
1021

27

The C Programming
Language

 “C is a strongly typed,
weakly checked,

programming language.”

—Dennis Ritchie

This chapter is a brief overview of the C programming lan-

guage and its standard library from the point of view of

someone who knows C++. It lists the C++ features missing from

C and gives examples of how a C programmer can cope with-

out those. C/C++ incompatibilities are presented, and C/C++

interoperability is discussed. Examples of I/O, list manipulation,

memory management, and string manipulation are included

as illustration.

Stroustrup_book.indb 1021Stroustrup_book.indb 1021 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1022

27.1 C and C++: siblings
The C programming language was designed and implemented by Dennis Ritchie
at Bell Labs and popularized by the book The C Programming Language by Brian
Kernighan and Dennis Ritchie (colloquially known as “K&R”), which is argu-
ably still the best introduction to C and one of the great books on programming
(§22.2.5). The text of the original definition of C++ was an edit of the text of the
1980 definition of C, supplied by Dennis Ritchie. After this initial branch, both
languages evolved further. Like C++, C is now defined by an ISO standard.

We see C primarily as a subset of C++. Thus, from a C++ point of view, the
problem of describing C boils down to two issues:

• Describe where C isn’t a subset of C++.
• Describe which C++ features are missing in C and which facilities and

techniques can be used to compensate.

Historically, modern C and modern C++ are siblings. Both are direct descendants
of “Classic C,” the dialect of C popularized by the first edition of Kernighan and
Ritchie’s The C Programming Language plus structure assignment and enumerations:

 27.1 C and C++: siblings
 27.1.1 C/C++ compatibility

 27.1.2 C++ features missing from C
 27.1.3 The C standard library

 27.2 Functions
 27.2.1 No function name

overloading
 27.2.2 Function argument type

checking
 27.2.3 Function defi nitions
 27.2.4 Calling C from C++ and C++

from C
 27.2.5 Pointers to functions

 27.3 Minor language differences
 27.3.1 struct tag namespace

 27.3.2 Keywords
 27.3.3 Defi nitions
 27.3.4 C-style casts
 27.3.5 Conversion of void*
 27.3.6 enum
 27.3.7 Namespaces

 27.4 Free store

 27.5 C-style strings
 27.5.1 C-style strings and const

 27.5.2 Byte operations
 27.5.3 An example: strcpy()
 27.5.4 A style issue

 27.6 Input/output: stdio
 27.6.1 Output

 27.6.2 Input
 27.6.3 Files

 27.7 Constants and macros

 27.8 Macros
 27.8.1 Function-like macros

 27.8.2 Syntax macros
 27.8.3 Conditional compilation

 27.9 An example: intrusive
containers

Stroustrup_book.indb 1022Stroustrup_book.indb 1022 5/8/15 10:31 AM5/8/15 10:31 AM

27.1 C AND C++: SIBLINGS 1023

Simula BCPL

B

K&R C

Classic C

C with Classes

Early C++

ARM C++

C89

1967

1978

1980

1985

1989

1998 C++98

C++11

C++14

C11

C99

2011

2014

The version of C that is used today is still mostly C89 (as described in the second
edition of K&R), and that’s what we are describing here. There is still some Clas-
sic C in use and some C99, but that should not cause you any problems when
you know C++ and C89.

Both C and C++ were “born” in the Computer Science Research Center of
Bell Labs in Murray Hill, New Jersey (for a while, my office was a couple of doors
down and across the corridor from those of Dennis Ritchie and Brian Kernighan):

Stroustrup_book.indb 1023Stroustrup_book.indb 1023 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1024

Both languages are now defined/controlled by ISO standards committees. For
each, many supported implementations are in use. Often, an implementation sup-
ports both languages with the desired language chosen by a compiler switch or a
source file suffix. Both are available on more platforms than any other language.
Both were primarily designed for and are now heavily used for hard system pro-
gramming tasks, such as

• Operating system kernels
• Device drivers
• Embedded systems
• Compilers
• Communications systems

There are no performance differences between equivalent C and C++
programs.

Like C++, C is very widely used. Taken together, the C/C++ community is
the largest software development community on earth.

27.1.1 C/C++ compatibility
It is not uncommon to hear references to “C/C++.” However, there is no such
language, and the use of “C/C++” is typically a sign of ignorance. We use “C/
C++” only in the context of C/C++ compatibility issues and when talking about
the large shared C/C++ technical community.

