmer.” Say what? Isn’t programming all about delivering prod-
ucts? About correctness, quality, and maintainability? About time-to-market? 
About efficiency? About supporting software engineering? That, too, of course, 
but we shouldn’t forget the programmer. Consider another example: Don Knuth 
said, “The best thing about the Alto is that it doesn’t run faster at night.” The Alto 
was a computer from the Xerox Palo Alto Research Center (PARC) that was one 
of the first “personal computers,” as opposed to the shared computers for which 
there was a lot of competition for daytime access. 

Our tools and techniques for programming exist to make a programmer, a 
human, work better and produce better results. Please don’t forget that. So what 
guidelines can we articulate to help a programmer produce the best software with 
the least pain? We have made our ideals explicit throughout the book so this sec-
tion is basically a summary.
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22.1  HISTORY, IDEALS, AND PROFESSIONALISM 809

The main reason we want our code to have a good structure is that the struc-
ture is what allows us to make changes without excessive effort. The better the 
structure, the easier it is to make a change, find and fix a bug, add a new feature, 
port it to a new architecture, make it run faster, etc. That’s exactly what we mean 
by “good.”

For the rest of this section, we will

• Revisit what we are trying to achieve, that is, what we want from our code
• Present two general approaches to software development and decide that 

a combination is better than either alternative by itself
• Consider key aspects of program structure as expressed in code:

• Direct expression of ideas
• Abstraction level
• Modularity
• Consistency and minimalism

Ideals are meant to be used. They are tools for thinking, not simply fancy phrases 
to trot out to please managers and examiners. Our programs are meant to approx-
imate our ideals. When we get stuck in a program, we step back to see if our prob-
lems come from a departure from some ideal; sometimes that helps. When we 
evaluate a program (preferably before we ship it to users), we look for departures 
from the ideals that might cause problems in the future. Apply ideals as widely as 
possible, but remember that practical concerns (e.g., performance and simplicity) 
and weaknesses in a language (no language is perfect) will often prevent you from 
achieving more than a good approximation of the ideals. 

Ideals can guide us when making specific technical decisions. For example, 
we can’t just make every single decision about interfaces for a library individually 
and in isolation (§14.1). The result would be a mess. Instead we must go back 
to our first principles, decide what is important about this particular library, and 
then produce a consistent set of interfaces. Ideally, we would articulate our design 
principles and trade-offs for that particular design in the documentation and in 
comments in the code. 

During the start of a project, review the ideals and see how they relate to 
the problems and the early ideas for their solution. This can be a good way to 
get ideas and to refine ideas. Later in the design and development process, when 
you are stuck, step back and see where your code has most departed from the 
ideals — this is where the bugs are most likely to lurk and the design problems 
are most likely to occur. This is an alternative to the default technique of re-
petitively looking in the same place and trying the same techniques to find the 
bug. “The bug is always where you are not looking — or you would have found 
it already.”
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22.1.2.1 What we want
Typically, we want

• Correctness: Yes, it can be diffi cult to defi ne what we mean by “correct,” but 
doing so is an important part of the complete job. Often, others defi ne for 
us what is correct for a given project, but then we have to interpret what 
they say.

• Maintainability: Every successful program will be changed over time; it will 
be ported to new hardware and software platforms, it will be extended 
with new facilities, and new bugs will be found that must be fi xed. The 
sections below about ideals for program structure address this ideal.

• Performance: Performance (“effi ciency”) is a relative term. Performance has 
to be adequate for the program’s purpose. It is often claimed that effi cient 
code is necessarily low-level and that concerns with a good, high-level 
structure of the code cause ineffi ciency. On the contrary, we fi nd that 
acceptable performance is often achieved through adherence to the ideals 
and approaches we recommend. The STL is an example of code that is 
simultaneously abstract and very effi cient. Poor performance can as easily 
arise from an obsession with low-level details as it can from disdain for 
such details.

• On-time delivery: Delivering the perfect program a year late is usually not 
good enough. Obviously, people expect the impossible, but we need 
to deliver quality software in a reasonable time. There is a myth that 
“completed on time” implies shoddiness. On the contrary, we fi nd that 
emphasis on good structure (e.g., resource management, invariants, and 
interface design), design for testability, and use of appropriate libraries 
(often designed for a specifi c application or application area) is a good way 
to meet deadlines.

This leads to a concern for structure in our code:

• If there is a bug in a program (and every large program has bugs), it is 
easier to fi nd in a program with a clear structure.

• If a program needs to be understood by a new person or needs to be mod-
ifi ed in some way, a clear structure is comprehensible with far less effort 
than a mess of low-level details.

• If a program hits a performance problem, it is often easier to tune a high-
level program (one that is a good approximation of the ideals and has a 
well-defi ned structure) than a low-level or messy one. For starters, the 
high-level one is more likely to be understandable. Second, the high-level 
one is often ready for testing and tuning long before the low-level one.
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Note the point about a program being understandable. Anything that helps us 
understand a program and helps us reason about it is good. Fundamentally, regu-
larity is better than irregularity — as long as the regularity is not achieved through 
oversimplification.

22.1.2.2 General approaches
There are two approaches to writing correct software:

• Bottom-up: Compose the system using only components proved to be correct.
• Top-down: Compose the system out of components assumed to contain 

errors and catch all errors.

Interestingly, the most reliable systems combine these two — apparently contrary — 
approaches. The reason for that is simple: for a large real-world system, neither 
approach will deliver the needed correctness, adaptability, and maintainability:

• We can’t build and “prove” enough basic components to eliminate all 
sources of errors.

• We can’t completely compensate for the fl aws of buggy basic components 
(libraries, subsystems, class hierarchies, etc.) when combining them in the 
fi nal system.

However, a combination of approximations to the two approaches can deliver 
more than either in isolation: we can produce (or borrow or buy) components 
that are sufficiently good, so that the problems that remain can be compensated 
for by error handling and systematic testing. Also, if we keep building better 
components, a larger part of a system can be constructed from them, reducing the 
amount of “messy ad hoc code” needed.

Testing is an essential part of software development. It is discussed in some 
detail in Chapter 26. Testing is the systematic search for errors. “Test early and 
often” is a popular slogan. We try to design our programs to simplify testing and 
to make it harder for errors to “hide” in messy code.

22.1.2.3 Direct expression of ideas

When we express something — be it high-level or low-level — the ideal is to express 
it directly in code, rather than through work-arounds. The fundamental ideal of 
representing our ideas directly in code has a few specific variants:

• Represent ideas directly in code. For example, it is better to represent an argu-
ment as a specifi c type (e.g., Month or Color) than as a more general one 
(e.g., int).

• Represent independent ideas independently in code. For example, with a few 
exceptions, the standard sort() can sort any standard container of any 
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element type; the concepts of sorting, sorting criteria, container, and ele-
ment type are independent. Had we built a “vector of objects allocated on 
the free store where the elements are of a class derived from Object with 
a before() member function defi ned for use by vector::sort()” we would 
have a far less general sort() because we made assumptions about storage, 
class hierarchy, available member functions, ordering, etc.

• Represent relationships among ideas directly in code. The most common relation-
ships that can be directly represented are inheritance (e.g., a Circle is a 
kind of Shape) and parameterization (e.g., a vector<T> represents what’s 
common for all vectors independently of a particular element type).

• Combine ideas expressed in code freely — where and only where combinations make 
sense. For example, sort() allows us to use a variety of element types and a 
variety of containers, but the elements must support < (if they do not, we 
use the sort() with an extra argument specifying the comparison criteria), 
and the containers we sort must support random-access iterators.

