
989

26

Testing

 “I have only proved the
code correct, not tried it.”

—Donald Knuth

This chapter covers testing and design for correctness. These

are huge topics, so we can only scratch their surfaces. The

emphasis is on giving some practical ideas and techniques for

testing units, such as functions and classes, of a program. We dis-

cuss the use of interfaces and the selection of tests to run against

them. We emphasize the importance of designing systems to

simplify testing and the use of testing from the earliest stages of

development. Proving programs correct and dealing with perfor-

mance problems are also briefly considered.

CHAPTER 26 • TESTING990

26.1 What we want
Let’s try a simple experiment. Write a binary search. Do it now. Don’t wait un-
til the end of the chapter. Don’t wait until after the next section. It’s important
that you try. Now! A binary search is a search in a sorted sequence that starts
at the middle:

• If the middle element is equal to what we are searching for, we are fi nished.
• If the middle element is less than what we are searching for, we look at the

right-hand half, doing a binary search on that.
• If the middle element is greater than what we are searching for, we look at

the left-hand half, doing a binary search on that.
• The result is an indicator of whether the search was successful and some-

thing that allows us to modify the element, if found, such as an index, a
pointer, or an iterator.

Use less than (<) as the comparison (sorting) criterion. Feel free to use any data
structure you like, any calling conventions you like, and any way of returning
the result that you like, but do write the search code yourself. In this rare case,
using someone else’s function is counterproductive, even with proper acknowl-
edgment. In particular, don’t use the standard library algorithm (binary_search or
equal_range) that would have been your first choice in most situations. Take as
much time as you like.

So now you have written your binary search function. If not, go back to the
previous paragraph. How do you know that your search function is correct? If
you haven’t already, write down why you are convinced that this code is correct.
How confident are you about your reasoning? Are there parts of your argument
that might be weak?

26.1 What we want
 26.1.1 Caveat

26.2 Proofs

26.3 Testing
 26.3.1 Regression tests

 26.3.2 Unit tests
 26.3.3 Algorithms and non-algorithms
 26.3.4 System tests
 26.3.5 Finding assumptions that do

not hold

26.4 Design for testing

26.5 Debugging

26.6 Performance
 26.6.1 Timing

26.7 References

Stroustrup_book.indb 990Stroustrup_book.indb 990 5/8/15 10:31 AM5/8/15 10:31 AM

26.1 WHAT WE WANT 991

That was a trivially simple piece of code. It implemented a very regular and
well-known algorithm. Your compiler is on the order of 200K lines of code, your
operating system is 10M to 50M lines of code, and the safety-critical code in the
airplane you’ll fly on for your next vacation or conference is 500K to 2M lines of
code. Does that make you feel comfortable? How do the techniques you used for
your binary search function scale to real-world software sizes?

Curiously, given all that complex code, most software works correctly most
of the time. We do not count anything running on a game-infested consumer PC
as “critical.” Even more importantly, safety-critical software works correctly just
about all of the time. We cannot recall an example of a plane or a car crashing
because of a software failure over the last decade. Stories about bank software
getting seriously confused by a check for $0.00 are now very old; such things
essentially don’t happen anymore. Yet software is written by people like you. You
know that you make mistakes; we all do, so how do “they” get it right?

The most fundamental answer is that “we” have figured out how to build re-
liable systems out of unreliable parts. We try hard to make every program, every
class, and every function correct, but we typically fail our first attempt at that.
Then we debug, test, and redesign to find and remove as many errors as possi-
ble. However, in any nontrivial system, some bugs will still be hiding. We know
that, but we can’t find them — or rather, we can’t find them all with the time and
effort we are able and willing to expend. Then, we redesign the system yet again
to recover from unexpected and “impossible” events. The result can be systems
that are spectacularly reliable. Note that such reliable systems may still harbor er-
rors — they usually do — and still occasionally work less well than we would like.
However, they don’t crash and always deliver minimally acceptable service. For
example, a phone system may not manage to connect every call when demand is
exceptionally high, but it never fails to connect many calls.

Now, we could be philosophical and discuss whether an unexpected error
that we have conjectured and catered for is really an error, but let’s not. It is more
profitable and productive for systems builders “just” to figure how to make our
systems more reliable.

26.1.1 Caveat
Testing is a huge topic. There are several schools of thought about how test-
ing should be done, and different industries and application areas have different
traditions and standards for testing. That’s natural — you really don’t need the
same reliability standard for video games and avionics software — but it leads to
confusing differences in terminology and tools. Treat this chapter as a source of
ideas for your personal projects and as a source of ideals if you encounter testing
of major systems. The testing of major systems involves a variety of combinations
of tools and organizational structures that it would make little sense to try to de-
scribe here.

Stroustrup_book.indb 991Stroustrup_book.indb 991 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING992

26.2 Proofs
Wait a minute! Why don’t we just prove that our programs are correct, rather
than fussing around with tests? As Edsger Dijkstra succinctly pointed out, “Test-
ing can reveal the presence of errors, not their absence.” This leads to an obvious
desire to prove programs correct “much as mathematicians prove theorems.”

Unfortunately, proving nontrivial programs correct is beyond the state of the
art (outside very constrained applications domains), the proofs themselves can
contain errors (as can the ones mathematicians produce), and the whole field of
program proving is an advanced topic. So, we try as hard as we can to structure
our programs so that we can reason about them and convince ourselves that they
are correct. However, we also test (§26.3) and try to organize our code to be resil-
ient against remaining errors (§26.4).

26.3 Testing
In §5.11, we described testing as “a systematic way to search for errors.” Let’s look
at techniques for doing that.

People distinguish between unit testing and system testing. A “unit” is something
like a function or a class that is a part of a complete program. If we test such units
in isolation, we know where to look for the cause of problems when we find an
error; any error will be in the unit that we are testing (or in the code we use to
conduct the tests). This contrasts with system testing, where we test a complete
system and all we know is that an error is “somewhere in the system.” Typically,
errors found in system testing — once we have done a good job at unit testing — re-
late to undesirable interactions between units. They are harder to find than errors
within individual units and often more expensive to fix.

Obviously, a unit (say, a class) can be composed of other units (say, functions
and other classes), and systems (say, an electronic commerce system) can be com-
posed of other systems (say, a database, a GUI, a networking system, and an or-
der validation system), so the distinction between unit testing and systems testing
isn’t as clear as you might have thought, but the general idea is that by testing our
units well, we save ourselves work — and our end users pain.

One way of looking at testing is that any nontrivial system is built out of
units, and these units are themselves built out of smaller units. So, we start testing
the smallest units, then we test the units composed from those, and we work our
way up until we have tested the whole system; that is, “the system” is just the
largest unit (until we use that as a unit for some yet larger system).

So, let’s first consider how to test a unit (such as a function, a class, a class hier-
archy, or a template). Testers distinguish between white-box testing (where you can
look at the detailed implementation of what you are testing) and black-box testing

Stroustrup_book.indb 992Stroustrup_book.indb 992 5/8/15 10:31 AM5/8/15 10:31 AM

26.3 TESTING 993

(where you can look only at the interface of what you are testing). We will not
make a big deal of this distinction; by all means read the implementation of what
you test. But remember that someone might later come and rewrite that imple-
mentation, so try not to depend on anything that is not guaranteed in the inter-
face. In fact, when testing anything, the basic idea is to throw anything we can at
its interface to see if it responds reasonably.

