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23

Text Manipulation

“Nothing is so obvious that it’s obvious . . . 
The use of the word ‘obvious’ indicates 

the absence of a logical argument.”

—Errol Morris

This chapter is mostly about extracting information from 

text. We store lots of our knowledge as words in docu-

ments, such as books, email messages, or “printed” tables, just 

to later have to extract it into some form that is more useful for 

computation. Here, we review the standard library facilities most 

used in text processing: strings, iostreams, and maps. Then, we 

introduce regular expressions (regexs) as a way of expressing 

patterns in text. Finally, we show how to use regular expressions 

to find and extract specific data elements, such as ZIP codes 

(postal codes), from text and to verify the format of text files.
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23.1 Text
We manipulate text essentially all the time. Our books are full of text, much of 
what we see on our computer screens is text, and our source code is text. Our 
communication channels (of all sorts) overflow with words. Everything that is 
communicated between two humans could be represented as text, but let’s not go 
overboard. Images and sound are usually best represented as images and sound 
(i.e., just bags of bits), but just about everything else is fair game for program text 
analysis and transformation.

We have been using iostreams and strings since Chapter 3, so here, we’ll 
just briefly review those libraries. Maps (§23.4) are particularly useful for text 
processing, so we present an example of their use for email analysis. After this 
review, this chapter is concerned with searching for patterns in text using regular 
expressions (§23.5–10).

23.2 Strings
A string contains a sequence of characters and provides a few useful operations, 
such as adding a character to a string, giving the length of the string, and concat-
enating strings. Actually, the standard string provides quite a few operations, but 
most are useful only when you have to do fairly complicated text manipulation at 
a low level. Here, we just mention a few of the more useful. You can look up their 
details (and the full set of string operations) in a manual or expert-level textbook 
should you need them. They are found in <string> (note: not <string.h>):
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23.2  STRINGS 851

Selected string operations

s1 = s2 Assign s2 to s1; s2 can be a string or a C-style string.

s += x Add x at end; x can be a character, a string, or a C-style string.

s[i] Subscripting.

s1+s2 Concatenation; the characters in the resulting string will be a 
copy of those from s1 followed by a copy of those from s2.

s1==s2 Comparison of string values; s1 or s2, but not both, can be a 
C-style string. Also !=.

s1<s2 Lexicographical comparison of string values; s1 or s2, but not 
both, can be a C-style string. Also <=, >, and >=.

s.size() Number of characters in s.

s.length() Number of characters in s.

s.c_str() C-style version of characters in s.

s.begin() Iterator to first character.

s.end() Iterator to one beyond the end of s.

s.insert(pos,x) Insert x before s[pos]; x can be a string or a C-style string. s 
expands to make room for the characters from x.

s.append(x) Insert x after the last character of s; x can be a string or a 
C-style string. s expands to make room for the characters from x.

s.erase(pos) Remove trailing characters from s starting with s[pos]. s’s size 
becomes pos.

s.erase(pos,n) Remove n characters from s starting at s[pos]. s’s size becomes 
max(pos,size–n).

pos = s.find(x) Find x in s; x can be a character, a string, or a C-style string; 
pos is the index of the first character found, or string::npos (a 
position off the end of s).

in>>s Read a whitespace-separated word into s from in.

getline(in,s) Read a line into s from in.

out<<s Write from s to out.

The I/O operations are explained in Chapters 10 and 11 and summarized in 
§23.3. Note that the input operations into a string expand the string as needed, so 
that overflow cannot happen.

The insert() and append() operations may move characters to make room for 
new characters. The erase() operation moves characters “forward” in the string 
to make sure that no gap is left where we erased a character.
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The standard library string is really a template, called basic_string, that sup-
ports a variety of character sets, such as Unicode, providing thousands of characters 
(such as £, Ω, μ, δ, ☺, and ♬  in addition to “ordinary characters”). For example, if 
you have a type holding a Unicode character, such as Unicode, you can write

basic_string<Unicode> a_unicode_string;

The standard string, string, which we have been using, is simply the basic_string 
of an ordinary char:

using string = basic_string<char> ;     // string means basic_string<char> (§20.5)

We do not cover Unicode characters or Unicode strings here, but if you need 
them you can look them up, and you’ll find that they can be handled (by the 
language, by string, by iostreams, and by regular expressions) much as ordinary 
characters and strings. If you need to use Unicode characters, it is best to ask 
someone experienced for advice; to be useful, your code has to follow not just the 
language rules but also some system conventions.

In the context of text processing, it is important that just about anything can 
be represented as a string of characters. For example, here on this page, the num-
ber 12.333 is represented as a string of six characters (surrounded by whitespace). 
If we read this number, we must convert those characters to a floating-point num-
ber before we can do arithmetic operations on the number. This leads to a need 
to convert values to strings and strings to values. In §11.4, we saw how to turn an 
integer into a string using an ostringstream. This technique can be generalized to 
any type that has a << operator:

template<typename T> string to_string(const T& t)
{
          ostringstream os;
          os << t;
          return os.str();
}

For example:

string s1 = to_string(12.333);
string s2 = to_string(1+5*6–99/7);

The value of s1 is now "12.333" and the value of s2 is "17". In fact, to_string() 
can be used not just for numeric values, but for any class T with a << operator. 
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The opposite conversion, from strings to numeric values, is about as easy, and 
as useful:

struct bad_from_string : std::bad_cast {  // class for reporting string cast errors
          const char* what() const override
          {
                    return "bad cast from string";
          }
};

template<typename T> T from_string(const string& s)
{
          istringstream is {s};
          T t;
          if (!(is >> t)) throw bad_from_string{};
          return t;
}

For example:

double d = from_string<double>("12.333");

void do_something(const string& s)
try
{
          int i = from_string<int>(s);
          // . . .
}
catch (bad_from_string e) {
          error("bad input string",s);
}

The added complication of from_string() compared to to_string() comes be-
cause a string can represent values of many types. This implies that we must 
say which type of value we want to extract from a string. It also implies that the 
string we are looking at may not hold a representation of a value of the type we 
expect. For example:

int d = from_string<int>("Mary had a little lamb");           // oops!
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So there is a possibility of error, which we have represented by the exception 
bad_from_string. In §23.9, we demonstrate how from_string() (or an equivalent 
function) is essential for serious text processing because we need to extract nu-
meric values from text fields. In §16.4.3, we saw how an equivalent function 
get_int() was used in GUI code.

Note how to_string() and from_string() are similar in function. In fact, they 
are roughly inverses of each other; that is (ignoring details of whitespace, round-
ing, etc.), for every “reasonable type T” we have

s==to_string(from_string<T>(s))        // for all s

and

t==from_string<T>(to_string(t))       // for all t

Here, “reasonable” means that T should have a default constructor, a >> operator, 
and a matching << operator defined.