• Express simple ideas simply. Following the ideals listed above can lead to 
overly general code. For example, we may end up with class hierarchies 
with a more complicated taxonomy (inheritance structure) than anyone 
needs or with seven parameters to every (apparently) simple class. To 
avoid every user having to face every possible complication, we try to 
provide simple versions that deal with the most common or most impor-
tant cases. For example, we have a sort(b,e) that implicitly sorts using less 
than in addition to the general version sort(b,e,op) that sorts using op. 
We could also provide versions sort(c) for sorting a standard container 
using less than and sort(c,op) for sorting a standard container using op.

22.1.2.4 Abstraction level
We prefer to work at the highest feasible level of abstraction; that is, our ideal is to express 
our solutions in as general a way as possible.

For example, consider how to represent entries for a phone book (as we might 
keep it on a PDA or a cell phone). We could represent a set of (name,value) pairs 
as a vector<pair<string,Value_type>>. However, if we essentially always accessed 
that set using a name, map<string,Value_type> would be a higher level of ab-
straction, saving us the bother of writing (and debugging) access functions. On 
the other hand, vector<pair<string,Value_type>> is itself a higher level of abstrac-
tion than two arrays, string[max] and Value_type[max], where the relationship 
between the string and its value is implicit. The lowest level of abstraction would 
be something like an int (number of elements) plus two void*s (pointing to some 
form of representation, known to the programmer but not to the compiler). In our 
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example, every suggestion so far could be seen as too low-level because it focuses 
on the representation of the pair of values, rather than their function. We could 
move closer to the application by defining a class that directly reflects a use. For 
example, we could write our application code using a class Phonebook with an in-
terface designed for convenient use. That Phonebook class could be implemented 
using any one of the representations suggested.

The reason for preferring the higher level of abstraction (when we have an 
appropriate abstraction mechanism and if our language supports it with accept-
able efficiency) is that such formulations are closer to the way we think about our 
problems and solutions than solutions that have been expressed at the level of 
computer hardware.

The reason given for dropping to a lower level of abstraction is typically 
“efficiency.” This should be done only when really needed (§25.2.2). Using a 
lower-level (more primitive) language feature does not necessarily give better 
performance. Sometimes, it eliminates optimization opportunities. For example, 
using a Phonebook class, we have a choice of implementations, say, between 
string[max] plus Value_type[max] and map<string,Value_type>. For some ap-
plications the former is more efficient and for others the latter is. Naturally, 
performance would not be a major concern in an application involving only 
your personal directory. However, this kind of trade-off becomes interesting 
when we have to keep track of — and manipulate — millions of entries. More 
seriously, after a while, the use of low-level features soaks up the programmer’s 
time so that opportunities for improvements (performance or otherwise) are 
missed because of lack of time.

22.1.2.5 Modularity

Modularity is an ideal. We want to compose our  systems out of “components” 
(functions, classes, class hierarchies, libraries, etc.) that we can build, under-
stand, and test in isolation. Ideally, we also want to design and implement such 
components so that they can be used in more than one program (“reused”). 
Reuse is the building of systems out of previously tested components that have 
been used elsewhere — and the design and use of such components. We have 
touched upon this in our discussions of classes, class hierarchies, interface de-
sign, and generic programming. Much of what we say about “programming 
styles” (in §22.1.3) relates to the design, implementation, and use of potentially 
“reusable” components. Please note that not every component can be used in 
more than one program; some code is simply too specialized and is not easily 
improved to be usable elsewhere.

Modularity in code should reflect important logical distinctions in the ap-
plication. We do not “increase reuse” simply by putting two completely separate 
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classes A and B into a “reusable component” called C. By providing the union of 
A’s and B’s interfaces, the introduction of C complicates our code:

C

A BA B

User 1 User 2

User 1 User 2

Here, both User 1 and User 2 use C. Unless you look into C, you might think 
that User 1 and User 2 gained benefits from sharing a popular component. Ben-
efits from sharing (“reuse”) would (in this case, wrongly) be assumed to include 
better testing, less total code, larger user base, etc. Unfortunately, except for a bit 
of oversimplification, this is not a particularly rare phenomenon.

What would help? Maybe a common interface to A and B could be provided:

A&BInterface

A specifics B specifics

User 1 User 2 User 1 User 2

A B

These diagrams are intended to suggest inheritance and parameterization, re-
spectively. In both cases, the interface provided must be smaller than a simple 
union of A’s and B’s interfaces for the exercise to be worthwhile. In other words, 
A and B have to have a fundamental commonality for users to benefit from. 
Note how we again came back to interfaces (§9.7, §25.4.2) and by implication 
to invariants (§9.4.3).

22.1.2.6 Consistency and minimalism
Consistency and minimalism are primarily ideals for expressing ideas. So we 
might dismiss them as being about appearance. However, it is really hard to pre-
sent a messy design elegantly, so demands of consistency and minimalism can be 
used as design criteria and affect even the most minute details of a program:

• Don’t add a feature if you are in doubt about its utility.
• Do give similar facilities similar interfaces (and names), but only if the 

similarity is fundamental.
• Do give different facilities different names (and possibly different interface 

styles), but only if the differences are fundamental.
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Consistent naming, interface style, and implementation style help maintenance. 
When code is consistent, a new programmer doesn’t have to learn a new set of 
conventions for every part of a large system. The STL is an example (Chapters 
20–21, §B.4–6). When such consistency is impossible (for example, for ancient 
code or code in another language), it can be an idea to supply an interface that 
matches the style of the rest of the program. The alternative is to let the foreign 
(“strange,” “poor”) style infect every part of a program that needs to access the 
offending code.

One way of preserving minimalism and consistency is to carefully (and con-
sistently) document every interface. That way, inconsistencies and duplication 
are more likely to be noticed. Documenting pre-conditions, post-conditions, and 
invariants can be especially useful as can careful attention to resource manage-
ment and error reporting. A consistent error-handling and resource management 
strategy is essential for simplicity (§19.5).

To some programmers, the key design principle is KISS (“Keep It Simple, 
Stupid”). We have even heard it claimed that KISS is the only worthwhile design 
principle. However, we prefer less evocative formulations, such as “Keep simple 
things simple” and “Keep it simple: as simple as possible, but no simpler.” The 
latter is a quote from Albert Einstein, which reflects that there is a danger of sim-
plifying beyond the point where it makes sense, thus damaging the design. The 
obvious question is, “Simple for whom and compared to what?”

22.1.3 Styles/paradigms
When we design and implement a program, we aim for a consistent style. C++ 
supports four major styles that can be considered fundamental:

• Procedural programming
• Data abstraction
• Object-oriented programming
• Generic programming

These are sometimes (somewhat pompously) called “programming paradigms.” 
There are many more “paradigms,” such as functional programming, logic pro-
gramming, rule-based programming, constraints-based programming, and aspect-
oriented programming. However, C++ doesn’t support those directly, and we 
just can’t cover everything in a single beginner’s book, so we’ll leave those to 
“future work” together with the mass of details that we must leave out about the 
paradigms/styles we do cover:

• Procedural programming: the idea of composing a program out of functions 
operating on arguments. Examples are libraries of mathematical func-
tions, such as sqrt() and cos(). C++ supports this style of programming 
through the notion of functions (Chapter 8). The ability to choose to 
pass arguments by value, by reference, and by const reference can be 
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most valuable. Often, data is organized into data structures represented 
as structs. Explicit abstraction mechanisms (such as private data mem-
bers or member functions of a class) are not used. Note that this style of 
programming — and functions — is an integral part of every other style.

• Data abstraction: the idea of fi rst providing a set of types suitable for an ap-
plication area and then writing the program using those. Matrices provide 
a classic example (§24.3–6). Explicit data hiding (e.g., the use of private 
data members of a class) is heavily used. The standard string and vector
are popular examples, which show the strong relationship between data 
abstraction and parameterization as used by generic programming. This 
is called “abstraction” because a type is used through an interface, rather 
than by directly accessing its implementation.