Mentioning that someone (maybe yourself) might change the code after you
tested it brings us to regression testing. Basically, whenever you make a change,
you have to retest to make sure that you have not broken anything. So when you
have improved a unit, you rerun its unit tests, and before you give the complete
system to someone else (or use it for something real yourself), you run the com-
plete system test.

Running such complete tests of a system is often called regression testing because
it usually includes running tests that have previously found errors to see if these er-
rors are still fixed. If not, the program has “regressed” and needs to be fixed again.

26.3.1 Regression tests
Building up a large collection of tests that have been useful for finding errors in
the past is a major part of building an effective test suite for a system. Assume that
you have users; they will send you bugs. Never throw away a bug report! Pro-
fessionals use bug-tracking systems to ensure that. Anyway, a bug report demon-
strates either an error in the system or an error in a user’s understanding of the
system. Either way it is useful.

Usually, a bug report contains far too much extraneous information, and the
first task of dealing with it is to produce the smallest program that exhibits the
reported problem. This often involves cutting away most of the code submitted:
in particular, we try to eliminate the use of libraries and application code that
does not affect the error. Finding that minimal test program often helps us localize
the bug in the system’s code, and that minimal program is what is added to the
regression test suite. The way we find that minimal program is to keep removing
code until the error disappears — and then reinsert the last bit of code we removed.
This we do until we run out of candidates for removal.

Just running hundreds (or tens of thousands) of tests produced from old
bug reports may not seem very systematic, but what we are really doing here is
to systematically use the experience of users and developers. The regression test
suite is a major part of a developer group’s institutional memory. For a large sys-
tem, we simply can’t rely on having the original developers available to explain
details of the design and implementation. The regression suite is what keeps a
system from mutating away from what the developers and users have agreed to
be its proper behavior.

Stroustrup_book.indb 993Stroustrup_book.indb 993 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING994

26.3.2 Unit tests
OK. Enough words for now! Let’s try a concrete example: let’s test a binary
search. Here is the specification from the ISO standard (§25.3.3.4):

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,
 const T& value);

template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first, ForwardIterator last,
 const T& value, Compare comp);
Requires: The elements e of [first,last) are partitioned with respect to the
expressions e<value and !(value<e) or comp(e,value) and !comp(value,e).
Also, for all elements e of [first,last), e<value implies !(value<e) or comp
(e,value) implies !comp(value,e).
Returns: true if there is an iterator i in the range [first,last) that satisfies
the corresponding conditions: !(*i<value) && !(value<*i) or comp(*i,value)
==false && comp(value,*i)==false.
Complexity: At most log(last–fi rst)+2 comparisons.

Nobody said that a formal specification (well, semiformal) was easy to read for
the uninitiated. However, if you actually did the exercise of designing and im-
plementing a binary search that we strongly suggested at the beginning of the
chapter, you have a pretty good idea of what a binary search does and how to test
it. This (standard) version takes a pair of forward iterators (§20.10.1) and a value
as arguments and returns true if the value is in the range defined by the iterators.
The iterators must define a sorted sequence. The comparison (sorting) criterion
is <. We’ll leave the second version of binary_search that takes a comparison cri-
terion as an extra argument as an exercise.

Here, we will deal only with errors that are not caught by the compiler, so
examples like these are somebody else’s problem:

binary_search(1,4,5); // error: an int is not a forward iterator
vector<int> v(10);
binary_search(v.begin(),v.end(),"7"); // error: can’t search for a string
 // in a vector of ints
binary_search(v.begin(),v.end()); // error: forgot the value

How can we systematically test binary_search()? Obviously we can’t just try every
possible argument for it, because every possible argument would be every possi-
ble sequence of every possible type of value — that would be an infinite number of

Stroustrup_book.indb 994Stroustrup_book.indb 994 5/8/15 10:31 AM5/8/15 10:31 AM

26.3 TESTING 995

tests! So, we must choose tests and to choose, we need some principles for making
a choice:

• Test for likely mistakes (fi nd the most errors).
• Test for bad mistakes (fi nd the errors with the worst potential consequences).

By “bad,” we mean errors that would have the direst consequences. In general, that’s
a fuzzy notion, but it can be made precise for a specific program. For example, for a
binary search considered in isolation, all errors are about equally bad, but if we used
that binary_search() in a program where all answers were carefully double-checked,
getting a wrong answer from binary_search() might be far more acceptable than
having it not return because it went into an infinite loop. In that case, we would
spend greater effort tricking binary_search() into an infinite (or very long) loop than
we would trying to trick it into giving a wrong answer. Note our use of “tricking”
here. Testing is — among other things — an exercise in applying creative thinking to
the problem of “How can we get this code to misbehave?” The best testers are not
just systematic, but also quite devious (in a good cause, of course).

26.3.2.1 Testing strategy
How do we go about breaking binary_search()? We start by looking at binary_
search()’s requirements, that is, what it assumes about its inputs. Unfortunately,
from our perspective as testers, it is clearly stated that [first,last) must be a sorted
sequence; that is, it is the caller’s job to ensure that, so we can’t fairly try to break
binary_search() by giving it unsorted input or a [first,last) where last<first. Note
that the requirements for binary_search() do not say what it will do if we give it
input that doesn’t meet its requirements. Elsewhere in the standard, it says that
it may throw an exception in that case, but it is not required to. These facts are
good to remember for when we test uses of binary_search(), though, because a
caller failing to establish the requirements of a function, such as binary_search(),
is a likely source of errors.

We can imagine the following kinds of errors for binary_search():

• Never returned (e.g., infi nite loop)
• Crash (e.g., bad dereference, infi nite recursion)
• Value not found even though it was in the sequence
• Value found even though it wasn’t in the sequence

In addition, we remember the following “opportunities” for user errors:

• The sequence is not sorted (e.g., {2,1,5,–7,2,10}).
• The sequence is not a valid sequence (e.g., binary_search(&a[100],

&a[50],77)).

Stroustrup_book.indb 995Stroustrup_book.indb 995 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING996

How might an implementer have made a mistake (for testers to find) for a simple
call binary_search(p1,p2,v)? Errors often occur for “special cases.” In particular,
when considering sequences (of any sort), we always look for the beginning and
the end. In particular, the empty sequence should always be tested. So, let’s con-
sider a few arrays of integers that are properly ordered as required:

{ 1,2,3,5,8,13,21 } // an “ordinary sequence”
{ } // the empty sequence
{ 1 } // just one element
{ 1,2,3,4 } // even number of elements
{ 1,2,3,4,5 } // odd number of elements
{ 1, 1, 1, 1, 1, 1, 1 } // all elements equal
{ 0,1,1,1,1,1,1,1,1,1,1,1,1 } // different element at beginning
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,1 } // different element at end

Some test sequences are best generated by a program:

• vector<int> v;

 for (int i=0; i<100000000; ++i) v.push_back(i); // a very large sequence

• Some sequences with a random number of elements
• Some sequences with random elements (but still ordered)

This is not as systematic as we’d have liked. After all, we “just picked” some
sequences. However, we used some fairly general rules of thumb that often are
useful when dealing with sets of values; consider:

• The empty set
• Small sets
• Large sets
• Sets with extreme distributions
• Sets where “what is of interest” happens near the end
• Sets with duplicate elements
• Sets with even and with odd numbers of elements
• Sets generated using random numbers

We use the random sequences just to see if we can get lucky (i.e., find an error)
with something we didn’t think about. It’s a brute-force technique, but relatively
cheap in terms of our time.