Note also how the implementations of to_string() and from_string() both use 
a stringstream to do all the hard work. This observation has been used to define 
a general conversion operation between any two types with matching << and >> 
operations:

template<typename Target, typename Source>
Target to(Source arg)
{
          stringstream interpreter;
          Target result;

          if (!(interpreter << arg)                                  // write arg into stream
                    || !(interpreter >> result)                   // read result from stream
                    || !(interpreter >> std::ws).eof())       // stuff left in stream?
                              throw runtime_error{"to<>() failed"};

          return result;
}

The curious and clever !(interpreter>>std::ws).eof() reads any whitespace that 
might be left in the stringstream after we have extracted the result. Whitespace 
is allowed, but there should be no more characters in the input and we can check 
that by seeing if we are at “end of file.” So if we try to read an int from a string, 
both to<int>("123") and to<int>("123 ") will succeed, but to<int>("123.5") will not 
because of that last .5.
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23.3 I/O streams
Considering the connection between strings and other types, we get to I/O 
streams. The I/O stream library doesn’t just do input and output; it also per-
forms conversions between string formats and types in memory. The standard 
library I/O streams provide facilities for reading, writing, and formatting strings 
of characters. The iostream library is described in Chapters 10 and 11, so here 
we’ll just summarize:

Stream I/O

in >> x Read from in into x according to x’s type.

out << x Write x to out according to x’s type.

in.get(c) Read a character from in into c.

getline(in,s) Read a line from in into the string s.

The standard streams are organized into a class hierarchy (§14.3):

istream

iostream ostringstream ofstream

fstreamstringstream

istringstream ifstream

ostream

Together, these classes supply us with the ability to do I/O to and from files and 
strings (and anything that can be made to look like a file or a string, such as a 
keyboard and a screen; see Chapter 10). As described in Chapters 10 and 11, the 
iostreams provide fairly elaborate formatting facilities. The arrows indicate inher-
itance (see §14.3), so that, for example, a stringstream can be used as an iostream
or as an istream or as an ostream.

Like string, iostreams can be used with larger character sets such as Unicode, 
much like ordinary characters. Please again note that if you need to use Unicode 
I/O, it is best to ask someone experienced for advice; to be useful, your code has 
to follow not just the language rules but also some system conventions.

23.4 Maps
Associative arrays (maps, hash tables) are key (pun intended) to a lot of text pro-
cessing. The reason is simply that when we process text, we collect information, 
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and that information is often associated with text strings, such as names, ad-
dresses, postal codes, Social Security numbers, job titles, etc. Even if some of 
those text strings could be converted into numeric values, it is often more con-
venient and simpler to treat them as text and use that text for identification. The 
word-counting example (§21.6) is a good simple example. If you don’t feel com-
fortable using maps, please reread §21.6 before proceeding.

Consider email. We often search and analyze email messages and email logs — 
usually with the help of some program (e.g., Thunderbird or Outlook). Mostly, 
those programs save us from seeing the complete source of the messages, but all 
the information about who sent, who received, where the message went along the 
way, and much more is presented to the programs as text in a message header. 
That’s a complete message. There are thousands of tools for analyzing the head-
ers. Most use regular expressions (as described in §23.5–9) to extract information 
and some form of associative arrays to associate related messages. For example, 
we often search a mail file to collect all messages with the same sender, the same 
subject, or containing information on a particular topic.

Here, we will use a very simplified mail file to illustrate some of the tech-
niques for extracting data from text files. The headers are real RFC2822 headers 
from www.faqs.org/rfcs/rfc2822.html. Consider:

xxx
xxx
––––
From: John Doe <jdoe@machine.example>
To: Mary Smith <mary@example.net>
Subject: Saying Hello
Date: Fri, 21 Nov 1997 09:55:06 –0600
Message–ID: <1234@local.machine.example>

This is a message just to say hello.
So, "Hello".
––––
From: Joe Q. Public <john.q.public@example.com>
To: Mary Smith <@machine.tld:mary@example.net>, , jdoe@test   .example
Date: Tue, 1 Jul 2003 10:52:37 +0200
Message–ID: <5678.21–Nov–1997@example.com>

Hi everyone.
––––
To: "Mary Smith: Personal Account" <smith@home.example>
From: John Doe <jdoe@machine.example>
Subject: Re: Saying Hello
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Date: Fri, 21 Nov 1997 11:00:00 –0600
Message–ID: <abcd.1234@local.machine.tld>
In–Reply–To: <3456@example.net>
References: <1234@local.machine.example> <3456@example.net>

This is a reply to your reply.
––––
––––

Basically, we have abbreviated the file by throwing most of the information away 
and eased the analysis by terminating each message by a line containing just –––– 
(four dashes). We will write a small “toy application” that finds all messages sent 
by “John Doe” and write out their “Subject.” If we can do that, we can do many 
interesting things.

First, we must consider whether we want random access to the data or just 
to analyze it as it streams by in an input stream. We choose the former because in 
a real program, we would probably be interested in several senders or in several 
pieces of information from a given sender. Also, it’s actually the harder of the two 
tasks, so it will allow us to examine more techniques. In particular, we get to use 
iterators again.

Our basic idea is to read a complete mail file into a structure (which we 
call a Mail_file). This structure will hold all the lines of the mail file (in a 
 vector<string>) and indicators of where each individual message starts and ends 
(in a vector<Message>):

vector<Message> 

––––

. . . 

. . . 

From: John Doe

To: Mary Smith 

Subject: Saying Hello 

. . . etc. . . . 

––––

vector<string> 

Mail file:  

Stroustrup_book.indb   857Stroustrup_book.indb   857 5/8/15   10:31 AM5/8/15   10:31 AM



CHAPTER 23 • TEXT MANIPULATION858

To this, we will add iterators and begin() and end() functions, so that we can 
iterate through the lines and through the messages in the usual way. This “boiler-
plate” will allow us convenient access to the messages. Given that, we will write 
our “toy application” to gather all the messages from each sender so that they are 
easy to access together: 

vector<Message>

multimap<string,Message*>

“John Doe”

“John Doe”

“John O. Public”

Mail file: 

Finally, we will write out all the subject headers of messages from “John Doe” to 
illustrate a use of the access structures we have created.

We use many of the basic standard library facilities:

#include<string>
#include<vector>
#include<map>
#include<fstream>
#include<iostream>
using namespace std;

We define a Message as a pair of iterators into a vector<string> (our vector of 
lines):
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typedef vector<string>::const_iterator Line_iter;

class Message {   // a Message points to the first and the last lines of a message
          Line_iter first;
          Line_iter last;
public:
          Message(Line_iter p1, Line_iter p2) :first{p1}, last{p2} { }
          Line_iter begin() const { return first; }
          Line_iter end() const { return last; }
          // . . .
};

We define a Mail_file as a structure holding lines of text and messages:

using Mess_iter = vector<Message>::const_iterator;

struct Mail_file {                // a Mail_file holds all the lines from a file
                                            // and simplifies access to messages
          string name;           // file name
          vector<string> lines;    // the lines in order
          vector<Message> m;     // Messages in order

          Mail_file(const string& n);  // read file n into lines
          
          Mess_iter begin() const { return m.begin(); }
          Mess_iter end() const { return m.end(); }
};

Note how we added iterators to the data structures to make it easy to systemati-
cally traverse them. We are not actually going to use standard library algorithms 
here, but if we wanted to, the iterators are there to allow it.