• Object-oriented programming: the idea of organizing types into hierarchies to 
express their relationships directly in code. The classic example is the 
Shape hierarchy from Chapter 14. This is obviously valuable when the 
types really have fundamental hierarchical relationships. However, there 
has been a strong tendency to overuse; that is, people built hierarchies of 
types that do not belong together for fundamental reasons. When people 
derive, ask why. What is being expressed? How does the base/derived 
distinction help me in this particular case?

• Generic programming: the idea of taking concrete algorithms and “lifting” 
them to a higher level of abstraction by adding parameters to express 
what can be varied without changing the essence of an algorithm. The
high() example from Chapter 20 is a simple example of lifting. The fi nd()
and sort() algorithms from the STL are classic algorithms expressed in 
very general forms using generic programming. See Chapters 20–21 and 
the following example. 

All together now! Often, people talk about programming styles (“paradigms”) as 
if they were simple disjointed alternatives: either you use generic programming or 
you use object-oriented programming. If your aim is to express solutions to prob-
lems in the best possible way, you will use a combination of styles. By “best,” we 
mean easy to read, easy to write, easy to maintain, and sufficiently efficient. Con-
sider an example: the classic “Shape example” originated with Simula (§22.2.4) 
and is usually seen as an example of object-oriented programming. A first solution 
might look like this:

void draw_all(vector<Shape*>& v)
{
          for(int i = 0; i<v.size(); ++i) v[i]–>draw();
}
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This does indeed look “rather object-oriented.” It critically relies on a class hier-
archy and on the virtual function call finding the right draw() function for every 
given Shape; that is, for a Circle, it calls Circle::draw() and for an Open_polyline, 
it calls Open_polyline::draw(). But the vector<Shape*> is basically a generic pro-
gramming construct: it relies on a parameter (the element type) that is resolved at 
compile time. We could emphasize that by using a simple standard library algo-
rithm to express the iteration over all elements:

void draw_all(vector<Shape*>& v)
{
          for_each(v.begin(),v.end(),mem_fun(&Shape::draw));
}

The third argument of for_each() is a function to be called for each element of the 
sequence specified by the first two arguments (§B.5.1). Now, that third function 
call is assumed to be an ordinary function (or a function object) called using the 
f(x) syntax, rather than a member function called by the p–>f() syntax. So, we use 
the standard library function mem_fun() (§B.6.2) to say that we really want to call 
a member function (the virtual function Shape::draw()). The point is that for_
each() and mem_fun(), being templates, really aren’t very “OO-like”; they clearly 
belong to what we usually consider generic programming. More interesting still, 
mem_fun() is a freestanding (template) function returning a class object. In other 
words, it can easily be classified as plain data abstraction (no inheritance) or even 
procedural programming (no data hiding). So, we could claim that this one line 
of code uses key aspects of all of the four fundamental styles supported by C++.

But why would we write the second version of the “draw all Shapes” exam-
ple? It fundamentally does the same thing as the first version; it even takes a few 
more characters to write it in that way! We could argue that expressing the loop 
using for_each() is “more obvious and less error-prone” than writing out the for-
loop, but for many that’s not a terribly convincing argument. A better one is that 
“for_each() says what is to be done (iterate over a sequence) rather than how it 
is to be done.” However, for most people the convincing argument is simply that 
“it’s useful”: it points the way to a generalization (in the best generic programming 
tradition) that allows us to solve more problems. Why are the shapes in a vector? 
Why not a list? Why not a general sequence? So we can write a third (and more 
general) version:

template<typename Iter> void draw_all(Iter b, Iter e)
{
          for_each(b,e,mem_fun(&Shape::draw));
}
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This will now work for all kinds of sequences of shapes. In particular, we can even 
call it for the elements of an array of Shapes:

Point p {0,100};
Point p2 {50,50};
Shape* a[]  = { new Circle{p,50}, new Triangle{p,p2,Point{25,25}} };
draw_all(a,a+2);

We could also provide a version that is simpler to use by restricting it to work on 
containers:

template<class Cont> void draw_all(Cont& c)
{
          for (auto& p : c) p->draw();
}

Or even, using C++14 concepts (§19.3.3):

void draw_all(Container& c)
{
          for (auto& p : c) p->draw();
}

The point is still that this code is clearly object-oriented, generic, and very like ordi-
nary procedural code. It relies on data abstraction in its class hierarchy and the im-
plementation of the individual containers. For lack of a better term, programming 
using the most appropriate mix of styles has been called multi-paradigm programming. 
However, I have come to think of this as simply programming: the “paradigms” pri-
marily reflect a restricted view of how problems can be solved and weaknesses in 
the programming languages we use to express our solutions. I predict a bright fu-
ture for programming with significant improvements in technique, programming 
languages, and support tools.

22.2 Programming language history overview
In the very beginning, programmers chiseled the zeros and ones into stones by 
hand! Well, almost. Here, we’ll start (almost) from the beginning and quickly 
introduce some of the major developments in the history of programming lan-
guages as they relate to programming using C++.

There are a lot of programming languages. The rate of language invention 
is at least 2000 a decade, and the rate of “language death” is about the same. 
Here, we cover almost 60 years by briefly mentioning ten languages. For more 
information, see http://research.ihost.com/hopl/HOPL.html. There, you can find 
links to all the articles of the three ACM SIGPLAN HOPL (History of Program-
ming Languages) conferences. These are extensively peer-reviewed papers — and 
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therefore far more trustworthy and complete than the average web source of in-
formation. The languages we discuss here were all represented at HOPL. Note 
that if you type the full title of a famous paper into a web search engine, there is a 
good chance that you’ll find the paper. Also, most computer scientists mentioned 
here have home pages where you can find much information about their work.

Our presentation of a language in this chapter is necessarily very brief: each 
language mentioned — and hundreds not mentioned — deserves a whole book. 
We are also very selective in what we mention about a language. We hope you 
take this as a challenge to learn more rather than thinking, “So that’s all there is 
to language X!” Remember, every language mentioned here was a major accom-
plishment and made an important contribution to our world. There is just no way 
we could do justice to these languages in this short space — but not mentioning 
any would be worse. We would have liked to supply a bit of code for each lan-
guage, but sorry, this is not the place for such a project (see exercises 5 and 6).

Far too often, an artifact (e.g., a programming language) is presented as sim-
ply what it is or as the product of some anonymous “development process.” This 
misrepresents history: typically — especially in the early and formative years — a 
language is the result of the ideals, work, personal tastes, and external constraints 
on one or (typically) more individuals. Thus, we emphasize key people associated 
with the languages. IBM, Bell Labs, Cambridge University, etc. do not design 
languages; individuals from such organizations do — typically in collaboration 
with friends and colleagues.

Please note a curious phenomenon that often skews our view of history. Pho-
tographs of famous scientists and engineers are most often taken when they are 
famous and distinguished, members of national academies, Fellows of the Royal 
Society, Knights of St. John, recipients of the Turing Award, etc. — in other words, 
when they are decades older than when they did their most spectacular work. 
Almost all were/are among the most productive members of their profession until 
late in life. However, when you look back to the birth of your favorite language 
features and programming techniques, try to imagine a young man (there are 
still far too few women in science and engineering) trying to figure out if he has 
sufficient cash to invite a girlfriend out to a decent restaurant or a parent trying to 
decide if a crucial paper can be submitted to a conference at a time and place that 
can be combined with a vacation for a young family. The gray beards, balding 
heads, and dowdy clothes come much later.