Why “odd and even”? Well, lots of algorithms partition their input sequences,
e.g., into the first half and the last half, and maybe the programmer considered
only the odd or the even case. More generally, when we partition a sequence,

Stroustrup_ch26.indd 996Stroustrup_ch26.indd 996 2/22/16 4:39 PM2/22/16 4:39 PM

26.3 TESTING 997

the point where we split it becomes the end of a subsequence, and we know that
errors are likely near ends of sequences.

In general, we look for

• Extreme cases (large, small, strange distributions of input, etc.)
• Boundary conditions (anything near a limit)

What that really means, depends on the particular program we are testing.

26.3.2.2 A simple test harness
We have two categories of tests: tests that should succeed (e.g., searching for a
value that’s in a sequence) and tests that should fail (e.g., searching for a value in
an empty sequence). For each of our sequences, let’s construct some succeeding
and some failing tests. We will start from the simplest and most obvious and
proceed to improve until we have something that’s good enough for our binary_
search example:

vector<int> v { 1,2,3,5,8,13,21 };
if (binary_search(v.begin(),v.end(),1) == false) cout << "failed";
if (binary_search(v.begin(),v.end(),5) == false) cout << "failed";
if (binary_search(v.begin(),v.end(),8) == false) cout << "failed";
if (binary_search(v.begin(),v.end(),21) == false) cout << "failed";
if (binary_search(v.begin(),v.end(),–7) == true) cout << "failed";
if (binary_search(v.begin(),v.end(),4) == true) cout << "failed";
if (binary_search(v.begin(),v.end(),22) == true) cout << "failed";

This is repetitive and tedious, but it will do for a start. In fact, many simple tests
are nothing but a long list of calls like this. This naive approach has the virtue
of being extremely simple. Even the newest member of the test team can add a
new test to the set. However, we can usually do much better. For example, when
something failed here, we are not told which test failed. That’s unacceptable. Also,
writing tests is no excuse for regressing to “cut and paste” programming. We need
to consider the design of our testing code, just like any other code. So:

vector<int> v { 1,2,3,5,8,13,21 };
for (int x : {1,5,8,21,-7,2,44})
 if (binary_search(v.begin(),v.end(),x) == false) cout << x << " failed";

Assuming that we will eventually have dozens of tests, this will make a huge dif-
ference. For testing real-world systems, we often have many thousands of tests, so
being precise about what test failed is essential.

Stroustrup_book.indb 997Stroustrup_book.indb 997 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING998

Before going further, note another example of (semi-systematic) testing tech-
nique: we tested with correct values, choosing some from the ends of the sequence
and some from “the middle.” For this sequence we could have tried all values, but
typically that’s not a realistic option. For the failing values, we chose one from
each end and one in the middle. Again, this is not perfectly systematic, but we
begin to see a pattern that is useful whenever we deal with sequences of values or
ranges of values — and that’s very common.

What’s wrong with these tests?

• We (initially) wrote the same things repeatedly.
• We (initially) numbered the tests manually.
• The output is very minimal (not very helpful).

After looking at this for a while, we decided to keep our tests as data in a file. Each
test would contain an identifying label, a value to be looked up, a sequence, and
an expected result. For example:

{ 27 7 { 1 2 3 5 8 13 21} 0 }

This is test number 27. It looks for 7 in the sequence { 1,2,3,5,8,13,21 } expecting
the result 0 (meaning false). Why do we put the test inputs in a file rather than
placing them right into the text of the test program? Well, in this case we could
have typed the tests straight into the program text, but having a lot of data in a
source code file can be messy, and often, we use programs to generate test cases.
Machine-generated test cases are typically in data files. Also, we can now write a
test program that we can run with a variety of files of test cases:

struct Test {
 string label;
 int val;
 vector<int> seq;
 bool res;
};

istream& operator>>(istream& is, Test& t); // use the described format

int test_all(istream& is)
{
 int error_count = 0;
 for (Test t; is>>t;) {
 bool r = binary_search(t.seq.begin(), t.seq.end(), t.val);

Stroustrup_book.indb 998Stroustrup_book.indb 998 5/8/15 10:31 AM5/8/15 10:31 AM

26.3 TESTING 999

 if (r !=t.res) {
 cout << "failure: test " << t.label
 << " binary_search: "
 << t.seq.size() << " elements, val==" << t.val
 << " –> " << t.res << '\n';
 ++error_count;
 }
 }
 return error_count;
}

int main()
{
 int errors = test_all(ifstream("my_tests.txt"));
 cout << "number of errors: " << errors << "\n";
}

Here is some test input using the sequences we listed above:

{ 1.1 1 { 1 2 3 5 8 13 21 } 1 }
{ 1.2 5 { 1 2 3 5 8 13 21 } 1 }
{ 1.3 8 { 1 2 3 5 8 13 21 } 1 }
{ 1.4 21 { 1 2 3 5 8 13 21 } 1 }
{ 1.5 –7 { 1 2 3 5 8 13 21 } 0 }
{ 1.6 4 { 1 2 3 5 8 13 21 } 0 }
{ 1.7 22 { 1 2 3 5 8 13 21 } 0 }

{ 2 1 { } 0 }

{ 3.1 1 { 1 } 1 }
{ 3.2 0 { 1 } 0 }
{ 3.3 2 { 1 } 0 }

Here we see why we used a string label rather than a number: that way we can
“number” our tests using a more flexible system — here using a decimal system to
indicate separate tests for the same sequence. A more sophisticated format would
eliminate the need to repeat a sequence in our test data file.

26.3.2.3 Random sequences
When we choose values to be used in testing, we try to outwit the implementers
(who are often ourselves) and to use values that focus on areas where we know
bugs can hide (e.g., complicated sequences of conditions, the ends of sequences,

Stroustrup_book.indb 999Stroustrup_book.indb 999 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING1000

loops, etc.). However, that’s also what we did when we tried to write and debug
the code. So, we might repeat a logical mistake from the design when we design
the tests and completely miss a problem. This is one reason it is a good idea to
have someone different from the developer(s) involved with designing the tests.
We have one technique that occasionally helps with that problem: just generate (a
lot of) random values. For example, here is a function that writes a test description
to cout using randint() from §24.7 and std_lib_facilities.h:

void make_test(const string& lab, int n, int base, int spread)
 // write a test description with the label lab to cout
 // generate a sequence of n elements starting at base
 // the average distance between elements is uniformly distributed
 // in [0:spread)
{
 cout << "{ " << lab << " " << n << " { ";
 vector<int> v;
 int elem = base;
 for (int i = 0; i<n; ++i) { // make elements
 elem+= randint(spread);
 v.push_back(elem);
 }

 int val = base+ randint(elem–base); // make search value
 bool found = false;
 for (int i = 0; i<n; ++i) { // print elements and see if val is found
 if (v[i]==val) found = true;
 cout << v[i] << " ";
 }
 cout << "} " << found << " }\n";
}

Note that we did not use binary_search to see if the random val was in the ran-
dom sequence. We can’t use what we are testing to determine the correct value
of a test.