To find information in a message and extract it, we need two helper functions:

// find the name of the sender in a Message;
// return true if found
// if found, place the sender’s name in s:
bool find_from_addr(const Message* m, string& s);

// return the subject of the Message, if any, otherwise "":
string find_subject(const Message* m);
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Finally, we can write some code to extract information from a file:

int main()
{
          Mail_file mfile {"my–mail–file.txt"};           // initialize mfile from a file

          // first gather messages from each sender together in a multimap:

          multimap<string, const Message*> sender;

          for (const auto& m : mfile) {
                    string s;
                    if (find_from_addr(&m,s))
                              sender.insert(make_pair(s,&m));
          }

          // now iterate through the multimap
          // and extract the subjects of John Doe’s messages:
          auto pp = sender.equal_range("John Doe <jdoe@machine.example>");
          for(auto p = pp.first; p!=pp.second; ++p)
                    cout << find_subject(p–>second) << '\n';
}

Let us examine the use of maps in detail. We used a multimap (§20.10, §B.4) 
because we wanted to gather many messages from the same address together 
in one place. The standard library multimap does that (makes it easy to access 
elements with the same key). Obviously (and typically), we have two parts to 
our task:

• Build the map.
• Use the map.

We build the multimap by traversing all the messages and inserting them into the 
multimap using insert():

for (const auto& m : mfile) {
          string s;
          if (find_from_addr(&m,s))
                    sender.insert(make_pair(s,&m));
}

What goes into a map is a (key,value) pair, which we make with make_pair(). We 
use our “homemade” find_from_addr() to find the name of the sender.
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Why did we first put the Messages in a vector and then later build a multi-
map? Why didn’t we just put the Messages into a map immediately? The reason 
is simple and fundamental:

• First, we build a general structure that we can use for many things.
• Then, we use that for a particular application.

That way, we build up a collection of more or less reusable components. Had we 
immediately built a map in the Mail_file, we would have had to redefine it when-
ever we wanted to do some different task. In particular, our multimap (significantly 
called sender) is sorted based on the Address field of a message. Most other ap-
plications would not find that order particularly useful: they might be looking at 
Return fields, Recipients, Copy-to fields, Subject fields, time stamps, etc.

This way of building applications in stages (or layers, as the parts are some-
times called) can dramatically simplify the design, implementation, documenta-
tion, and maintenance of programs. The point is that each part does only one 
thing and does it in a straightforward way. On the other hand, doing everything 
at once would require cleverness. Obviously, our “extracting information from 
an email header” program was just a tiny example of an application. The value 
of keeping separate things separate, modularization, and gradually building an 
application increases with size.

To extract information, we simply find all the entries with the key "John 
Doe" using the equal_range() function (§B.4.10). Then we iterate through all the 
elements in the sequence [first,second) returned by equal_range(), extracting the 
subject by using find_subject():

auto pp = sender.equal_range("John Doe <jdoe@machine.example>");

for (auto p = pp.first; p!=pp.second; ++p)
          cout << find_subject(p–>second) << '\n';

When we iterate over the elements of a map, we get a sequence of (key,value) 
pairs, and as with all pairs, the first element (here, the string key) is called first and 
the second (here, the Message value) is called second (§21.6).

23.4.1 Implementation details
Obviously, we need to implement the functions we use. It was tempting to save a 
tree by leaving this as an exercise, but we decided to make this example complete. 
The Mail_file constructor opens the file and constructs the lines and m vectors:

Mail_file::Mail_file(const string& n)
          // open file named n
          // read the lines from n into lines
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          // find the messages in the lines and compose them in m
          // for simplicity assume every message is ended by a –––– line
{
          ifstream in {n};               // open the file
          if (!in) {
                    cerr << "no " << n << '\n';
                    exit(1);                         // terminate the program
          }

          for (string s; getline(in,s); )    // build the vector of lines
                    lines.push_back(s);

          auto first = lines.begin();   // build the vector of Messages
          for (auto p = lines.begin(); p!=lines.end(); ++p) {
                    if (*p == "––––") {        // end of message
                              m.push_back(Message(first,p));
                              first = p+1;       // –––– not part of message
                    }
          }
}

The error handling is rudimentary. If this were a program we planned to give to 
friends to use, we’d have to do better.

TRY THIS

We really mean it: do run this example and make sure you understand the re-
sult. What would be “better error handling”? Modify Mail_file’s constructor 
to handle likely formatting errors related to the use of –––– .

The find_from_addr() and find_subject() functions are simple placeholders 
until we can do a better job of identifying information in a file (using regular ex-
pressions; see §23.6–10):

int is_prefix(const string& s, const string& p)
          // is p the first part of s?
{
          int n = p.size();
          if (string(s,0,n)==p) return n;
          return 0;
}

T
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bool find_from_addr(const Message* m, string& s)
{
          for (const auto& x : *m)
                    if (int n = is_prefix(x, "From: ")) {
                              s = string(x,n);
                              return true;
                    }
          return false;
}

string find_subject(const Message* m)
{
          for (const auto& x : *m)
                    if (int n = is_prefix(x, "Subject: ")) return string(x,n);
          return "";
}

Note the way we use substrings: string(s,n) constructs a string consisting of the 
tail of s from s[n] onward (s[n]..s[s.size()–1]), whereas string(s,0,n) constructs 
a string consisting of the characters s[0]..s[n–1]. Since these operations actually 
construct new strings and copy characters, they should be used with care where 
performance matters.

Why are the find_from_addr() and find_subject() functions so different? For 
example, one returns a bool and the other a string. They are different because we 
wanted to make a point:

• fi nd_from_addr() distinguishes between fi nding an address line with an 
empty address ("") and fi nding no address line. In the fi rst case, fi nd_
from_addr() returns true (because it found an address) and sets s to "" 
(because the address just happens to be empty). In the second case, it 
returns false (because there was no address line).

• fi nd_subject() returns "" if there was an empty subject or if there was no 
subject line.

Is the distinction made by find_from_addr() useful? Necessary? We think that 
the distinction can be useful and that we definitely should be aware of it. It is a 
distinction that comes up again and again when looking for information in a data 
file: did we find the field we were looking for and was there something useful in 
it? In a real program, both the find_from_addr() and find_subject() functions 
would have been written in the style of find_from_addr() to allow users to make 
that distinction.

This program is not tuned for performance, but it is probably fast enough 
for most uses. In particular, it reads its input file only once, and it does not keep 

Stroustrup_ch23.indd   863Stroustrup_ch23.indd   863 2/22/16   4:34 PM2/22/16   4:34 PM



CHAPTER 23 • TEXT MANIPULATION864

multiple copies of the text from that file. For large files, it may be a good idea 
to replace the multimap with an unordered_multimap, but unless you measure, 
you’ll never know.

See §21.6 for an introduction to the standard library associative containers 
(map, multimap, set, unordered_map, and unordered_multimap).

23.5 A problem
I/O streams and string help us read and write sequences of characters, help us 
store them, and help with basic manipulation. However, it is very common to do 
operations on text where we need to consider the context of a string or involve 
many similar strings. Consider a trivial example. Take an email message (a se-
quence of words) and see if it contains a U.S. state abbreviation and ZIP code 
(two letters followed by five digits):

for (string s; cin>>s; ) {
          if (s.size()==7
          && isalpha(s[0]) && isalpha(s[1])
          && isdigit(s[2]) && isdigit(s[3]) && isdigit(s[4])
          && isdigit(s[5]) && isdigit(s[6]))
                    cout << "found " << s << '\n';
}

Here, isalpha(x) is true if x is a letter and isdigit(x) is true if x is a digit (see §11.6).
There are several problems with this simple (too simple) solution:

• It’s verbose (four lines, eight function calls).
• We miss (intentionally?) every postal code not separated from its context 

by whitespace (such as "TX77845", TX77845–1234, and ATX77845).
• We miss (intentionally?) every postal code with a space between the let-

ters and the digits (such as TX 77845).
• We accept (intentionally?) every postal code with the letters in lower case 

(such as tx77845).
• If we decide to look for a postal code in a different format (such as CB3 

0FD), we have to completely rewrite the code.