C++ is largely, but not completely, a superset of C. With a few very rare
exceptions, constructs that are both C and C++ have the same meaning (seman-
tics) in both languages. C++ was designed to be “as close as possible to C, but
no closer”:

• For ease of transition
• For coexistence

Most incompatibilities relate to C++’s stricter type checking.
An example of a program that is legal C but not C++ is one that uses a C++

keyword that is not a C keyword as an identifier (see §27.3.2):

int class(int new, int bool); /* C, but not C++ */

Examples where the semantics differ for a construct that is legal in both languages
are harder to find, but here is one:

int s = sizeof('a'); /* sizeof(int), often 4 in C and 1 in C++ */

Stroustrup_book.indb 1024Stroustrup_book.indb 1024 5/8/15 10:31 AM5/8/15 10:31 AM

27.1 C AND C++: SIBLINGS 1025

The type of a character literal, such as 'a', is int in C and char in C++. However,
for a char variable ch we have sizeof(ch)==1 in both languages.

Information related to compatibility and language differences is not exactly
exciting. There are no new neat programming techniques to learn. You might like
printf() (§27.6), but with that possible exception (and some feeble attempts at geek
humor), this chapter is bone dry. Its purpose is simple: to allow you to read and
write C if you need to. This includes pointing out the hazards that are obvious
to experienced C programmers, but typically unexpected by C++ programmers.
We hope you can learn to avoid those hazards with minimal grief.

Most C++ programmers will have to deal with C code at some point or
another, just as most C programmers will have to deal with C++ code. Much
of what we describe in this chapter will be familiar to most C programmers, but
some will be considered “expert level.” The reason for that is simple: not every-
one agrees about what is “expert level” and we just describe what is common in
real-world code. Maybe understanding compatibility issues can be a cheap way
of gaining an unfair reputation as a “C expert.” But do remember: real expertise
is in the use of a language (in this case C), rather than in understanding esoteric
language rules (as are exposed by considering compatibility issues).

References
ISO/IEC 9899:1999. Programming Languages — C. This defines C99; most imple-

mentations implement C89 (often with a few extensions).
ISO/IEC 9899:2011. Programming Languages — C. This defines C11.
ISO/IEC 14882:2011. Programming Languages — C++.
Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Pren-

tice Hall, 1988. ISBN 0131103628.
Stroustrup, Bjarne. “Learning Standard C++ as a New Language.” C/C++ Users

Journal, May 1999.
Stroustrup, Bjarne. “C and C++: Siblings”; “C and C++: A Case for Compat-

ibility”; and “C and C++: Case Studies in Compatibility.” The C/C++ Users
Journal, July, Aug., and Sept. 2002.

The papers by Stroustrup are most easily found on my publications home page.

27.1.2 C++ features missing from C
From a C++ perspective, C (i.e., C89) lacks a lot of features, such as

• Classes and member functions

• Use struct and global functions.

Stroustrup_book.indb 1025Stroustrup_book.indb 1025 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1026

• Derived classes and virtual functions

• Use structs, global functions, and pointers to functions (§27.2.3).

• Templates and inline functions

• Use macros (§27.8).

• Exceptions

• Use error codes, error return values, etc.

• Function overloading

• Give each function a distinct name.

• new/delete

• Use malloc()/free() and separate initialization/cleanup code.

• References

• Use pointers.

• const, constexpr, or functions in constant expressions

• Use macros.

• bool

• Use int.

• static_cast, reinterpret_cast, and const_cast

• Use C-style casts, e.g., (int)a rather than static_cast<int>(a).

Lots of useful code is written in C, so this list should remind us that no one lan-
guage feature is absolutely necessary. Most language features — even most C lan-
guage features — are there for the convenience (only) of the programmer. After all,
given sufficient time, cleverness, and patience, every program can be written in as-
sembler. Note that because C and C++ share a machine model that is very close to
the real machine, they are well suited to emulate varieties of programming styles.

The rest of this chapter explains how to write useful programs without those
features. Our basic advice for using C is:

• Emulate the programming techniques that the C++ features were de-
signed to support with the facilities provided by C.

• When writing C, write in the C subset of C++.

Stroustrup_ch27.indd 1026Stroustrup_ch27.indd 1026 2/22/16 4:40 PM2/22/16 4:40 PM

27.1 C AND C++: SIBLINGS 1027

• Use compiler warning levels that ensure function argument checking.
• Use lint for large programs (see §27.2.2).