22.2.1 The earliest languages
When — starting in 1949 — the first “modern” stored-program electronic comput-
ers appeared, each had its own language. There was a one-to-one correspondence 
between the expression of an algorithm (say, a calculation of a planetary orbit) 
and instructions for a specific machine. Obviously, the scientist (the users were 
most often scientists) had notes with mathematical formulas, but the program 

Stroustrup_book.indb   819Stroustrup_book.indb   819 5/8/15   10:31 AM5/8/15   10:31 AM



CHAPTER 22 • IDEALS AND HISTORY820

was a list of machine instructions. The first primitive lists were decimal or oc-
tal numbers — exactly matching their representation in the computer’s memory. 
Later, assemblers and “auto codes” appeared; that is, people developed languages 
where machine instructions and machine facilities (such as registers) had symbolic 
names. So, a programmer might write “LD R0 123” to load the contents of the 
memory with the address 123 into register 0. However, each machine had its own 
set of instructions and its own language.

David Wheeler from the University of Cambridge Computer Laboratory is the 
obvious candidate for representing programming language designers of that time. 
In 1949, he wrote the first real program ever to run on a stored-program computer 
(the “table of squares” program we saw in §4.4.2.1). He is one of about ten people 
who have a claim on having written the first compiler (for a machine-specific “auto 
code”). He invented the function call (yes, even something so apparently simple 
needs to have been invented at some point). He wrote a brilliant paper on how 
to design libraries in 1951; that paper was at least 20 years ahead of its time! He 
was co-author with Maurice Wilkes (look him up) and Stanley Gill of the first 
book about programming. He received the first Ph.D. in computer science (from 
Cambridge in 1951) and later made major contributions to hardware (cache archi-
tectures and early local-area networks) and algorithms (e.g., the TEA encryption 
algorithm [§25.5.6] and the “Burrows-Wheeler transform” [the compression algo-
rithm used in bzip2]). David Wheeler happens to have been Bjarne Stroustrup’s 
Ph.D. thesis adviser — computer science is a young discipline. David Wheeler did 
some of his most important work as a grad student. He worked on to become a 
professor at Cambridge and a Fellow of the Royal Society.
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Campbell-Kelly, Martin. “David John Wheeler.” Biographical Memoirs of Fellows of the 

Royal Society, Vol. 52, 2006. (His technical biography.) 
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Knuth, Donald. The Art of Computer Programming. Addison-Wesley, 1968, and many 

revisions. Look for “David Wheeler” in the index of each volume.
TEA link: http://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm.
Wheeler, D. J. “The Use of Sub-routines in Programmes.” Proceedings of the 

1952 ACM National Meeting. (That’s the library design paper from 1951.)
Wilkes, M. V., D. Wheeler, and D. J. Gill. Preparation of Programs for an Electronic 

Digital Computer. Addison-Wesley, 1951; 2nd edition, 1957. The first book on 
programming.

22.2.2 The roots of modern languages
Here is a chart of important early languages:

Lisp 

Fortran 

Algol60

Simula 

BCPL 

PL/I

Algol68

Pascal 

Classic C COBOL 

1950s: 1960s: 1970s: 

These languages are important partly because they were (and in some cases still 
are) widely used or because they became the ancestors to important modern lan-
guages — often direct descendants with the same name. In this section, we address 
the three early languages — Fortran, COBOL, and Lisp — to which most modern 
languages trace their ancestry.

22.2.2.1 Fortran
The introduction of Fortran in 1956 was arguably the most significant step in the 
development of programming languages. “Fortran” stands for “Formula Trans-
lation,” and the fundamental idea was to generate efficient machine code from a 
notation designed for people rather than machines. The model for the Fortran 
notation was what scientists and engineers wrote when solving problems using 
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mathematics, rather than the machine instructions provided by the (then very 
new) electronic computers. 

From a modern perspective, Fortran can be seen as the first attempt to directly 
represent an application domain in code. It allowed programmers to write linear 
algebra much as they found it in textbooks. Fortran provided arrays, loops, and 
standard mathematical functions (using the standard mathematical notation, such 
as x+y and sin(x)). There was a standard library of mathematical functions, mech-
anisms for I/O, and a user could define additional functions and libraries.

The notation was largely machine independent so that Fortran code could 
often be moved from computer to computer with only minor modification. This 
was a huge improvement over the state of the art. Therefore, Fortran is considered 
the first high-level programming language.

It was considered essential that the machine code generated from the Fortran 
source code was close to optimally efficient: machines were room size and enor-
mously expensive (many times the yearly salary of a team of good programmers), 
they were (by modern standards) ridiculously slow (such as 100,000 instructions/
second), and they had absurdly small memories (such as 8K bytes). However, 
people were fitting useful programs into those machines, and an improvement in 
notation (leading to better programmer productivity and portability) could not be 
allowed to get in the way of that.

Fortran was hugely successful in its target domain of scientific and engineer-
ing calculations and has been under continuous evolution ever since. The main 
versions of the Fortran language are II, IV, 77, 90, 95, 03. It is still debated whether 
Fortran77 or Fortran90 is more widely used today.
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The first definition of and implementation of Fortran were done by a team at 
IBM led by John Backus: “We did not know what we wanted and how to do it. 
It just sort of grew.” How could he have known? Nothing like that had been done 
before, but along the way they developed or discovered the basic structure of com-
pilers: lexical analysis, syntax analysis, semantic analysis, and optimization. To 
this day, Fortran leads in the optimization of numerical computations. One thing 
that emerged (after the initial Fortran) was a notation for specifying grammars: 
the Backus-Naur Form (BNF). It was first used for Algol60 (§22.2.3.1) and is now 
used for most modern languages. We use a version of BNF for our grammars in 
Chapters 6 and 7.

Much later, John Backus pioneered a whole new branch of programming lan-
guages (“functional programming”), advocating a mathematical approach to pro-
gramming as opposed to the machine view based on reading and writing memory 
locations. Note that pure math does not have the notion of assignment, or even 
actions. Instead you “simply” state what must be true given a set of conditions. 
Some of the roots of functional programming are in Lisp (§22.2.2.3), and some 
of the ideas from functional programming are reflected in the STL (Chapter 21).
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22.2.2.2 COBOL
COBOL (“The Common Business-Oriented Language”) was (and sometimes 
still is) for business programmers what Fortran was (and sometimes still is) for 
scientific programmers. The emphasis was on data manipulation:

• Copying
• Storing and retrieving (record keeping)
• Printing (reports)

Calculation/computation was (often correctly in COBOL’s core application do-
mains) seen as a minor matter. It was hoped/claimed that COBOL was so close to 
“business English” that managers could program and programmers would soon 
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become redundant. That is a hope we have heard frequently repeated over the 
years by managers keen on cutting the cost of programming. It has never been 
even remotely true. 

COBOL was initially designed by a committee (CODASYL) in 1959–60 at 
the initiative of the U.S. Department of Defense and a group of major computer 
manufacturers to address the needs of business-related computing. The design 
built directly on the FLOW-MATIC language invented by Grace Hopper. One 
of her contributions was the use of a close-to-English syntax (as opposed to the 
mathematical notation pioneered by Fortran and still dominant today). Like For-
tran — and like all successful languages — COBOL underwent continuous evolu-
tion. The major revisions were 60, 61, 65, 68, 70, 80, 90, and 04.

Grace Murray Hopper had a Ph.D. in mathematics from Yale University. She 
worked for the U.S. Navy on the very first computers during World War II. She 
returned to the navy after a few years in the early computer industry:

“Rear Admiral Dr. Grace Murray Hopper (U.S. Navy) was a remarkable 
woman who grandly rose to the challenges of programming the first com-
puters. During her lifetime as a leader in the field of software development 
concepts, she contributed to the transition from primitive programming tech-
niques to the use of sophisticated compilers. She believed that ‘we’ve always 
done it that way’ was not necessarily a good reason to continue to do so.”

—Anita Borg, at the “Grace Hopper Celebration of 
Women in Computing” conference, 1994

Grace Murray Hopper is often credited with being the first person to call an 
error in a computer a “bug.” She certainly was among the early users of the term 
and documented a use:
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As can be seen, that bug was real (a moth), and it affected the hardware directly. 
Most modern bugs appear to be in the software and have less graphical appeal.