There has to be a better way! Before revealing that way, let’s just consider the 
problems we would encounter if we decided to stay with the “good old simple 
way” of writing more code to handle more cases.
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• If we want to deal with more than one format, we’d have to start adding 
if-statements or switch-statements.

• If we want to deal with upper and lower case, we’d explicitly have to con-
vert (usually to lower case) or add yet another if-statement.

• We need to somehow (how?) describe the context of what we want to 
fi nd. That implies that we must deal with individual characters rather 
than with strings, and that implies that we lose many of the advantages 
provided by iostreams (§7.8.2).

If you like, you can try to write the code for that, but it is obvious that on this 
track we are headed for a mess of if-statements dealing with a mess of special 
cases. Even for this simple example, we need to deal with alternatives (e.g., both 
five- and nine-digit ZIP codes). For many other examples, we need to deal with 
repetition (e.g., any number of digits followed by an exclamation mark, such as 
123! and 123456!). Eventually, we would also have to deal with both prefixes 
and suffixes. As we observed (§11.1–2), people’s tastes in output formats are not 
limited by a programmer’s desire for regularity and simplicity. Just think of the 
bewildering variety of ways people write dates:

2007–06–05
June 5, 2007
jun 5, 2007
5 June 2007
6/5/2007
5/6/07
. . . 

At this point — if not earlier — the experienced programmer declares, “There has 
to be a better way!” (than writing more ordinary code) and proceeds to look for it. 
The simplest and most popular solution is using what are called regular expressions. 
Regular expressions are the backbone of much text processing, the basis for the 
Unix grep command (see exercise 8), and an essential part of languages heavily 
used for such processing (such as AWK, PERL, and PHP).

The regular expressions we will use are part of the C++ standard library. 
They are compatible with the regular expressions in PERL. This makes many 
explanations, tutorials, and manuals available. For example, see the C++ stan-
dard committee’s working paper (look for “WG21” on the web), John Maddock’s 
boost::regex documentation, and most PERL tutorials. Here, we will describe 
the fundamental concepts and some of the most basic and useful ways of using 
regular expressions.
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TRY THIS

The last two paragraphs “carelessly” used several names and acronyms with-
out explanation. Do a bit of web browsing to see what we are referring to.

23.6 The idea of regular expressions
The basic idea of a regular expression is that it defines a pattern that we can look 
for in a text. Consider how we might concisely describe the pattern for a simple 
U.S. postal code, such as TX77845. Here is a first attempt:

wwddddd

Here, w represents “any letter” and d represents “any digit.” We use w (for “word”) 
because l (for “letter”) is too easily confused with the digit 1. This notation works 
for this simple example, but let’s try it for the nine-digit ZIP code format (such as 
TX77845–5629). How about

wwddddd–dddd

That looks OK, but how come that d means “any digit” but –  means “plain” 
dash? Somehow, we ought to indicate that w and d are special: they represent 
character classes rather than themselves (w means “an a or a b or a c or . . .” and 
d means “a 1 or a 2 or a 3 or . . .”). That’s too subtle. Let’s prefix a letter that is a 
name of a class of characters with a backslash in the way special characters have 
always been indicated in C++ (e.g., \n is newline in a string literal). This way we 
get

\w\w\d\d\d\d\d–\d\d\d\d

This is a bit ugly, but at least it is unambiguous, and the backslashes make it obvi-
ous that “something unusual is going on.” Here, we represent repetition of a char-
acter by simply repeating. That can be a bit tedious and is potentially error-prone. 
Quick: Did we really get the five digits before the dash and four after it right? We 
did, but nowhere did we actually say 5 and 4, so you had to count to make sure. 
We could add a count after a character to indicate repetition. For example:

\w2\d5–\d4

T
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However, we really ought to have some syntax to show that the 2, 5, and 4 in that 
pattern are counts, rather than just the alphanumeric characters 2, 5, and 4. Let’s 
indicate counts by putting them in curly braces:

\w{2}\d{5}–\d{4}

That makes { special in the same way as \ (backslash) is special, but that can’t be 
helped and we can deal with that.

So far, so good, but we have to deal with two more messy details: the final 
four digits in a ZIP code are optional. We somehow have to be able to say that 
we will accept both TX77845 and TX77845–5629. There are two fundamental ways 
of expressing that:

\w{2}\d{5} or \w{2}\d{5}–\d{4}

and

\w{2}\d{5} and optionally – \d{4}

To say that concisely and precisely, we first have to express the idea of grouping 
(or sub-pattern) to be able to speak about the \w{2}\d{5} and – \d{4} parts of \w{2}\
d{5}–\d{4}. Conventionally, we use parentheses to express grouping:

(\w{2}\d{5})(–\d{4})

Now we have split the pattern into two sub-patterns, so we just have to say 
what we want to do with them. As usual, the cost of introducing a new facility is 
to introduce another special character: ( is now “special” just like \ and {. Conven-
tionally | is used to express “or” (alternatives) and ? is used to express something 
conditional (optional), so we might write

(\w{2}\d{5})|(\w{2}\d{5}–\d{4})

and

(\w{2}\d{5})(–\d{4})?

As with the curly braces in the count notation (e.g., \w{2}), we use the question 
mark (?) as a suffix. For example, (–\d{4})? means “optionally –\d{4}”; that is, we 
accept four digits preceded by a dash as a suffix. Actually, we are not using the 
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parentheses around the pattern for the five-digit ZIP code (\w{2}\d{5}) for any-
thing, so we could leave them out:

\w{2}\d{5}(–\d{4})?

To complete our solution to the problem stated in §23.5, we could add an optional 
space after the two letters:

\w{2} ?\d{5}(–\d{4})?

That “ ?” looks a bit odd, but of course it’s a space character followed by the ?, 
indicating that the space character is optional. If we wanted to avoid a space being 
so unobtrusive that it looks like a bug, we could put it in parentheses: 

\w{2}( )?\d{5}((–\d{4})?

If someone considered that still too obscure, we could invent a notation for a 
whitespace character, such as \s (s for “space”). That way we could write

\w{2}\s?\d{5}(–\d{4})?

But what if someone wrote two spaces after the letters? As defined so far, the 
pattern would accept TX77845 and TX 77845 but not TX  77845. That’s a bit subtle. 
We need to be able to say “zero or more whitespace characters,” so we introduce 
the suffix * to mean “zero or more” and get

\w{2}\s*\d{5}(–\d{4})?

This makes sense if you followed every step of the logical progression. This no-
tation for patterns is logical and extremely terse. Also, we didn’t pick our design 
choices at random: this particular notation is extremely common and popular. For 
many text-processing tasks, you need to read and write this notation. Yes, it looks 
a bit as if a cat walked over the keyboard, and yes, typing a single character wrong 
(even a space) completely changes the meaning, but please just get used to it. We 
can’t suggest anything dramatically better, and this style of notation has already 
been wildly popular for more than 30 years since it was first introduced for the 
Unix grep command — and it wasn’t completely new even then.