Many of the details of C/C++ incompatibilities are rather obscure and techni-
cal. However, to read and write C, you don’t actually have to remember most
of those:

• The compiler will remind you when you are using a C++ feature that is
not in C.

• If you follow the rules above, you are unlikely to encounter anything that
means something different in C from what it means in C++.

With the absence of all those C++ facilities, some facilities gain importance in C:

• Arrays and pointers
• Macros
• typedef (the C and C++98 equivalent to simple using declarations; see

§20.5, §A.16)
• sizeof

• Casts

We give examples of a few such uses in this chapter.
I introduced the // comments into C++ from C’s ancestor BCPL when I got

really fed up with typing /* . . . */ comments. The // comments are accepted by
most C dialects including C99 and C11, so it is probably safe just to use them.
Here, we will use /* . . . */ exclusively in examples meant to be C. C99 and C11
introduced a few more C++ features (as well as a few features that are incompati-
ble with C++), but here we will stick to C89, because that’s far more widely used.

27.1.3 The C standard library
Naturally, a C++ library facility that depends on classes and templates is not
available in C. This includes

• vector

• map

• set

• string

• The STL algorithms: e.g., sort(), fi nd(), and copy()

• iostreams
• regex

Stroustrup_book.indb 1027Stroustrup_book.indb 1027 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1028

For these, there are often C libraries based on arrays, pointers, and functions to
help compensate. The main parts of the C standard library are

• <stdlib.h>: general utilities (e.g., malloc() and free(); see §27.4)
• <stdio.h>: standard I/O; see §27.6
• <string.h>: C-style string manipulation and memory manipulation; see

§27.5
• <math.h>: standard fl oating-point mathematical functions; see §24.8
• <errno.h>: error codes for <math.h>; see §24.8
• <limits.h>: sizes of integer types; see §24.2
• <time.h>: date and time; see §26.6.1
• <assert.h>: debug assertions; see §27.9
• <ctype.h>: character classifi cation; see §11.6
• <stdbool.h>: Boolean macros

For a complete description, see a good C textbook, such as K&R. All of these
libraries (and header files) are also available in C++.

27.2 Functions
In C:

• There can be only one function of a given name.
• Function argument type checking is optional.
• There are no references (and therefore no pass-by-reference).
• There are no member functions.
• There are no inline functions (except in C99).
• There is an alternative function defi nition syntax.

Apart from that, things are much as you are used to in C++. Let us explore what
that means.

27.2.1 No function name overloading
Consider:

void print(int); /* print an int */
void print(const char*); /* print a string */ /* error! */

The second declaration is an error because there cannot be two functions with the
same name. So you’ll have to invent a suitable pair of names:

Stroustrup_book.indb 1028Stroustrup_book.indb 1028 5/8/15 10:31 AM5/8/15 10:31 AM

27.2 FUNCTIONS 1029

void print_int(int); /* print an int */
void print_string(const char*); /* print a string */

This is occasionally claimed to be a virtue: now you can’t accidentally use the
wrong function to print an int! Clearly we don’t buy that argument, and the lack
of overloaded functions does make generic programming ideas awkward to im-
plement because generic programming depends on semantically similar functions
having the same name.

27.2.2 Function argument type checking
Consider:

int main()
{
 f(2);
}

A C compiler will accept this: you don’t have to declare a function before you
call it (though you can and should). There may be a definition of f() somewhere.
That f() could be in another translation unit, but if it isn’t, the linker will complain.

Unfortunately, that definition in another source file might look like this:

/* other_file.c: */

int f(char* p)
{
 int r = 0;
 while (*p++) r++;
 return r;
}

The linker will not report that error. You will get a run-time error or some random
result.

How do we manage problems like that? Consistent use of header files is a
practical answer. If every function you call or define is declared in a header that
is consistently #included whenever needed, we get checking. However, in large
programs that can be hard to achieve. Consequently, most C compilers have op-
tions that give warnings for calls of undeclared functions: use them. Also, from
the earliest days of C, there have been programs that can be used to check for all
kinds of consistency problems. They are usually called lint. Use a lint for every
nontrivial C program. You will find that lint pushes you toward a style of C usage
that is rather similar to using a subset of C++. One of the observations that led

Stroustrup_book.indb 1029Stroustrup_book.indb 1029 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1030

to the design of C++ was that the compiler could easily check much (but not all)
of what lint checked.