Actually, binary_search isn’t a particularly suitable example of the brute-
force random number approach to testing. We doubt that this will find any bugs
that are not picked up by our “hand-crafted” tests, but often this technique is use-
ful. Anyway, let’s make a few random tests:

int no_of_tests = randint(100); // make about 50 tests
for (int i = 0; i<no_of_tests; ++i) {
 string lab = "rand_test_";
 make_test(lab+to_string(i), // to_string from §23.2

Stroustrup_book.indb 1000Stroustrup_book.indb 1000 5/8/15 10:31 AM5/8/15 10:31 AM

26.3 TESTING 1001

 randint(500), // number of elements
 0, // base
 randint(50)); // spread
}

Generated tests based on random numbers are particularly useful when we need
to test the cumulative effects of many operations where the result of an operation
depends on how earlier operations were handled, that is, when a system has state;
see §5.2.

The reason that random numbers are not all that useful for binary_search
is that each search of a sequence is independent of all other searches of that se-
quence. That of course assumes that the implementation of binary_search hasn’t
done something terminally stupid, such as modifying its sequence. We have a
better test for that (exercise 5).

26.3.3 Algorithms and non-algorithms
We have used binary_search() as an example. It’s a proper algorithm with

• Well-specifi ed requirements on its inputs
• A well-specifi ed effect on its inputs (in this case, no effects)
• No dependencies on objects that are not its explicit inputs
• Without serious constraints imposed by the environment (e.g., no speci-

fi ed time, space, or resource-sharing requirements)

It has obvious and explicitly stated pre- and post-conditions (§5.10). In other words,
it’s a tester’s dream. Often, we are not so lucky: we have to test messy code that
(at best) is defined by a somewhat sloppy English text and a couple of diagrams.

Wait a minute! Are we indulging in sloppy logic here? How can we talk
about correctness and testing when we don’t have a precise specification of what
the code is supposed to do? The problem is that much of what needs to be done
in software is not easy to specify in perfectly clear mathematical terms. Also, in
many cases where it in theory could be specified like that, the math is beyond the
abilities of the programmers who write and test the code. So we are left with the
ideal of perfectly precise specifications and a reality of what someone (such as us)
can manage under real-world conditions and time pressures.

So, assume that you have a messy function that you have to test. By “messy”
we mean:

• Inputs: Its requirements on its (explicit or implicit) inputs are not specifi ed
quite as well as we would like.

• Outputs: Its (explicit or implicit) outputs are not specifi ed quite as well as
we would like.

• Resources: Its use of resources (time, memory, fi les, etc.) is not specifi ed
quite as well as we would like.

Stroustrup_book.indb 1001Stroustrup_book.indb 1001 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING1002

By “explicit or implicit” we mean that we have to look not just at the formal
parameters and the return value, but also at any effects on global variables, io-
streams, files, free-store memory allocation, etc. So, what can we do? First of all,
such a function is almost certainly too long — or we could have stated its require-
ments and effects more clearly. Maybe we are talking about a function that is five
pages long or uses “helper functions” in complicated and non-obvious ways. You
may think that five pages is a lot for a function. It is, but we have seen much,
much longer functions than that. Unfortunately, they are not uncommon.

If it is our code and if we had time, we would first of all try to break such
a “messy function” up into smaller functions that come closer to our ideals of a
well-specified function and first test those. However, here we will assume that our
aim is to test the software — that is, to systematically find as many errors as possi-
ble — rather than (just) fixing bugs as we find them.

So, what do we look for? Our job as testers is to find errors. Where are bugs
likely to hide? What characterizes code that is likely to contain bugs?

• Subtle dependencies on “other code”: look for use of global variables,
non-const-reference arguments, pointers, etc.

• Resource management: look for memory management (new and delete),
fi le use, locks, etc.

• Look for loops: check end conditions (as for binary_search()).
• if-statements and switches (often referred to as “branching”): look for

 errors in their logic.

Let’s look at examples of each.

26.3.3.1 Dependencies
Consider this nonsense function:

int do_dependent(int a, int& b) // messy function
 // undisciplined dependencies
{
 int val ;
 cin>>val;
 vec[val] += 10;
 cout << a;
 b++;
 return b;
}

To test do_ dependent(), we can’t just synthesize sets of arguments and see what it
does with them. We have to take into account that it uses the global variables cin,

Stroustrup_book.indb 1002Stroustrup_book.indb 1002 5/8/15 10:31 AM5/8/15 10:31 AM

26.3 TESTING 1003

cout, and vec. That’s pretty obvious in this little nonsense function, but in real
code this may be hidden in a larger amount of code. Fortunately, there is software
that can help us find such dependencies. Unfortunately, it is not always easily
available or widely used. Assuming that we don’t have analysis software to help
us, we go through the function line by line, listing all its dependencies.

To test do_ dependent(), we have to consider

• Its inputs:

• The value of a
• The value of b and the value of the int referenced by b
• The input from cin (into val) and the state of cin

• The state of cout

• The value of vec, in particular, the value of vec[val]

• Its outputs:

• The return value
• The value of the int referenced by b (we incremented it)
• The state of cin (beware of stream state and format state)
• The state of cout (beware of stream state and format state)
• The state of vec (we assigned to vec[val])
• Any exceptions that vec might have thrown (vec[val] might be out

of range)

This is a long list. In fact, that list is longer than the function itself. This goes
a long way toward explaining our dislike of global variables and our concerns
about non-const references (and pointers). There really is something very nice
about a function that just reads its arguments and produces a result as a return
value: we can easily understand and test it.

Once the inputs and outputs are identified, we are basically back to the
 binary_search() case. We simply generate tests with input values (for explicit and
implicit inputs) to see if they give the desired outputs (considering both implicit
and explicit outputs). With do_ dependent(), we would probably start with a very
large val and a negative val, to see what happens. It looks as if vec had better be
a range-checked vector (or we can very simply generate really bad errors). We
would of course check what the documentation said about all those inputs and
outputs, but with a messy function like that we have little hope of the specification
being complete and precise, so we will just break the functions (i.e., find errors)
and start asking questions about what is correct. Often, such testing and questions
should lead to a redesign.