23.6.1 Raw string literals
Note all of those backslashes in the regular expression patterns. To get a backslash 
(\) into a C++ string literal we have to precede it with a backslash. Consider our 
postal code pattern:

Stroustrup_book.indb   868Stroustrup_book.indb   868 5/8/15   10:31 AM5/8/15   10:31 AM



23.7  SEARCHING WITH REGULAR EXPRESSIONS 869

\w{2}\s*\d{5}(–\d{4})?

To represent that pattern as a string literal, we have to write

"\\w{2}\\s*\\d{5}(–\\d{4})?"

Thinking a bit ahead, we realize that many of the patterns we would like to match 
contain double quotes ("). To get a double quote into a string literal we have to 
precede it with a backslash. This can quickly become unmanageable. In fact, in 
real use this “special character problem” gets so annoying that C++ and other 
languages have introduced the notion of raw string literals to be able to cope with 
realistic regular expression patterns. In a raw string literal a backslash is simply a 
backslash character (rather than an escape character) and a double quote is simply 
a double quote character (rather than an end of string). As a raw string literal our 
postal code pattern becomes

R"(\w{2}\s*\d{5}(–\d{4})?)"

The R"( starts the string and )" terminates it, so the 22 characters of the string are

\w{2}\s*\d{5}(–\d{4})?

not counting the terminating zero.

23.7 Searching with regular expressions
Now, we will use the postal code pattern from the previous section to find postal 
codes in a file. The program defines the pattern and then reads a file line by line, 
searching for the pattern. If the program finds an occurrence of the pattern in a 
line, it writes out the line number and what it found:

#include <regex>
#include <iostream>
#include <string>
#include <fstream>
using namespace std;

int main()
{
          ifstream in {"file.txt"};                 // input file
          if (!in) cerr << "no file\n";

          regex pat {R"(\w{2}\s*\d{5}(–\d{4})?)"};           // postal code pattern
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          int lineno = 0;
          for (string line; getline(in,line); ) {   // read input line into input buffer
                    ++lineno;
                    smatch matches;                 // matched strings go here
                    if (regex_search(line, matches, pat)) 
                              cout << lineno << ": " << matches[0] << '\n';
          }
}

This requires a bit of a detailed explanation. We find the standard library regular 
expressions in <regex>. Given that, we can define a pattern pat:

regex pat {R"(\w{2}\s*\d{5}(–\d{4})?)"};     // postal code pattern

A regex pattern is a kind of string, so we can initialize it with a string. Here, 
we used a raw string literal. However, a regex is not just a string, but the somewhat 
sophisticated mechanism for pattern matching that is created when you initialize 
a regex (or assign to one) is hidden and beyond the scope of this book. However, 
once we have initialized a regex with our pattern for postal codes, we can apply it 
to each line of our file:

smatch matches;
if (regex_search(line, matches, pat)) 
          cout << lineno << ": " << matches[0] << '\n';

The regex_search(line, matches, pat) searches the line for anything that matches 
the regular expression stored in pat, and if it finds any matches, it stores them 
in matches. Naturally, if no match was found, regex_search(line, matches, pat)
returns false.

The matches variable is of type smatch. The s stands for “sub” or for “string.” 
Basically, an smatch is a vector of sub-matches of type string. The first element, 
here matches[0], is the complete match. We can treat matches[i] as a string if 
i<matches.size(). So if — for a given regular expression — the maximum number 
of sub-patterns is N, we find matches.size()==N+1.

So, what is a sub-pattern? A good first answer is “Anything in parentheses in 
the pattern.” Looking at \w{2}\s*\d{5}(–\d{4})?, we see the parentheses around the 
four-digit extension of the ZIP code. That’s the only sub-pattern we see, so we 
guess (correctly) that matches.size()==2. We also guess that we can easily access 
those last four digits. For example:

for (string line; getline(in,line); ) {
          smatch matches;
          if (regex_search(line, matches, pat)) {
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                    cout << lineno << ": " << matches[0] << '\n';       // whole match
                    if (1<matches.size() && matches[1].matched)
                              cout  << "\t: " << matches[1] << '\n';            // sub-match
          }
}

Strictly speaking, we didn’t have to test 1<matches.size() because we already had 
a good look at the pattern, but we felt like being paranoid (because we have been 
experimenting with a variety of patterns in pat and they didn’t all have just one 
sub-pattern). We can ask if a sub-match succeeded by looking at its matched mem-
ber, here matches[1].matched. In case you wonder: when matches[i].matched is 
false, the unmatched sub-pattern matches[i] prints as the empty string. Similarly, 
a sub-pattern that doesn’t exist, such as matches[17] for the pattern above, is 
treated as an unmatched sub-pattern.

We tried this program with a file containing

address TX77845
ffff tx 77843 asasasaa
ggg TX3456–23456
howdy
zzz TX23456–3456sss ggg TX33456–1234
cvzcv TX77845–1234 sdsas
xxxTx77845xxx
TX12345–123456

and got the output

1: TX77845
2: tx 77843
5: TX23456–3456
          : –3456
6: TX77845–1234
          : –1234
7: Tx77845
8: TX12345–1234
          : –1234

Note that we

• Did not get fooled by the ill-formatted “postal code” on the line that starts 
with ggg (what’s wrong with that one?)

• Only found the fi rst postal code from the line with zzz (we only asked for 
one per line)
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• Found the correct suffi xes on lines 5 and 6
• Found the postal code “hidden” among the xxxs on line 7
• Found (unfortunately?) the postal code “hidden” in TX12345–123456

23.8 Regular expression syntax
We have seen a rather basic example of regular expression matching. Now is 
the time to consider regular expressions (in the form they are used in the regex
library) a bit more systematically and completely.

Regular expressions (“regexps” or “regexs”) is basically a little language for ex-
pressing patterns of characters. It is a powerful (expressive) and terse language, 
and as such it can be quite cryptic. After decades of use, there are many subtle 
features and several dialects. Here, we will just describe a (large and useful) subset 
of what appears to be the currently most widely used dialect (the PERL one). 
Should you need more to express what you need to say or to understand the 
regular expressions of others, go look on the web. Tutorials (of wildly differing 
quality) and specifications abound.

The library also supports the ECMAScript, POSIX, awk, grep, and egrep 
notations and a host of search options. This can be extremely useful, especially 
if you need to match some pattern specified in another language. You can look 
up those options if you feel the need to go beyond the basic facilities described 
here. However, remember that “using the most features” is not an aim of good 
programming. Whenever you can, take pity on the poor maintenance program-
mer (maybe yourself in a couple of months) who has to read and understand 
your code: write code that is not unnecessarily clever and avoid obscure features 
whenever you can. 

23.8.1 Characters and special characters
A regular expression specifies a pattern that can be used to match characters from 
a string. By default, a character in a pattern matches itself in a string. For example, 
the regular expression (pattern) "abc" will match the abc in Is there an abc here?

The real power of regular expressions comes from “special characters” and 
character combinations that have special meanings in a pattern:

Characters with special meaning

. any single character (a “wildcard”)

[ character class

{ count
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Characters with special meaning (continued )

( begin grouping 

) end grouping

\ next character has a special meaning

* zero or more

+ one or more

? optional (zero or one)

| alternative (or)

^ start of line; negation

$ end of line

For example,

x.y

matches any three-character string starting with an x and ending with a y, such as 
xxy, x3y, and xay, but not yxy, 3xy, and xy.

Note that { . . . }, *, +, and ? are suffix operators. For example, \d+ means “one 
or more decimal digits.”