References
A biography of G. M. Hopper: http://tergestesoft.com/~eddysworld/hopper.htm.
ISO/IEC 1989:2002. Information Technology — Programming Languages — COBOL.
Sammet, Jean E. “The Early History of COBOL.” ACM SIGPLAN Notices, Vol. 

13 No. 8, 1978. Special Issue: History of Programming Languages Conference.

22.2.2.3 Lisp
Lisp was originally designed in 1958 by John McCarthy at MIT for linked-list and 
symbolic processing (hence its name: “LISt Processing”). Initially Lisp was (and 
is often still) interpreted, as opposed to compiled. There are dozens (most likely 
hundreds) of Lisp dialects. In fact, it is often claimed that “Lisp has an im-
plied plural.” The current most popular dialects are Common Lisp and Scheme. 
This family of languages has been (and is) the mainstay of artificial intelligence 
(AI) research (though delivered products have often been in C or C++). One 
of the main sources of inspiration for Lisp was the (mathematical notion of) 
lambda calculus.

Fortran and COBOL were specifically designed to help deliver solutions to 
real-world problems in their respective application areas. The Lisp community 
was much more concerned with programming itself and the elegance of pro-
grams. Often these efforts were successful. Lisp was the first language to separate 
its definition from the hardware and base its semantics on a form of math. If Lisp 
had a specific application domain, it is far harder to define precisely: “AI” and 
“symbolic computation” don’t map as clearly into common everyday tasks as 
“business processing” and “scientific programming.” Ideas from Lisp (and from 
the Lisp community) can be found in many more modern languages, notably the 
functional languages.
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John McCarthy’s B.S. was in mathematics from the California Institute of 
Technology and his Ph.D. was in mathematics from Princeton University. You 
may notice that there are a lot of math majors among the programming language 
designers. After his memorable work at MIT, McCarthy moved to Stanford in 
1962 to help found the Stanford AI lab. He is widely credited for inventing the 
term artificial intelligence and made many contributions to that field.

References
Abelson, Harold, and Gerald J. Sussman. Structure and Interpretation of Computer 

Programs, Second Edition. MIT Press, 1996. ISBN 0262011530. 
ANSI INCITS 226-1994 (formerly ANSI X3.226:1994). American National Stan-

dard for Programming Language — Common LISP.
McCarthy, John. “History of LISP.” ACM SIGPLAN Notices, Vol. 13 No. 8, 1978. 

Special Issue: History of Programming Languages Conference.
Steele, Guy L., Jr. Common Lisp: The Language. Digital Press, 1990. ISBN 1555580416.
Steele, Guy L., Jr., and Richard Gabriel. “The Evolution of Lisp.” Proceedings of 

the ACM History of Programming Languages Conference (HOPL-2). ACM 
SIGPLAN Notices, Vol. 28 No. 3, 1993.

22.2.3 The Algol family
In the late 1950s, many felt that programming was getting too complicated, too ad 
hoc, and too unscientific. They felt that the variety of programming languages was 
unnecessarily great and that those languages were put together with insufficient 
concern for generality and sound fundamental principles. This is a sentiment that 
has surfaced many times since then, but a group of people came together under 
the auspices of IFIP (the International Federation of Information Processing), and 
in just a couple of years they created a new language that revolutionized the way 
we think about languages and their definition. Most modern languages — includ-
ing C++ — owe much to this effort.
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22.2.3.1 Algol60
The “ALGOrithmic Language,” Algol, which resulted from the efforts of the 
IFIP 2.1 group, was a breakthrough of modern programming language concepts:

• Lexical scope
• Use of grammar to defi ne the language
• Clear separation of syntactic and semantic rules
• Clear separation of language defi nition and implementation
• Systematic use of (static, i.e., compile-time) types
• Direct support for structured programming

The very notion of a “general-purpose programming language” came with Algol. 
Before that, languages were scientific (e.g., Fortran), business (e.g., COBOL), list 
manipulation (e.g., Lisp), simulation, etc. Of these languages, Algol60 is most 
closely related to Fortran.

Unfortunately, Algol60 never reached major nonacademic use. It was seen 
as “too weird” by many in the industry, “too slow” by Fortran programmers, 
“not supportive of business processing” by COBOL programmers, “not flexible 
enough” by Lisp programmers, “too academic” by most people in the industry 
(including the managers who controlled investment in tools), and “too European” 
by many Americans. Most of the criticisms were correct. For example, the Algol60 
report didn’t define any I/O mechanism! However, similar criticisms could have 
been leveled at just about any contemporary language — and Algol set the new 
standard for many areas.

One problem with Algol60 was that no one knew how to implement it. That 
problem was solved by a team of programmers led by Peter Naur (the editor of 
the Algol60 report) and Edsger Dijkstra:

Peter Naur was educated (as an astronomer) at the University of Copen-
hagen and worked at the Technical University of Copenhagen (DTH) and for 
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the Danish computer manufacturer Regnecentralen. He learned programming 
early (1950–51) in the Computer Laboratory in Cambridge, England (Denmark 
didn’t have computers that early), and later had a distinguished career spanning 
the academia/industry gulf. He was co-inventor of BNF (the Backus-Naur Form) 
used to describe grammars and a very early proponent of formal reasoning about 
programs (Bjarne Stroustrup first — in 1971 or so — learned the use of invariants 
from Peter Naur’s technical articles). Naur consistently maintained a thoughtful 
perspective on computing, always considering the human aspects of program-
ming. In fact, his later work could reasonably be considered part of philosophy 
(except that he considers conventional academic philosophy utter nonsense). He 
was the first professor of Datalogi at the University of Copenhagen (the Danish 
term datalogi is best translated as “informatics”; Peter Naur hates the term computer 
science as a misnomer — computing is not primarily about computers).

Edsger Dijkstra was another of computer science’s all-time greats. He stud-
ied physics in Leyden but did his early work in computing in Mathematisch 
Centrum in Amsterdam. He later worked in quite a few places, including Eind-
hoven University of Technology, Burroughs Corporation, and the University of 
Texas (Austin). In addition to his seminal work on Algol, he was a pioneer and 
strong proponent of the use of mathematical logic in programming, algorithms, 
and one of the designers and implementers of THE operating system — one of 
the first operating systems to systematically deal with concurrency. THE stands 
for “Technische Hogeschool Eindhoven” — the university where Edsger Dijkstra 
worked at the time. Arguably, his most famous paper was “Go-To Statement 
Considered Harmful,” which convincingly demonstrated the problems with un-
structured control flows.
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The Algol family tree is impressive:

Algol60

Simula67 

Algol68

Pascal 

Algol58

Note Simula67 and Pascal. These languages are the ancestors to many (probably 
most) modern languages.
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22.2.3.2 Pascal
The Algol68 language mentioned in the Algol family tree was a large and ambi-
tious project. Like Algol60, it was the work of “the Algol committee” (IFIP work-
ing group 2.1), but it took “forever” to complete and many were impatient and 
doubtful that something useful would ever come from that project. One member 
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of the Algol committee, Niklaus Wirth, decided simply to design and implement 
his own successor to Algol. In contrast to Algol68, that language, called Pascal, 
was a simplification of Algol60.

Pascal was completed in 1970 and was indeed simple and somewhat inflexible 
as a result. It was often claimed to be intended just for teaching, but early papers 
describe it as an alternative to Fortran on the supercomputers of the day. Pascal was 
indeed easy to learn, and after a very portable implementation became available it 
became very popular as a teaching language, but it proved to be no threat to Fortran.