Stroustrup_book.indb 1003Stroustrup_book.indb 1003 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING1004

26.3.3.2 Resource management
Consider this nonsense function:

void do_resources1(int a, int b, const char* s) // messy function
 // undisciplined resource use
{
 FILE* f = fopen(s,"r"); // open file (C style)
 int* p = new int[a]; // allocate some memory
 if (b<=0) throw Bad_arg(); // maybe throw an exception
 int* q = new int[b]; // allocate some more memory
 delete[] p; // deallocate the memory pointed to by p
}

To test do_resources1(), we have to consider whether every resource acquired
has been properly disposed of, that is, whether every resource has been either
released or passed to some other function.

Here, it is obvious that

• The fi le named s is not closed
• The memory allocated for p is leaked if b<=0 or if the second new throws
• The memory for q is leaked if 0<b

In addition, we should always consider the possibility that an attempt at open-
ing a file might fail. To get this miserable result, we deliberately used a very
old-fashioned programming style (fopen() is the standard C way of opening files).
We could have made the job for testers more straightforward by writing

void do_resources2(int a, int b, const char* s) // less messy function
{
 ifstream is(s); // open file
 vector<int>v1(a); // create vector (owning memory)
 if (b<=0) throw Bad_arg(); // maybe throw an exception
 vector<int> v2(b); // create another vector (owning memory)
}

Now every resource is owned by an object with a destructor that will release it.
Considering how we could write a function more simply (more cleanly) is some-
times a good way to get ideas for testing. The “Resource Acquisition Is Initializa-
tion” (RAII) technique from §19.5.2 provides a general strategy for this kind of
resource management problem.

Please note that resource management is not just checking that every piece of
memory allocated is deleted. Sometimes we receive resources from elsewhere (e.g.,

Stroustrup_book.indb 1004Stroustrup_book.indb 1004 5/8/15 10:31 AM5/8/15 10:31 AM

26.3 TESTING 1005

as an argument), and sometimes we pass resources out of a function (e.g., as a return
value). It can be quite hard to determine what is right about such cases. Consider:

FILE* do_resources3(int a, int* p, const char* s) // messy function
 // undisciplined resource passing
{
 FILE* f = fopen(s,"r");
 delete p;
 delete var;
 var = new int[27];
 return f;
}

Is it right for do_resources3() to pass the (supposedly) opened file back as the
return value? Is it right for do_resources3() to delete the memory passed to it
as the argument p? We also added a really sneaky use of the global variable
var (obviously a pointer). Basically, passing resources in and out of functions is
common and useful, but to know if it is correct requires knowledge of a resource
management strategy. Who owns the resource? Who is supposed to delete/release
it? The documentation should clearly and simply answer those questions. (Dream
on.) In either case, passing of resources is a fertile area for bugs and a tempting
target for testing.

Note how we (deliberately) complicated the resource management example
by using a global variable. Things can get really messy when we start to mix the
sources of likely bugs. As programmers, we try to avoid that. As testers, we look
for such examples as easy pickings.

26.3.3.3 Loops
We have looked at loops when we discussed binary_search(). Basically most er-
rors occur at the ends:

• Is everything properly initialized when we start the loop?
• Do we correctly end with the last case (often the last element)?

Here is an example where we get it wrong:

int do_loop(const vector<int>& v) // messy function
 // undisciplined loop
{
 int i;
 int sum;
 while(i<=vec.size()) sum+=v[i];
 return sum;
}

Stroustrup_book.indb 1005Stroustrup_book.indb 1005 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING1006

There are three obvious errors. (What are they?) In addition, a good tester will
immediately spot the opportunity for an overflow where we are adding to sum:

• Many loops involve data and might cause some sort of overfl ow when
they are given large inputs.

A famous and particularly nasty loop error, the buffer overflow, falls into the
category that can be caught by systematically asking the two key questions about
loops:

char buf[MAX]; // fixed-size buffer

char* read_line() // dangerously sloppy
{
 int i = 0;
 char ch;
 while(cin.get(ch) && ch!='\n') buf[i++] = ch;
 buf[i+1] = 0;
 return buf;
}

Of course, you wouldn’t write something like that! (Why not? What’s so wrong
with read_line()?) However, it is sadly common and comes in many variations,
such as

// dangerously sloppy:
gets(buf); // read a line into buf
scanf("%s",buf); // read a line into buf

Look up gets() and scanf() in your documentation and avoid them like the plague.
By “dangerous,” we mean that such buffer overflows are a staple of “cracking” —
that is, break-ins — on computers. Many implementations now warn against gets()
and its cousins for exactly this reason.

26.3.3.4 Branching
Obviously, when we have to make a choice, we may make the wrong choice. This
makes if-statements and switch-statements good targets for testers. There are two
major problems to look for:

• Are all possibilities covered?
• Are the right actions associated with the right possibilities?

Stroustrup_book.indb 1006Stroustrup_book.indb 1006 5/8/15 10:31 AM5/8/15 10:31 AM

26.3 TESTING 1007

Consider this nonsense function:

void do_branch1(int x, int y) // messy function
 // undisciplined use of if
{
 if (x<0) {
 if (y<0)
 cout << "very negative\n";
 else
 cout << "somewhat negative\n";
 }
 else if (x>0) {
 if (y<0)
 cout << "very positive\n";
 else
 cout << "somewhat positive\n";
 }
}

The most obvious error here is that we “forgot” the case where x is 0. When
testing against zero (or for positive and negative values), zero is often forgot-
ten or lumped with the wrong case (e.g., considered negative). Also, there is a
more subtle (but not uncommon) error lurking here: the actions for (x>0 &&
y<0) and (x>0 && y>=0) have “somehow” been reversed. This happens a lot with
cut-and-paste editing.

The more complicated the use of if-statements is, the more likely such errors
become. From a tester’s point of view, we look at such code and try to make sure
that every branch is tested. For do_branch1() the obvious test set is

do_branch1(–1,–1);
do_branch1(–1, 1);
do_branch1(1,–1);
do_branch1(1,1);
do_branch1(–1,0);
do_branch1(0,–1);
do_branch1(1,0);
do_branch1(0,1);
do_branch1(0,0);

Basically, that’s the brute-force “try all the alternatives” approach after we noticed
that do_branch1() tested against 0 using < and >. To catch the wrong actions for
positive values of x, we have to combine the calls with their desired output.

Stroustrup_book.indb 1007Stroustrup_book.indb 1007 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING1008

Dealing with switch-statements is fundamentally similar to dealing with if-
statements.

void do_branch1(int x, int y) // messy function
 // undisciplined use of switch
{
 if (y<0 && y<=3)
 switch (x) {
 case 1:
 cout << "one\n";
 break;
 case 2:
 cout << "two\n";
 case 3:
 cout << "three\n";
 }
}

Here we have made four classic mistakes:

• We range checked the wrong variable (y instead of x).
• We forgot a break statement leading to a wrong action for x==2.
• We forgot a default case (thinking we had taken care of that with the if-

statement).
• We wrote y<0 when we meant to say 0<y.

As testers, we always look for unhandled cases. Please note that “just fixing the
problem” is not enough. It may reappear when we are not looking. As testers,
we want to write tests that systematically catch errors. If we just fixed this simple
code, we may very well get our fix wrong so that it either doesn’t solve the prob-
lem or introduces new and different errors. The purpose of looking at the code
is not really to spot errors (though that’s always useful), but to design a suitable
set of tests that will catch all errors (or, more realistically, will catch many errors).