If you want to use one of the special characters in a pattern, you have to “es-
cape it” using a backslash; for example, in a pattern + is the one-or-more operator, 
but \+ is a plus sign.

23.8.2 Character classes
The most common combinations of characters are represented in a terse form as 
“special characters”:

Special characters for character classes

\d a decimal digit [[:digit:]]

\l a lowercase character [[:lower:]]

\s a space (space, tab, etc.) [[:space:]]

\u an uppercase character [[:upper:]]

\w a letter (a–z or A–Z) or digit (0–9) or an underscore (_) [[:alnum:]]

\D not \d [^[:digit:]]

Stroustrup_book.indb   873Stroustrup_book.indb   873 5/8/15   10:31 AM5/8/15   10:31 AM



CHAPTER 23 • TEXT MANIPULATION874

Special characters for character classes (continued )

\L not \l [^[:lower:]]

\S not \s [^[:space:]]

\U not \u [^[:upper:]]

\W not \w [^[:alnum:]]

Note that an uppercase special character means “not the lowercase version of 
that special character.” In particular, \W means “not a letter” rather than “an 
uppercase letter.”

The entries in the third column (e.g., [[:digit:]]) give an alternative syntax 
using a longer name.

Like the string and iostream libraries, the regex library can handle large char-
acter sets, such as Unicode. As with string and iostream, we just mention this so 
that you can look for help and more information should you need it. Dealing with 
Unicode text manipulation is beyond the scope of this book.

23.8.3 Repeats
Repeating patterns are specified by the suffix operators:

Repetition

{n} exactly n times

{n,} n or more times

{n,m} at least n and at most m times

* zero or more, that is, {0,}

+ one or more, that is, {1,}

? optional (zero or one), that is, {0,1}

For example,

Ax*

matches an A followed by zero or more xs, such as

A
Ax
Axx
Axxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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If you want at least one occurrence, use + rather than *. For example,

Ax+

matches an A followed by one or more xs, such as

Ax
Axx
Axxxxxxxxxxxxxxxxxxxxxxxxxxxxx

but not

A

The common case of zero or one occurrence (“optional”) is represented by a 
question mark. For example,

\d–?\d

matches the two digits with an optional dash between them, such as

1–2
12

but not

1––2

To specify a specific number of occurrences or a specific range of occurrences, use 
curly braces. For example,

\w{2}–\d{4,5}

matches exactly two letters and a dash (–) followed by four or five digits, such as

Ab–1234
XX–54321
22–54321

but not

Ab–123
?b–1234
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Yes, digits are \w characters.

23.8.4 Grouping
To specify a regular expression as a sub-pattern, you group it using parentheses. 
For example:

(\d*:)

This defines a sub-pattern of zero or more digits followed by a colon. A group can 
be used as part of a more elaborate pattern. For example:

(\d*:)?(\d+)

This specifies an optional and possibly empty sequence of digits followed by a 
colon followed by a sequence of one or more digits. No wonder people invented 
a terse and precise way of saying such things!

23.8.5 Alternation
The “or” character (|) specifies an alternative. For example:

Subject: (FW:|Re:)?(.*)

This recognizes an email subject line with an optional FW: or Re: followed by zero 
or more characters. For example:

Subject: FW: Hello, world!
Subject: Re:
Subject: Norwegian Blue

but not

SUBJECT: Re: Parrots
Subject  FW: No subject!

An empty alternative is not allowed:

(|def)           // error

However, we can specify several alternatives at once:

(bs|Bs|bS|BS)
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23.8.6 Character sets and ranges
The special characters provide a shorthand for the most common classes of char-
acters: digits (\d); letters, digits, and underscore (\w); etc. (§23.7.2). However, it is 
easy and often useful to define our own. For example:

[\w @] a word character, a space, or an @
[a–z] the lowercase characters from a to z
[a–zA–Z] upper- or lowercase characters from a to z
[Pp] an upper- or lowercase P
[\w\–] a word character or a dash (plain –  means “range”)
[asdfghjkl;'] the characters on the middle line of a U.S. QWERTY keyboard
[.] a dot
[.[{(\\*+?^$] a character with special meaning in a regular expression

In a character class specification, a –  (dash) is used to specify a range, such as 
[1–3] (1, 2, or 3) and [w–z] (w, x, y, or z). Please use such ranges carefully: not 
every language has the same letters and not every letter encoding has the same 
ordering. If you feel the need for any range that isn’t a sub-range of the most 
common letters and digits of the English alphabet, consult the documentation.

Note that we can use the special characters, such as \w (meaning “any word 
character”), within a character class specification. So, how do we get a backslash 
(\) into a character class? As usual, we “escape it” with a backslash: \\.  

When the first character of a character class specification is ^, that ^ means 
“negation.” For example:

[^aeiouy] not an English vowel
[^\d] not a digit
[ ^aeiouy] a space, a ^, or an English vowel

In the last regular expression, the ^ wasn’t the first character after the [, so it was 
just a character, not a negation operator. Regular expressions can be subtle.

An implementation of regex also supplies a set of named character classes 
for use in matching. For example, if you want to match any alphanumeric char-
acter (that is, a letter or a digit: a–z or A–Z or 0–9), you can do it by the regular 
expression [[:alnum:]]. Here, alnum is the name of a set a characters (the set of 
alphanumeric characters). A pattern for a nonempty quoted string of alphanu-
meric characters would be "[[:alnum:]]+". To put that regular expression into an 
ordinary string literal, we have to escape the quotes:

string s {"\" [[:alnum:]]+\""};
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Furthermore, to put that string literal into a regex, we must escape the backslashes:

regex s {"\\\" [[:alnum:]]+\\\""};

Using a raw string literal is simpler:

regex s2 {R"(" [[:alnum:]]+")"};

Prefer raw string literals for patterns containing backslashes or double quotes. 
That turns out to be most patterns in many applications.

Using regular expressions leads to a lot of notational conventions. Anyway, here 
is a list of the standard character classes:

Character classes

alnum any alphanumeric character

alpha any alphabetic character

blank any whitespace character that is not a line separator

cntrl any control character

d any decimal digit

digit any decimal digit

graph any graphical character

lower any lowercase character

print any printable character

punct any punctuation character

s any whitespace character

space any whitespace character

upper any uppercase character

w any word character (alphanumeric characters plus the underscore)

xdigit any hexadecimal digit character

An implementation of regex may provide more character classes, but if you decide 
to use a named class not listed here, be sure to check if it is portable enough for 
your intended use.

23.8.7 Regular expression errors
What happens if we specify an illegal regular expression? Consider:

Stroustrup_book.indb   878Stroustrup_book.indb   878 5/8/15   10:31 AM5/8/15   10:31 AM



23.8  REGULAR EXPRESSION SYNTAX 879

regex pat1 {"(|ghi)"};           // missing alternative
regex pat2 {"[c–a]"};           // not a range

When we assign a pattern to a regex, the pattern is checked, and if the regular ex-
pression matcher can’t use it for matching because it’s illegal or too complicated, 
a bad_expression exception is thrown.