Pascal was the work of Professor Niklaus Wirth (photos from 1969 and 2004) 
of the Technical University of Switzerland in Zurich (ETH). His Ph.D. (in elec-
trical engineering and computer science) is from the University of California at 
Berkeley, and he maintains a lifelong connection with California. Professor Wirth 
is the closest thing the world has had to a professional language designer. Over a 
period of 25 years, he designed and implemented

• Algol W
• PL/360
• Euler
• Pascal
• Modula
• Modula-2
• Oberon
• Oberon-2
• Lola (a hardware description language)
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Niklaus Wirth describes this as his unending quest for simplicity. His work has 
been most influential. Studying that series of languages is a most interesting exer-
cise. Professor Wirth is the only person ever to present two languages at HOPL.

In the end, pure Pascal proved to be too simple and rigid for industrial suc-
cess. In the 1980s, it was saved from extinction primarily through the work of 
Anders Hejlsberg. Anders Hejlsberg was one of the three founders of Borland. 
He first designed and implemented Turbo Pascal (providing, among other things, 
more flexible argument-passing facilities) and later added a C++-like object model 
(but with just single inheritance and a nice module mechanism). He was educated 
at the Technical University in Copenhagen, where Peter Naur occasionally lec-
tured — it’s sometimes a very small world. Anders Hejlsberg later designed Delphi 
for Borland and C# for Microsoft.

The (necessarily simplified) Pascal family tree looks like this:

Pascal

Modula Modula-2 Oberon

Turbo Pascal Borland Pascal Delphi

Oberon-2

Pascal-2

Ada
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22.2.3.3 Ada
The Ada programming language was designed to be a language for all the pro-
gramming needs of the U.S. Department of Defense. In particular, it was to be a 
language in which to deliver reliable and maintainable code for embedded systems 
programming. Its most obvious ancestors are Pascal and Simula (see §22.2.3.2 
and §22.2.4). The leader of the group that designed Ada was Jean Ichbiah — a past 
chairman of the Simula Users’ Group. The Ada design emphasized

• Data abstraction (but no inheritance until 1995)
• Strong static type checking
• Direct language support concurrency

The design of Ada aimed to be the embodiment of software engineering in pro-
gramming languages. Consequently, the U.S. DoD did not design the language; 
it designed an elaborate process for designing the language. A huge number of 
people and organizations contributed to the design process, which progressed 
through a series of competitions, to produce the best specification and next to 
produce the best language embodying the ideas of the winning specification. This 
immense 20-year project (1975–98) was from 1980 managed by a department 
called AJPO (Ada Joint Program Office).

In 1979, the resulting language was named after Lady Augusta Ada Lovelace 
(a daughter of Lord Byron, the poet). Lady Lovelace could be claimed to have 
been the first programmer of modern times (for some definition of “modern”) 
because she had worked with Charles Babbage (the Lucasian Professor of Math-
ematics in Cambridge — that’s Newton’s chair!) on a revolutionary mechanical 
computer in the 1840s. Unfortunately, Babbage’s machine was unsuccessful as a 
practical tool.
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Thanks to the elaborate process, Ada has been considered the ultimate design-
by-committee language. The lead designer of the winning design team, Jean Ich-
biah from the French company Honeywell Bull, emphatically denied that. How-
ever, I suspect (based on discussion with him) that he could have designed a better 
language, had he not been so constrained by the process.

Ada’s use was mandated for military applications by the DoD for many years, 
leading to the saying “Ada, it’s not just a good idea, it’s the law!” Initially, the use 
of Ada was just “mandated,” but when many projects received “waivers” to use 
other languages (typically C++), the U.S. Congress passed a law requiring the use 
of Ada in most military applications. That law was later rescinded in the face of 
commercial and technical realities. Bjarne Stroustrup is one of the very few people 
to have had his work banned by the U.S. Congress.

That said, we insist that Ada is a much better language than its reputation 
would indicate. We suspect that if the U.S. DoD had been less heavy-handed about 
its use and the exact way in which it was to be used (standards for application de-
velopment processes, software development tools, documentation, etc.), it could 
have become noticeably more successful. To this day, Ada is important in aero-
space applications and similar advanced embedded systems application areas.

Ada became a military standard in 1980, an ANSI standard in 1983 (the first 
implementation was done in 1983 — three years after the first standard!), and an 
ISO standard in 1987. The ISO standard was extensively (but of course com-
patibly) revised for a 1995 ISO standard. Notable improvements included more 
flexibility in the concurrency mechanisms and support for inheritance.
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22.2.4 Simula
Simula was developed in the early to mid-1960s by Kristen Nygaard and Ole-
Johan Dahl at the Norwegian Computing Center and Oslo University. Simula is 
indisputably a member of the Algol family of languages. In fact, Simula is almost 
completely a superset of Algol60. However, we choose to single out Simula for 
special attention because it is the source of most of the fundamental ideas that 
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today are referred to as “object-oriented programming.” It was the first language to 
provide inheritance and virtual functions. The words class for “user-defined type” 
and virtual for a function that can be overridden and called through the interface 
provided by a base class come from Simula.

Simula’s contribution is not limited to language features. It came with 
an articulated notion of object-oriented design based on the idea of modeling 
real-world phenomena in code:

• Represent ideas as classes and class objects.
• Represent hierarchical relations as class hierarchies (inheritance).

Thus, a program becomes a set of interacting objects rather than a monolith.

Kristen Nygaard — the co-inventor (with Ole-Johan Dahl, to the left, wearing 
glasses) of Simula67 — was a giant by most measures (including height), with 
an intensity and generosity to match. He conceived of the fundamental ideas of 
object-oriented programming and design, notably inheritance, and pursued their 
implications over decades. He was never satisfied with simple, short-term, and 
shortsighted answers. He had a constant social involvement that lasted over dec-
ades. He can be given a fair bit of credit for Norway staying out of the European 
Union, which he saw as a potential centralized and bureaucratic nightmare that 
would be insensitive to the needs of a small country at the far edge of the Union — 
Norway. In the mid-1970s Kristen Nygaard spent significant time in the computer 
science department of the University of Aarhus, Denmark (where, at the time, 
Bjarne Stroustrup was studying for his master’s degree).
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Kristen Nygaard’s master’s degree is in mathematics from the University of 
Oslo. He died in 2002, just a month before he was (together with his lifelong 
friend Ole-Johan Dahl) to receive the ACM’s Turing Award, arguably the highest 
professional honor for a computer scientist.

Ole-Johan Dahl was a more conventional academic. He was very interested 
in specification languages and formal methods. In 1968, he became the first full 
professor of informatics (computer science) at Oslo University.

In August 2000 Dahl and Nygaard were made Commanders of the Order of 
Saint Olav by the King of Norway. Even true geeks can gain recognition in their 
hometown!
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22.2.5 C
In 1970, it was “well known” that serious systems programming — in particular 
the implementation of an operating system — had to be done in assembly code 
and could not be done portably. That was much as the situation had been for 
scientific programming before Fortran. Several individuals and groups set out to 
challenge that orthodoxy. In the long run, the C programming language (Chapter 
27) was by far the most successful of those efforts.

Dennis Ritchie designed and implemented the C programming language in 
Bell Telephone Laboratories’ Computer Science Research Center in Murray Hill, 
New Jersey. The beauty of C is that it is a deliberately simple programming lan-
guage sticking very close to the fundamental aspects of hardware. Most of the 
current complexities (most of which reappear in C++ for compatibility reasons) 
were added after his original design and in several cases over Dennis Ritchie’s ob-
jections. Part of C’s success was its early wide availability, but its real strength was 
its direct mapping of language features to hardware facilities (see §25.4–5). Dennis 
Ritchie succinctly described C as “a strongly typed, but weakly checked language”; 
that is, C has a static (compile-time) type system, and a program that uses an object 
in a way that differs from its definition is not legal. However, a C compiler can’t 
check that. That made sense when the C compiler had to run in 48K bytes of 
memory. Soon after C came into use, people devised a program, called lint, that 
separately from the compiler verified conformance to the type system.