Note that loops have an implicit “if”: they test whether we have reached the
end. Thus loops are also branching statements. When we look at programs con-
taining branching, the first question is always, “Have we covered (tested) every
branch?” Surprisingly that is not always possible in real code (because in real
code, a function is called as needed by other functions and not necessarily in all
possible ways). Consequently, a common question for testers is, “What is your
code coverage?” and the answer had better be, “We tested most branches,” fol-
lowed by an explanation of why the remaining branches are hard to reach. 100%
coverage is the ideal.

Stroustrup_book.indb 1008Stroustrup_book.indb 1008 5/8/15 10:31 AM5/8/15 10:31 AM

26.3 TESTING 1009

26.3.4 System tests
Testing any significant system is a skilled job. For example, the testing of the com-
puters that control telephone systems takes place in specially constructed rooms
with racks full of computers simulating the traffic of tens of thousands of people.
Such systems cost millions and are the work of teams of very skilled engineers.
After it is deployed, a main telephone switch is supposed to work continuously for
20 years with at most 20 minutes of downtime (for any reason, including power
failures, flooding, and earthquakes). We will not go into detail here — it would
be easier to teach a physics freshman to calculate course corrections for a Mars
probe — but we’ll try to give you some ideas that could be useful for a smaller
project or for understanding the testing of a larger system.

First of all, please remember that the purpose of testing is to find errors, espe-
cially potentially frequent and potentially serious errors. It is not simply to write
and run the largest number of tests. This implies that some understanding of the
system being tested is highly desirable. Even more than for unit testing, effective
system testing relies on knowledge of the application (domain knowledge). Devel-
oping a system takes more than just knowledge of programming language issues
and computer science; it requires an understanding of the application areas and
of the people who use the applications. This is something we find important for
motivating us to work with code: we get to see so many interesting applications
and meet interesting people.

For a complete system to be tested, it has to be built out of all of its parts
(units). This can take significant time, so many system tests are run just once a
day (often at night while the developers are supposed to be asleep) after all unit
tests have been done. Regression tests are a key component here. The areas of a
program in which we are most likely to find errors are new code and areas of code
where errors were found earlier. So running the collection of old tests (the regres-
sion tests) is essential; without those a large system will never become stable. We
would introduce new bugs as fast as we removed old ones.

Note that we take it for granted that when we fix a few errors, we accidentally
introduce a few new ones. We hope the number of new bugs is lower than the
number of old ones that we removed, and that the consequences of the new ones
are less severe. However, at least until we have rerun our regression tests and
added new tests for our new code, we must assume that our system is broken (by
our bug fixes).

26.3.5 Finding assumptions that do not hold
The specification of binary_search clearly stated that the sequence in which we
search must be sorted. That deprived us of many opportunities for sneaky unit
tests. But obviously there are opportunities for writing bad code that we have not
devised tests to detect (except for the system tests). Can we use our understanding
of a system’s “units” (functions, classes, etc.) to devise better tests?

Stroustrup_book.indb 1009Stroustrup_book.indb 1009 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING1010

Unfortunately, the simplest answer is no. As pure testers, we cannot change
the code, but to detect violations of an interface’s requirements (pre-conditions),
someone must either check before each call or as part of the implementation of
each call (see §5.5). However, if we are testing our own code, we can insert such
tests. If we are testers and the people who write the code will listen to us (that’s not
always the case), we can tell them about the unchecked requirements and have
them ensure that they are checked.

Consider again binary_search: we couldn’t test that the input sequence
[first:last) really was a sequence and that it was sorted (§26.3.2.2). However, we
could write a function that does check:

template<class Iter, class T>
bool b2(Iter first, Iter last, const T& value)
{
 // check if [first:last) is a sequence:
 if (last<first) throw Bad_sequence();

 // check if the sequence is ordered:
 if (2<=last–first)
 for (Iter p = first+1; p<last; ++p)
 if (*p<*(p–1)) throw Not_ordered();

 // all’s OK, call binary_search:
 return binary_search(first,last,value);
}

Now, there are reasons why binary_search isn’t written with such tests, including
these:

• The test for last<fi rst can’t be done for a forward iterator; for example,
the iterator for std::list does not have a < (§B.3.2). In general, there is no
really good way of testing that a pair of iterators defi nes a sequence (start-
ing to iterate from fi rst hoping to meet last is not a good idea).

• Scanning the sequence to check that the values are ordered is far more
expensive than executing binary_search itself (the real purpose of binary_
search is not to have to blindly walk through the sequence looking for a
value the way std::fi nd does).

So what could we do? We could replace binary_search with b2 when we are
testing (only for calls to binary_search with random-access iterators, though).

Stroustrup_book.indb 1010Stroustrup_book.indb 1010 5/8/15 10:31 AM5/8/15 10:31 AM

26.4 DESIGN FOR TESTING 1011

Alternatively, we could have the implementer of binary_search insert code that a
tester could enable:

template<class Iter, class T> // warning: contains pseudo code
bool binary_search (Iter first, Iter last, const T& value)
{
 if (test enabled) {
 if (Iter is a random access iterator) {
 // check if [first:last) is a sequence:
 if (last<first) throw Bad_sequence();
 }

 // check if the sequence is ordered:
 if (first!=last) {
 Iter prev = first;
 for (Iter p = ++first; p!=last; ++p, ++ prev)
 if (*p<*prev) throw Not_ordered();
 }
 }

 // now do binary_search
}

Since the meaning of test enabled depends on how testing of code is arranged (for
a specific system in a specific organization), we have left it as pseudo code: when
testing your own code, you could simply have a test_enabled variable. We also
left the Iter is a random access iterator test as pseudo code because we haven’t
explained “iterator traits.” Should you really need such a test, look up iterator traits
in a more advanced C++ textbook.

26.4 Design for testing
When we start writing a program, we know that we would like it to eventually be
complete and correct. We also know that to achieve that, we must test it. Conse-
quently, we try to design for correctness and testing from day one. In fact, many
good programmers have as their slogan “Test early and often” and don’t write
any code before they have some idea about how they would go about testing it.
Thinking about testing early helps to avoid errors in the first place (as well as
helping to find them later). We subscribe to that philosophy. Some programmers
even write unit tests before they implement a unit.

Stroustrup_book.indb 1011Stroustrup_book.indb 1011 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING1012

The example in §26.3.2.1 and the examples in §26.3.3 illustrate these key
notions:

• Use well-defi ned interfaces so that you can write tests for the use of these
interfaces.

• Have a way of representing operations as text so that they can be stored,
analyzed, and replayed. This also applies to output operations.

• Embed tests of otherwise unchecked assumptions (assertions) in the call-
ing code to catch bad arguments before system testing.

• Minimize dependencies and keep dependencies explicit.
• Have a clear resource management strategy.

Philosophically, this could be seen as enabling unit-testing techniques for subsys-
tems and complete systems.