Here is a little program that’s useful for getting a feel for regular expression 
matching: 

#include <regex>
#include <iostream>
#include <string>
#include <fstream>
#include<sstream>
using namespace std;

// accept a pattern and a set of lines from input
// check the pattern and search for lines with that pattern

int main()
{
          regex pattern;

          string pat;
          cout << "enter pattern: ";
          getline(cin,pat);           // read pattern

          try {
                    pattern = pat;      // this checks pat
                    cout << "pattern: " << pat << '\n';
          }
          catch (bad_expression) {
                    cout << pat << " is not a valid regular expression\n";
                    exit(1);
          }

          cout << "now enter lines:\n";
          int lineno = 0;

          for (string line; getline(cin,line); ) {
                    ++lineno;
                    smatch matches;

Stroustrup_book.indb   879Stroustrup_book.indb   879 5/8/15   10:31 AM5/8/15   10:31 AM



CHAPTER 23 • TEXT MANIPULATION880

                    if (regex_search(line, matches, pattern)) {
                              cout << "line " << lineno << ": " << line << '\n';
                              for (int i = 0; i<matches.size(); ++i)
                                        cout << "\tmatches[" << i << "]: "
                                                  <<  matches[i] << '\n';
                    }
                    else
                              cout << "didn't match\n";
          }
}

TRY THIS

Get the program to run and use it to try out some patterns, such as abc, x.*x, 
(.*), \([^)]*\), and \w+ \w+( Jr\.)?.

23.9 Matching with regular expressions
There are two basic uses of regular expressions:

• Searching for a string that matches a regular expression in an (arbitrarily 
long) stream of data — regex_search() looks for its pattern as a substring 
in the stream.

• Matching a regular expression against a string (of known size) — 
regex_match() looks for a complete match of its pattern and the string.

The search for ZIP codes in §23.6 was an example of searching. Here, we will 
examine an example of matching. Consider extracting data from a table like this:

KLASSE ANTAL DRENGE ANTAL PIGER ELEVER IALT

0A 12 11 23

1A 7 8 15

1B 4 11 15

2A 10 13 23

3A 10 12 22

4A 7 7 14

4B 10 5 15

5A 19 8 27

T
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KLASSE ANTAL DRENGE ANTAL PIGER ELEVER IALT

6A 10 9 19

6B 9 10 19

7A 7 19 26

7G 3 5 8

7I 7 3 10

8A 10 16 26

9A 12 15 27

0MO 3 2 5

0P1 1 1 2

0P2 0 5 5

10B 4 4 8

10CE 0 1 1

1MO 8 5 13

2CE 8 5 13

3DCE 3 3 6

4MO 4 1 5

6CE 3 4 7

8CE 4 4 8

9CE 4 9 13

REST 5 6 11

Alle klasser 184 202 386

This table (of the number of students in Bjarne Stroustrup’s old primary school in 
2007) was extracted from a context (a web page) where it looks nice and is fairly 
typical of the kind of data we need to analyze:

• It has numeric data fi elds.
• It has character fi elds with strings meaningful only to people who under-

stand the context of the table. (Here, that point is emphasized by the use 
of Danish.)

• The character strings include spaces.
• The “fi elds” of this data are separated by a “separation indicator,” which 

in this case is a tab character.
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We chose this table to be “fairly typical” and “not too difficult,” but note one 
subtlety we must face: we can’t actually see the difference between spaces and tab 
characters; we have to leave that problem to our code.

We will illustrate the use of regular expressions to

• Verify that this table is properly laid out (i.e., every row has the right 
number of fi elds)

• Verify that the numbers add up (the last line claims to be the sum of the 
columns above)

If we can do that, we can do just about anything! For example, we could make 
a new table where the rows with the same initial digit (indicating the year: first 
grades start with 1) are merged or see if the number of students is increasing or 
decreasing over the years in question (see exercises 10–11).

To analyze the table, we need two patterns: one for the header line and one 
for the rest of the lines:

regex header {R"(^[\w ]+(           [\w ]+)*$)"};
regex row {R"(^[\w ]+(                 \d+)(  \d+)(   \d+)$)"};

Please remember that we praised the regular expression syntax for terseness and 
utility; we did not praise it for ease of comprehension by novices. In fact, regular 
expressions have a well-earned reputation for being a “write-only language.” Let 
us start with the header. Since it does not contain any numeric data, we could just 
have thrown away that first line, but — to get some practice — let us parse it. It con-
sists of four “word fields” (“alphanumeric fields”) separated by tabs. These fields 
can contain spaces, so we cannot simply use plain \w to specify its characters. In-
stead, we use [\w ], that is, a word character (letter, digit, or underscore) or a space. 
One or more of those is written [\w ]+. We want the first of those at the start of a 
line, so we get ^[\w ]+. The “hat” (^) means “start of line.” Each of the rest of the 
fields can be expressed as a tab followed by some words: (    [\w ]+). Now we take 
an arbitrary number of those followed by an end of line: (    [\w ]+)*$. The dollar 
sign ($) means “end of line.” 

Note how we can’t see that the tab characters are really tabs, but in this case 
they expand in the typesetting to reveal themselves.

Now for the more interesting part of the exercise: the pattern for the lines 
from which we want to extract the numeric data. The first field is as before: 
^[\w ]+. It is followed by exactly three numeric fields, each preceded by a tab, 
(    \d+), so that we get

^[\w ]+(           \d+)(           \d+)(           \d+)$
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which, after putting it into a raw string literal, is

R"(^[\w ]+(           \d+)(           \d+)(           \d+)$)"

Now all we have to do is to use those patterns. First we will just validate the table 
layout:

int main()
{
          ifstream in {"table.txt"};      // input file
          if (!in) error("no input file\n");

          string line;            // input buffer
          int lineno = 0;

          regex header {R"(^[\w ]+(           [\w ]+)*$)"};        // header line
          regex row {R"(^[\w ]+(              \d+)(  \d+)(   \d+)$)"};    // data line

          if (getline(in,line)) {        // check header line
                    smatch matches;
                    if (!regex_match(line, matches, header))
                              error("no header");
          }
          while (getline(in,line)) {       // check data line
                    ++lineno;
                    smatch matches;
                    if (!regex_match(line, matches, row)) 
                              error("bad line",to_string(lineno));
          }
}

For brevity, we left out the #includes. We are checking all the characters on each 
line, so we use regex_match() rather than regex_search(). The difference between 
those two is exactly that regex_match() must match every character of its input to 
succeed, whereas regex_search() looks at the input trying to find a substring that 
matches. Mistakenly typing regex_match() when you meant regex_search() (or 
vice versa) can be a most frustrating bug to find. However, both of those functions 
use their “matches” argument identically.

We can now proceed to verify the data in that table. We keep a sum of the 
number of pupils in the boys (“drenge”) and girls (“piger”) columns. For each 
row, we check that last field (“ELEVER IALT”) really is the sum of the first two 
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fields. The last row (“Alle klasser”) purports to be the sum of the columns above. 
To check that, we modify row to make the text field a sub-match so that we can 
recognize “Alle klasser”:

int main()
{
          ifstream in {"table.txt"};          // input file
          if (!in) error("no input file");

          string line;                                  // input buffer
          int lineno = 0;

          regex header {R"(^[\w ]+(           [\w ]+)*$)"};       // header line
          regex row {R"(^[\w ]+(              \d+)(  \d+)(   \d+)$)"};  // data line

          if (getline(in,line)) {                  // check header line
                    smatch matches;
                    if (regex_match(line, matches, header)) {
                              error("no header");
                    }
          }

          // column totals:
          int boys = 0;
          int girls = 0;

          while (getline(in,line)) {
                    ++lineno;
                    smatch matches;
                    if (!regex_match(line, matches, row))
                              cerr << "bad line: " <<  lineno << '\n';

                    if (in.eof()) cout << "at eof\n";

                    // check row:
                    int curr_boy = from_string<int>(matches[2]);
                    int curr_girl = from_string<int>(matches[3]);
                    int curr_total = from_string<int>(matches[4]);
                    if (curr_boy+curr_girl != curr_total)  error("bad row sum \n");

                    if (matches[1]=="Alle klasser") {           // last line
                              if (curr_boy != boys) error("boys don't add up\n");
                              if (curr_girl != girls) error("girls don't add up\n");
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                              if (!(in>>ws).eof()) error("characters after total line");
                              return 0;
                    }

                    // update totals:
                    boys += curr_boy;
                    girls += curr_girl;
          }

          error("didn't find total line");
}

The last row is semantically different from the other rows — it is their sum. 
We recognize it by its label (“Alle klasser”). We decided to accept no more 
non-whitespace characters after that last one (using the technique from to<>(); 
§23.2) and to give an error if we did not find it.