Together with Ken Thompson, Dennis Ritchie is the co-inventor of Unix, 
easily the most influential operating system of all times. C was — and is — as-
sociated with the Unix operating system and through that with Linux and the 
open-source movement.
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For 40 years, Dennis Ritchie worked in Bell Laboratories’ Computer Science 
Research Center. He was a graduate of Harvard University (physics); his Ph.D. 
in applied mathematics from Harvard University was never granted because he 
either forgot to or refused to pay a small ($60) registration fee.

In the early years, 1974–79, many people in Bell Labs influenced the design 
of C and its adoption. Doug McIlroy was everybody’s favorite critic, discussion 
partner, and ideas man. He influenced C, C++, Unix, and much more.
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Brian Kernighan is a programmer and writer extraordinaire. Both his code 
and his prose are models of clarity. The style of this book is in part derived from 
the tutorial sections of his masterpiece, The C Programming Language (known as 
“K&R” after its co-authors, Brian Kernighan and Dennis Ritchie).

It is not enough to have good ideas; to be useful on a large scale, those ideas 
have to be reduced to their simplest form and articulated clearly in a way that 
is accessible to large numbers of people in their target audience. Verbosity is 
among the worst enemies of such presentation of ideas; so is obfuscation and 
over-abstraction. Purists often scoff at the results of such popularization and prefer 
“original results” presented in a way accessible only to experts. We don’t: getting a 
nontrivial, but valuable, idea into the head of a novice is difficult, essential to the 
growth of professionalism, and valuable to society at large.

Over the years, Brian Kernighan has been involved with many influential 
programming and publishing projects. Two examples are AWK — an early script-
ing language named by the initials of its authors (Aho, Weinberger, and Ker-
nighan) — and AMPL, “A Mathematical Programming Language.”

Brian Kernighan is currently a professor at Princeton University; he is of 
course an excellent teacher, specializing in making otherwise complex topics clear. 
For more than 30 years he worked in Bell Laboratories’ Computer Science Re-
search Center. Bell Labs later became AT&T Bell Labs and later still split into 
AT&T Labs and Lucent Bell Labs. He is a graduate of the University of Toronto 
(physics); his Ph.D. is in electrical engineering from Princeton University.

The C language family tree looks like this:

Classic C BCPL B CPL 

C89 

C++ 
C++98 

C99 

Martin Richards, 
Cambridge, 1967 

Christopher Strachey, 
Cambridge, mid-1960s 

Ken Thompson, 
BTL, 1972 

The origins of C lay in the never-completed CPL project in England, the 
BCPL (Basic CPL) language that Martin Richards did while visiting MIT on 
leave from Cambridge University, and an interpreted language, called B, done 
by Ken Thompson. Later, C was standardized by ANSI and the ISO, and there 
were a lot of influences from C++ (e.g., function argument checking and consts).
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CPL was a joint project between Cambridge University and Imperial College 
in London. Initially, the project had been done in Cambridge, so “C” officially 
stood for “Cambridge.” When Imperial College became a partner, the official ex-
planation of the “C” became “Combined.” In reality (or so we are told), it always 
stood for “Christopher” after Christopher Strachey, CPL’s main designer.
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22.2.6 C++
C++ is a general-purpose programming language with a bias toward systems 
programming that

• Is a better C
• Supports data abstraction
• Supports object-oriented programming
• Supports generic programming

It was originally designed and implemented by Bjarne Stroustrup in Bell Tele-
phone Laboratories’ Computer Science Research Center in Murray Hill, New 
Jersey, that is, down the corridor from Dennis Ritchie, Brian Kernighan, Ken 
Thompson, Doug McIlroy, and other Unix greats.
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Bjarne Stroustrup received a master’s degree (in mathematics with computer 
science) from the university in his hometown, Aarhus in Denmark. Then he went 
to Cambridge, where he got his Ph.D. (in computer science) working for David 
Wheeler. The main contributions of C++ were to

• Make abstraction techniques affordable and manageable for mainstream 
projects

• Pioneer the use of object-oriented and generic programming techniques in 
application areas where effi ciency is a premium

Before C++, these techniques (often sloppily lumped together under the label of 
“object-oriented programming”) were mostly unknown in the industry. As with 
scientific programming before Fortran and systems programming before C, it was 
“well known” that these techniques were too expensive for real-world use and also 
too complicated for “ordinary programmers” to master. 

The work on C++ started in 1979 and led to a commercial release in 1985. 
After its initial design and implementation, Bjarne Stroustrup developed it further 
together with friends at Bell Labs and elsewhere until its standardization officially 
started in 1990. Since then, the definition of C++ has been developed by first 
ANSI (the national standards body for the United States) and since 1991 by ISO 
(the international standards organization). Bjarne Stroustrup has taken a major 
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part in that effort as the chairman of the key subgroup in charge of new language 
features. The first international standard (C++98) was ratified in 1998 and the 
second in 2011 (C++11). The next ISO standard will be C++14, and the one 
after that, sometimes referred to as C++1y, may become C++17.

The most significant development in C++ after its initial decade of growth 
was the STL — the standard library’s facilities for containers and algorithms. It 
was the outcome of work — primarily by Alexander Stepanov — over decades aim-
ing at producing the most general and efficient software, inspired by the beauty 
and utility of mathematics.

Alex Stepanov is the inventor of the STL and a pioneer of generic program-
ming. He is a graduate of the University of Moscow and has worked on robotics, 
algorithms, and more, using a variety of languages (including Ada, Scheme, and 
C++). Since 1979, he has worked in U.S. academia and industry, notably at GE 
Labs, AT&T Bell Labs, Hewlett-Packard, Silicon Graphics, and Adobe.

The C++ family tree looks like this:

C with Classes C++ C++98 C++14ARM C++

1979—84 1989

C++11
Classic C

Simula 67

1978—89

“C with Classes” was Bjarne Stroustrup’s initial synthesis of C and Simula 
ideas. It died immediately following the implementation of its successor, C++.
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Language discussions often focus on elegance and advanced features. How-
ever, C and C++ didn’t become two of the most successful languages in the 
history of computing that way. Their strengths were flexibility, performance, and 
stability. Major software systems live over decades, often exhaust their hardware 
resources, and often suffer completely unexpected changes of requirements. C 
and C++ have been able to thrive in that environment. Our favorite Dennis 
Ritchie quote is, “Some languages are designed to prove a point; others are de-
signed to solve a problem.” By “others,” he primarily meant C. Bjarne Stroustrup 
is fond of saying, “Even I knew how to design a prettier language than C++.” The 
aim for C++ — as for C — was not abstract beauty (though we strongly appreciate 
that when we can get it), but utility.
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22.2.7 Today
What programming languages are currently used and for what? That’s a really
hard question to answer. The family tree of current languages is — even in a most 
abbreviated form — somewhat crowded and messy:
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C89 C++ 

Lisp 

Pascal 

Perl COBOL89 

COBOL04 
Object Pascal 

Visual Basic

Smalltalk 
Fortran77 

Simula67 

Python 

Java95 Java04 Eiffel 

PHP 

ADA C#2.0ADA98 

C++98 

JavaScript

C++14C++11

C# 

In fact, most of the statistics we find on the web (and  elsewhere) are hardly better 
than rumors because they measure things  that are only weakly correlated with 
use, such as number of web postings containing the name of a programming lan-
guage, compiler shipments, academic papers, book sales, etc. All such measures 
favor the new over the established. Anyway, what is a programmer? Someone 
who uses a programming language every day? How about a student who writes 
small programs just to learn? A professor who just talks about programming? A 
physicist who writes a program almost every year? Is a professional programmer 
who — almost by definition — uses several programming languages every week 
counted many times or just once? We have seen each of these questions answered 
each way for different statistics.