If performance didn’t matter, we could leave the test of the (otherwise) un-
checked assumptions (requirements, pre-conditions) enabled all the time. How-
ever, there are usually reasons why they are not systematically checked. For
example, we saw how checking whether a sequence is sorted is both complicated
and far more expensive than using binary_sort. Consequently, it is a good idea to
design a system that allows us to selectively enable and disable such checks. For
many systems, it is a good idea to leave a fair number of the cheaper checks en-
abled even in the final (shipping) version: sometimes “impossible” things happen
and we would prefer to know about them from a specific error message rather
than from a simple crash.

26.5 Debugging
Debugging is an issue of technique and attitude. Of these, attitude is the more
important. Please revisit Chapter 5. Note how debugging and testing differ. Both
catch bugs, but debugging is much more ad hoc and typically concerned with
removing known bugs and implementing features. Whatever we can do to make
debugging more like testing should be done. It is a slight exaggeration to say that
we love testing, but we definitely hate debugging. Good early unit testing and
design for testing help minimize debugging.

26.6 Performance
Having a program correct is not enough for it to be useful. Even assuming that it
has sufficient facilities to make it useful, it must also provide appropriate perfor-
mance. A good program is “efficient enough”; that is, it will run in an acceptable
time given the resources available. Note that absolute efficiency is uninteresting,

Stroustrup_book.indb 1012Stroustrup_book.indb 1012 5/8/15 10:31 AM5/8/15 10:31 AM

26.6 PERFORMANCE 1013

and an obsession with getting a program to run fast can seriously damage devel-
opment by complicating code (leading to more bugs and more debugging) and
making maintenance (including porting and performance tuning) more difficult
and costly.

So, how can we know that a program (or a unit of a program) is “efficient
enough”? In the abstract we cannot know, and for many programs the hardware
is so fast that the question doesn’t arise. We have seen products shipped that were
compiled in debug mode (i.e., running about 25 times slower than necessary) to
enable better diagnostics for errors occurring after deployment (this can happen
to even the best code when it has to coexist with code developed “elsewhere”).

Consequently, the answer to the “Is it efficient enough?” question is: “Mea-
sure how long interesting test cases take.” To do that, you obviously have to know
your end users well enough to have an idea of what they would consider “inter-
esting” and how much time such interesting uses can acceptably take. Logically,
we simply clock our tests with a stopwatch and check that none consumes an
unreasonable amount of time. This becomes practical when we use facilities such
as system_clock (§26.6.1) to do the timing for us, and we can automatically com-
pare the time taken by tests with estimates of what is reasonable. Alternatively (or
additionally) we can record how long tests take and compare them to earlier test
runs. This way we get a form of regression test for performance.

Some of the worst performance bugs are caused by poor algorithms and can
be found by testing. One reason for testing with large sets of data is to expose in-
efficient algorithms. As an example, assume that an application has to make sums
of the elements in rows of a matrix (using the Matrix library from Chapter 24).
Someone supplied an appropriate function:

double row_sum(Matrix<double,2> m, int n); // sum of elements in m[n]

Now someone uses that to generate a vector of sums where v[n] is the sum of the
elements of the first n rows:

double row_accum(Matrix<double,2> m, int n) // sum of elements in m[0:n)
{
 double s = 0;
 for (int i=0; i<n; ++i) s+=row_sum(m,i);
 return s;
}

// compute accumulated sums of rows of m:
vector<double> v;
for (int i = 0; i<m.dim1(); ++i) v.push_back(row_accum(m,i+1));

Stroustrup_book.indb 1013Stroustrup_book.indb 1013 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING1014

You can imagine this to be part of a unit test or executed as part of the application
exercised by a system test. In either case, you will notice something strange if the
matrix ever gets really large: basically, the time needed goes up with the square of
the size of m. Why? What we did was to add all the elements of the first row, then
we added all the elements in the second row (revisiting all the elements of the first
row), then we added all the elements in the third row (revisiting all the elements
of the first and second rows), etc.

If you think this example was bad, consider what would have happened if the
row_sum() had had to access a database to get its data. Reading from disk is many
thousands of times slower than reading from main memory.

Now, you may complain: “Nobody would write something that stupid!”
Sorry, but we have seen much worse, and usually a poor algorithm (from the
performance point of view) is not that easy to spot when buried in application
code. Did you spot the performance problem when you first glanced at the code?
A problem can be quite hard to spot unless you are specifically looking for that
particular kind of problem. Here is a simple real-world example found in a server:

for (int i=0; i<strlen(s); ++i) {
 // . . . do something with s[i] . . .
}

Often, s was a string with about 20K characters.
Not all performance problems have to do with poor algorithms. In fact (as we

pointed out in §26.3.3), much of the code we write cannot be classified as proper
algorithms. Such “non-algorithmic” performance problems typically fall under the
broad classification of “poor design.” They include

• Repeated recalculation of information (e.g., the row-summing problem
above)

• Repeated checking of the same fact (e.g., checking that an index is in
range each time it is used in a loop or checking an argument repeatedly as
it is passed unchanged from function to function)

• Repeated visits to the disk (or to the web)

Note the (repeated) repeated. Obviously, we mean “unnecessarily repeated,” but
the point is that unless you do something many times, it will not have an impact
on performance. We are all for thorough checking of function arguments and loop
variables, but if we do the same check a million times for the same values, those
redundant checks just might hurt performance. If we — by measurement — find
that performance is hurt, we will try to see if we can remove a repeated action.
Don’t do that unless you are sure that performance is really a problem. Premature
optimization is the source of many bugs and much wasted time.

Stroustrup_book.indb 1014Stroustrup_book.indb 1014 5/8/15 10:31 AM5/8/15 10:31 AM

26.6 PERFORMANCE 1015

26.6.1 Timing
How do you know if a piece of code is fast enough? How do you know how long
an operation takes? Well, in many cases where it matters, you can simply look at a
clock (stopwatch, wall clock, or wristwatch). That’s not scientific or accurate, but
if that’s not feasible, you can often conclude that the program was fast enough. It
is not good to be obsessed with performance.

If you need to measure smaller increments of time or if you can’t sit around
with a stopwatch, you need to get your computer to help you; it knows the time
and can give it to you. For example, on a Unix system, simply prefixing a com-
mand with time will make the system print out the time taken. You might use
time to figure out how long it takes to compile a C++ source file x.cpp. Normally,
you compile it like this:

g++ x.cpp

To get that compilation timed, you just add time:

time g++ x.cpp

This will compile x.cpp and also print the time taken on the screen. This is a sim-
ple and effective way of timing small programs. Remember to always do several
timing runs because “other activities” on your machine might interfere. If you get
roughly the same answer three times, you can usually trust the result.