We used from_string() from §23.2 to extract an integer value from the data 
fields. We had already checked that those fields consisted exclusively of digits so 
we did not have to check that the string-to-int conversion succeeded.

23.10 References
Regular expressions are a popular and useful tool. They are available in many 
programming languages and in many formats. They are supported by an elegant 
theory based on formal languages and by an efficient implementation technique 
based on state machines. The full generality of regular expressions, their theory, 
their implementation, and the use of state machines in general are beyond the 
scope of this book. However, because these topics are rather standard in computer 
science curricula and because regular expressions are so popular, it is not hard to 
find more information (should you need it or just be interested).

For more information, see:

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools, Second Edition (usually called “The Dragon Book”). 
Addison-Wesley, 2007. ISBN 0321547985.

Cox, Russ. “Regular Expression Matching Can Be Simple and Fast (but Is Slow 
in Java, Perl, PHP, Python, Ruby, . . .).” http://swtch.com/~rsc/regexp/regexp1
.html.

Maddock, J. boost::regex documentation. www.boost.org/.
Schwartz, Randal L., Tom Phoenix, and Brian D. Foy. Learning Perl, Fourth Edition. 

O’Reilly, 2005. ISBN 0596101058.
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Drill
 1. Find out if regex is shipped as part of your standard library. Hint: Try 

std::regex and tr1::regex.
 2. Get the little program from §23.7 to work; that may involve figuring out 

how to set the project and/or command-line options to link to the regex 
library and use the regex headers.

 3. Use the program from drill 2 to test the patterns from §23.7.

Review
 1. Where do we find “text”?
 2. What are the standard library facilities most frequently useful for text 

analysis?
 3. Does insert() add before or after its position (or iterator)?
 4. What is Unicode?
 5. How do you convert to and from a string representation (to and from 

some other type)?
 6. What is the difference between cin>>s and getline(cin,s) assuming s is a 

string?
 7. List the standard streams.
 8. What is the key of a map? Give examples of useful key types.
 9. How do you iterate over the elements of a map?
 10. What is the difference between a map and a multimap? Which useful 

map operation is missing for multimap, and why?
 11. What operations are required for a forward iterator?
 12. What is the difference between an empty field and a nonexistent field? 

Give two examples.
 13. Why do we need an escape character to express regular expressions?
 14. How do you get a regular expression into a regex variable?
 15. What does \w+\s\d{4} match? Give three examples. What string literal 

would you use to initialize a regex variable with that pattern?
 16. How (in a program) do you find out if a string is a valid regular expression?
 17. What does regex_search() do? 
 18. What does regex_match() do?
 19. How do you represent the character dot (.) in a regular expression?
 20. How do you represent the notion of “at least three” in a regular expression?
 21. Is 7 a \w character? Is _ (underscore)?
 22. What is the notation for an uppercase character?
 23. How do you specify your own character set?
 24. How do you extract the value of an integer field?
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 25. How do you represent a floating-point number as a regular expression?
 26. How do you extract a floating-point value from a match?
 27. What is a sub-match? How do you access one?

Terms
match
multimap
pattern

regex_match()
regex_search()
regular expression

search
smatch
sub-pattern

Exercises
 1. Get the email file example to run; test it using a larger file of your own 

creation. Be sure to include messages that are likely to trigger errors, such 
as messages with two address lines, several messages with the same ad-
dress and/or same subject, and empty messages. Also test the program 
with something that simply isn’t a message according to that program’s 
specification, such as a large file containing no ––––  lines.

 2. Add a multimap and have it hold subjects. Let the program take an input 
string from the keyboard and print out every message with that string as 
its subject.

 3. Modify the email example from §23.4 to use regular expressions to find 
the subject and sender.

 4. Find a real email message file (containing real email messages) and mod-
ify the email example to extract subject lines from sender names taken as 
input from the user.

 5. Find a large email message file (thousands of messages) and then time it 
as written with a multimap and with that multimap replaced by an unor-
dered_multimap. Note that our application does not take advantage of 
the ordering of the multimap.

 6. Write a program that finds dates in a text file. Write out each line contain-
ing at least one date in the format line–number: line. Start with a regular 
expression for a simple format, e.g., 12/24/2000, and test the program 
with that. Then, add more formats.

 7. Write a program (similar to the one in the previous exercise) that finds 
credit card numbers in a file. Do a bit of research to find out what credit 
card formats are really used.

 8. Modify the program from §23.8.7 so that it takes as inputs a pattern and 
a file name. Its output should be the numbered lines (line–number: line) 
that contain a match of the pattern. If no matches are found, no output 
should be produced.

Stroustrup_book.indb   887Stroustrup_book.indb   887 5/8/15   10:31 AM5/8/15   10:31 AM



CHAPTER 23 • TEXT MANIPULATION888

 9. Using eof() (§B.7.2), it is possible to determine which line of a table is the 
last. Use that to (try to) simplify the table-checking program from §23.9. 
Be sure to test your program with files that end with empty lines after the 
table and with files that don’t end with a newline at all.

 10. Modify the table-checking program from §23.9 to write a new table where 
the rows with the same initial digit (indicating the year: first grades start 
with 1) are merged.

 11. Modify the table-checking program from §23.9 to see if the number of 
students is increasing or decreasing over the years in question.

 12. Write a program, based on the program that finds lines containing 
dates (exercise 6), that finds all dates and reformats them to the ISO 
yyyy-mm-dd format. The program should take an input file and produce 
an output file that is identical to the input file except for the changed date 
formatting.

 13. Does dot (.) match '\n'? Write a program to find out.
 14. Write a program that, like the one in §23.8.7, can be used to experiment 

with pattern matching by typing in a pattern. However, have it read a file 
into memory (representing a line break with the newline character, '\n'), 
so that you can experiment with patterns spanning line breaks. Test it and 
document a dozen test patterns.

 15. Describe a pattern that cannot be expressed as a regular expression.
 16. For experts only: Prove that the pattern found in the previous exercise 

really isn’t a regular expression.

Postscript
It is easy to get trapped into the view that computers and computation are all 
about numbers, that computing is a form of math. Obviously, it is not. Just look 
at your computer screen; it is full of text and pictures. Maybe it’s busy playing 
music. For every application, it is important to use proper tools. In the context of 
C++, that means using appropriate libraries. For text manipulation, the regular 
expression library is often a key tool — and don’t forget the maps and the standard 
algorithms.
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