However, we feel obliged to give you an opinion, so in 2014 there are about 
10 million professional programmers in the world. For that opinion we rely on 
IDC (a data-gathering firm), discussions with publishers and compiler suppliers, 
and various web sources. Feel free to quibble, but we know the number is larger 
than 1 million and less than 100 million for any halfway reasonable definition of 
programmer. Which language do they use? Ada, C, C++, C#, COBOL, Fortran, 
Java, PERL, PHP, Python, and Visual Basic probably (just probably) account for 
significantly more than 90% of all programs.

In addition to the languages mentioned here, we could list dozens or even 
hundreds more. Apart from trying to be fair to interesting or important languages, 
we see no point. Please seek out information yourself as needed. A professional 
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knows several languages and learns new ones as needed. There is no “one true 
language” for all people and all applications. In fact, all major systems we can 
think of use more than one language.

22.2.8 Information sources
Each individual language description above has a reference list. These are refer-
ences covering several languages:

More language designer links/photos
www.angelfire.com/tx4/cus/people/.

A few examples of languages
http://dmoz.org/Computers/Programming/Languages/.

Textbooks
Scott, Michael L. Programming Language Pragmatics. Morgan Kaufmann, 2000. 

ISBN 1558604421.
Sebesta, Robert W. Concepts of Programming Languages. Addison-Wesley, 2003. ISBN 

0321193628.

History books
Bergin, T. J., and R. G. Gibson, eds. History of Programming Languages — II. Addison-

Wesley, 1996. ISBN 0201895021.
Hailpern, Brent, and Barbara G. Ryder, eds. Proceedings of the Third ACM SIG-

PLAN Conference on the History of Programming Languages (HOPL-III). 
San Diego, CA, 2007. http://portal.acm.org/toc.cfm?id=1238844.

Lohr, Steve. Go To: The Story of the Math Majors, Bridge Players, Engineers, Chess Wiz-
ards, Maverick Scientists and Iconoclasts—The Programmers Who Created the Software 
Revolution. Basic Books, 2002. ISBN 978-0465042265.

Sammet, Jean. Programming Languages: History and Fundamentals. Prentice Hall, 1969. 
ISBN 0137299885.

Wexelblat, Richard L., ed. History of Programming Languages. Academic Press, 1981. 
ISBN 0127450408.

Review
 1. What are some uses of history?
 2. What are some uses of a programming language? List examples.
 3. List some fundamental properties of programming languages that are ob-

jectively good.
 4. What do we mean by abstraction? By higher level of abstraction?
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 5. What are our four high-level ideals for code?
 6. List some potential advantages of high-level programming.
 7. What is reuse and what good might it do?
 8. What is procedural programming? Give a concrete example.
 9. What is data abstraction? Give a concrete example.
 10. What is object-oriented programming? Give a concrete example. 
 11. What is generic programming? Give a concrete example.
 12. What is multi-paradigm programming? Give a concrete example.
 13. When was the first program run on a stored-program computer?
 14. What work made David Wheeler noteworthy? 
 15. What was the primary contribution of John Backus’s first language?
 16. What was the first language designed by Grace Murray Hopper?
 17. In which field of computer science did John McCarthy primarily work?
 18. What were Peter Naur’s contributions to Algol60?
 19. What work made Edsger Dijkstra noteworthy?
 20. What languages did Niklaus Wirth design and implement? 
 21. What languages did Anders Hejlsberg design?
 22. What was Jean Ichbiah’s role in the Ada project?
 23. What style of programming did Simula pioneer?
 24. Where (outside Oslo) did Kristen Nygaard teach?
 25. What work made Ole-Johan Dahl noteworthy?
 26. Ken Thompson was the main designer of which operating system?
 27. What work made Doug McIlroy noteworthy? 
 28. What is Brian Kernighan’s most famous book?
 29. Where did Dennis Ritchie work?
 30. What work made Bjarne Stroustrup noteworthy?
 31. What languages did Alex Stepanov use trying to design the STL?
 32. List ten languages not described in §22.2.
 33. Scheme is a dialect of which language?
 34. What are C++’s two most prominent ancestors?
 35. What does the “C” in C++ stand for?
 36. Is Fortran an acronym? If so, what for? 
 37. Is COBOL an acronym? If so, what for? 
 38. Is Lisp an acronym? If so, what for? 
 39. Is Pascal an acronym? If so, what for?
 40. Is Ada an acronym? If so, what for?
 41. Which is the best programming language?
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Terms
In this chapter “Terms” are really languages, people, and organizations.

• Languages:
• Ada
• Algol
• BCPL
• C
• C++
• COBOL
• Fortran
• Lisp
• Pascal
• Scheme
• Simula

• People:
• Charles Babbage
• John Backus
• Ole-Johan Dahl
• Edsger Dijkstra
• Anders Hejlsberg
• Grace Murray Hopper
• Jean Ichbiah
• Brian Kernighan
• John McCarthy
• Doug McIlroy
• Peter Naur
• Kristen Nygaard
• Dennis Ritchie
• Alex Stepanov
• Bjarne Stroustrup
• Ken Thompson
• David Wheeler
• Niklaus Wirth

• Organizations:
• Bell Laboratories
• Borland
• Cambridge University (England)
• ETH (Swiss Federal Technical University)
• IBM
• MIT
• Norwegian Computer Center
• Princeton University
• Stanford University
• Technical University of Copenhagen
• U.S. Department of Defense
• U.S. Navy
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Exercises
 1. Define programming.
 2. Define programming language.
 3. Go through the book and look at the chapter vignettes. Which ones were 

from computer scientists? Write one paragraph summarizing what each 
of those scientists contributed. 

 4. Go through the book and look at the chapter vignettes. Which ones were 
not from computer scientists? Identify the country of origin and field of 
work of each.

 5. Write a “Hello, World!” program in each of the languages mentioned in 
this chapter.

 6. For each language mentioned in this chapter, look at a popular text-
book and see what is used as the first complete program. Write that 
program in all of the other languages. Warning: This could easily be a 
100-program project.

 7. We have obviously “missed” many important languages. In particular, 
we essentially had to cut all developments after C++. Make a list of five 
modern languages that you think ought to be covered and write a page 
and a half — along the lines of the language sections in this chapter — on 
three of those.

 8. What is C++ used for and why? Write a 10- to 20-page report. 
 9. What is C used for and why? Write a 10- to 20-page report.
 10. Pick one language (not C or C++) and write a 10- to 20-page description 

of its origins, aims, and facilities. Give plenty of concrete examples. Who 
uses it and for what?

 11. Who currently holds the Lucasian Chair in Cambridge?
 12. Of the language designers mentioned in this chapter, who has a degree in 

mathematics? Who does not?
 13. Of the language designers mentioned in this chapter, who has a Ph.D.? In 

which field? Who does not have a Ph.D.?
 14. Of the language designers mentioned in this chapter, who has received 

the Turing Award? What is that? Find the actual Turing Award citations 
for the winners mentioned here.

 15. Write a program that, given a file of (name,year) pairs, such as (Al-
gol,1960) and (C,1974), graphs the names on a timeline.

 16. Modify the program from the previous exercise so that it reads a file 
of (name,year,(ancestors)) tuples, such as (Fortran,1956,()), (Algol,1960,
(Fortran)), and (C++,1985,(C,Simula)), and graphs them on a timeline 
with arrows from ancestors to descendants. Use this program to draw 
improved versions of the diagrams in §22.2.2 and §22.2.7.
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CHAPTER 22 • IDEALS AND HISTORY848

Postscript
Obviously, we have only scratched the surface of both the history of program-
ming languages and of the ideals that fuel the quest for better software. We consid-
er history and ideals suffi ciently important to feel really bad about that. We hope 
to have conveyed some of our excitement and some idea of the immensity of the 
quest for better software and better programming as it manifests itself through the 
design and implementation of programming languages. That said, please remem-
ber that programming — the development of quality software — is the fundamen-
tal and important topic; a programming language is just a tool for that. 
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