But what if you want to measure something that takes just milliseconds?
What if you want to do your own, more detailed, measurements of a part of
a program? You use standard library facilities from <chrono>. For example,
to measure the time used by a function do_something() you can write code
like this:

#include <chrono>
#include <iostream>
using namespace std;

int main()
{
 int n = 10000000; // repeat do_something() n times

 auto t1 = system_clock::now(); // begin time

 for (int i = 0; i<n; i++) do_something(); // timing loop

Stroustrup_book.indb 1015Stroustrup_book.indb 1015 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING1016

 auto t2 = system_clock::now(); // end time

 cout << "do_something() " << n << " times took "
<< duration_cast<milliseconds>(t2-t1).count() << "milliseconds\n";

}

The system_clock is one of the standard timers, and system_clock::now() returns
the point of time (a time_point) at which it is called. Subtract two time_points
(here, t2–t1) and you get a length of time (a duration). We can use auto to save
us from the details of the duration and time_point types, which are surprisingly
complicated if your view of time is simply what you see on a wristwatch. In fact,
the standard library’s timing facilities were originally designed for advanced phys-
ics applications and are far more flexible and general than most users need.

To get a duration in terms of a particular unit of time, such as seconds,
 milliseconds, or nanoseconds, we convert (“cast”) it to that unit using the con-
version function duration_cast. You need something like duration_cast because
different systems and different clocks measure time in different units. Don’t forget
the .count(). That is what extracts the number of units (“clock ticks”) from the
duration that contains both the clock ticks and their unit.

The system_clock is meant to measure intervals from a fraction of a second
to a few seconds. Don’t try to use it to measure hours.

Again, don’t believe any time measurement that you cannot repeat with
roughly the same result three times. What does “roughly the same” mean?
“Within 10%” is a reasonable answer. Remember that modern computers are fast:
1,000,000,000 instructions per second is ordinary. This implies that you won’t be
able to measure anything unless you can repeat it tens of thousands of times or
it does something really slow, such as writing to disk or accessing the web. In the
latter case, you just have to get it to repeat a few hundred times, but you have to
worry that so much is going on that you might not understand the results.

26.7 References
Stone, Debbie, Caroline Jarrett, Mark Woodroffe, and Shailey Minocha. User In-

terface Design and Evaluation. Morgan Kaufmann, 2005. ISBN 0120884364.
Whittaker, James A. How to Break Software: A Practical Guide to Testing. Addison-

Wesley, 2003. ISBN 0321194330.

Stroustrup_book.indb 1016Stroustrup_book.indb 1016 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 REVIEW 1017

Drill
Get the test of binary_search to run:

 1. Implement the input operator for Test from §26.3.2.2.
 2. Complete a file of tests for the sequences from §26.3:

a. { 1 2 3 5 8 13 21 } // an “ordinary sequence”
b. { }
c. { 1 }
d. { 1 2 3 4 } // even number of elements
e. { 1 2 3 4 5 } // odd number of elements
f. { 1 1 1 1 1 1 1 } // all elements equal
g. { 0 1 1 1 1 1 1 1 1 1 1 1 1 } // different element at beginning
h. { 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } // different element at end

 3. Based on §26.3.1.3, complete a program that generates

a. A very large sequence (what would you consider very large, and why?)
b. Ten sequences with a random number of elements
c. Ten sequences with 0, 1, 2 . . . 9 random elements (but still ordered)

 4. Repeat these tests for sequences of strings, such as { Bohr Darwin Einstein
Lavoisier Newton Turing }.

Review
 1. Make a list of applications, each with a brief explanation of the worst

thing that can happen if there is a bug; e.g., airplane control — crash: 231
people dead; $500M equipment loss.

 2. Why don’t we just prove our programs correct?
 3. What’s the difference between unit testing and system testing?
 4. What is regression testing and why is it important?
 5. What is the purpose of testing?
 6. Why doesn’t binary_search just check its requirements?
 7. If we can’t check for all possible errors, what kinds of errors do we pri-

marily look for?
 8. Where are bugs most likely to occur in code manipulating a sequence of

elements?
 9. Why is it a good idea to test for large values?
 10. Why do we often represent tests as data rather than as code?
 11. Why and when would we use lots of tests based on random values?

Stroustrup_book.indb 1017Stroustrup_book.indb 1017 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 • TESTING1018

 12. Why is it hard to test a program using a GUI?
 13. What is needed to test a “unit” in isolation?
 14. What is the connection between testability and portability?
 15. What makes testing a class harder than testing a function?
 16. Why is it important that tests be repeatable?
 17. What can a tester do when finding that a “unit” relies on unchecked as-

sumptions (pre-conditions)?
 18. What can a designer/implementer do to improve testing?
 19. How does testing differ from debugging?
 20. When does performance matter?
 21. Give two (or more) examples of how to (easily) create bad performance

problems.

Terms
assumptions
black-box testing
branching
design for testing
inputs
outputs
post-condition

pre-condition
proof
regression
resource usage
state
system_clock
system test

test coverage
test harness
testing
timing
unit test
white-box testing

Exercises
 1. Run your binary search algorithm from §26.1 with the tests presented in

§26.3.2.1.
 2. Modify the testing of binary_search to deal with arbitrary element types.

Then, test it with string sequences and floating-point sequences.
 3. Repeat exercise 1 with the version of binary_search that takes a compar-

ison criterion. Make a list of new opportunities for errors introduced by
that extra argument.

 4. Devise a format for test data so that you can define a sequence once and
run several tests against it.

 5. Add a test to the set of binary_search tests to try to catch the (unlikely)
error of a binary_search modifying the sequence.

 6. Modify the calculator from Chapter 7 minimally to let it take input from
a file and produce output to a file (or use your operating system’s facilities
for redirecting I/O). Then devise a reasonably comprehensive test for it.

 7. Test the “simple text editor” from §20.6.

Stroustrup_book.indb 1018Stroustrup_book.indb 1018 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 26 POSTSCRIPT 1019

 8. Add a text-based interface to the graphics interface library from Chapters
12–15. For example, the string Circle{Point{0,1},15} should generate a
call Circle{Point{0,1},15}. Use this text interface to make a “kid’s draw-
ing” of a two-dimensional house with a roof, two wind ows, and a door.

 9. Add a text-based output format for the graphics interface library. For
example, when a call Circle{Point{0,1},15} is executed, a string like
 Circle{Point{0,1},15} should be produced on an output stream.

 10. Use the text-based interface from exercise 9 to write a better test for the
graphical interface library.

 11. Time the sum example from §26.6 with m being square matrices with
dimensions 100, 10,000, 1,000,000, and 10,000,000. Use random element
values in the range [–10:10). Rewrite the calculation of v to use a more
efficient (not O(N 2)) algorithm and compare the timings.

 12. Write a program that generates random floating-point numbers and sort
them using std::sort(). Measure the time used to sort 500,000 doubles
and 5,000,000 doubles.

 13. Repeat the experiment in the previous exercise, but with random strings
of lengths in the [0:100) range.

 14. Repeat the previous exercise, except using a map rather than a vector so
that we don’t need to sort.

Postscript
As programmers, we dream about writing beautiful programs that just work —
preferably the fi rst time we try them. The reality is different: it is hard to get
programs right, and it is hard to get them to stay right as we (and our colleagues)
work to improve them. Testing — including design for testing — is a major way of
ensuring that the systems we ship actually work. Whenever we reach the end of
a day in our highly technological world, we really ought to give a kind thought to
the (often forgotten) testers.

Stroustrup_book.indb 1019Stroustrup_book.indb 1019 5/8/15 10:31 AM5/8/15 10:31 AM