You can ask to have function arguments checked in C. You do that simply
by declaring a function with its argument types specified (just as in C++). Such a
declaration is called a function prototype. However, beware of function declarations
that do not specify arguments; those are not function prototypes and do not imply
function argument checking:

int g(double); /* prototype — like C++ function declaration */
int h(); /* not a prototype — the argument types are unspecified */

void my_fct()
{
 g(); /* error: missing argument */
 g("asdf"); /* error: bad argument type */
 g(2); /* OK: 2 is converted to 2.0 */
 g(2,3); /* error: one argument too many */

 h(); /* OK by the compiler! May give unexpected results */
 h("asdf"); /* OK by the compiler! May give unexpected results */
 h(2); /* OK by the compiler! May give unexpected results */
 h(2,3); /* OK by the compiler! May give unexpected results */
}

The declaration of h() specifies no argument type. This does not mean that h()
doesn’t accept arguments; it means “Accept any set of arguments and hope they
are correct for the called function.” Again, a good compiler warns and lint will
catch the problem.

C++ C equivalent

void f(); // preferred void f(void);

void f(void); void f(void);

void f(. . .); // accept any arguments void f(); /* accept any arguments */

There is a special set of rules for converting arguments where no function proto-
type is in scope. For example, chars and shorts are converted to ints, and floats
are converted to doubles. If you need to know, say, what happens to a long, look
it up in a good C textbook. Our recommendation is simple: don’t call functions
without prototypes.

Stroustrup_book.indb 1030Stroustrup_book.indb 1030 5/8/15 10:31 AM5/8/15 10:31 AM

27.2 FUNCTIONS 1031

Note that even though the compiler will allow an argument of the wrong type
to be passed, such as a char* to a parameter of type int, the use of such an argu-
ment of a wrong type is an error. As Dennis Ritchie said, “C is a strongly typed,
weakly checked, programming language.”

27.2.3 Function defi nitions
You can define functions exactly as in C++ and such definitions are function
prototypes:

double square(double d)
{
 return d*d;
}

void ff()
{
 double x = square(2); /* OK: convert 2 to 2.0 and call */
 double y = square(); /* argument missing */
 double y = square("Hello"); /* error: wrong argument type */
 double y = square(2,3); /* error: too many arguments */
}

A definition of a function with no arguments is not a function prototype:

void f() { /* do something */ }

void g()
{
 f(2); /* OK in C; error in C++ */
}

Having

void f(); /* no argument type specified */

mean “f() can take any number of arguments of any type” seemed really strange.
In response, I invented a new notation where “nothing” was explicitly stated using
the keyword void (void is a four-letter word meaning “nothing”):

void f(void); /* no arguments accepted */

Stroustrup_book.indb 1031Stroustrup_book.indb 1031 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1032

I soon regretted that, though, since that looks odd and is completely redundant
when argument type checking is uniformly applied. Worse, Dennis Ritchie (the
father of C) and Doug McIlroy (the ultimate arbiter of taste in the Bell Labs Com-
puter Science Research Center; see §22.2.5) both called it “an abomination.” Un-
fortunately, that abomination became very popular in the C community. Don’t
use it in C++, though, where it is not only ugly, but also logically redundant.

C also provides a second, Algol60-style function definition, where the param-
eter types are (optionally) specified separately from their names:

int old_style(p,b,x) char* p; char b;
{
 /* . . . */
}

This “old-style definition” predates C++ and is not a prototype. By default, an
argument without a declared type is an int. So, x is an int parameter of old_style().
We can call old_style() like this:

old_style(); /* OK: all arguments missing */
old_style("hello", 'a', 17); /* OK: all arguments are of the right type */
old_style(12, 13, 14); /* OK: 12 is the wrong type, */
 /* but maybe old_style() won’t use p */

The compiler should accept these calls (but would warn, we hope, for the first
and third).

Our recommendation about function argument checking:

• Use function prototypes consistently (use header fi les).
• Set compiler warning levels so that argument type errors are caught.
• Use (some) lint.

The result will be code that’s also C++.

27.2.4 Calling C from C++ and C++ from C
You can link files compiled with a C compiler together with files compiled with a
C++ compiler provided the two compilers were designed for that. For example,
you can link object files generated from C and C++ using your GNU C and
C++ compiler (GCC) together. You can also link object files generated from C
and C++ using your Microsoft C and C++ compiler (MSC++) together. This
is common and useful because it allows you to use a larger set of libraries than
would be available in just one of those two languages.

C++ provides stricter type checking than C. In particular, a C++ compiler
and linker check that two functions f(int) and f(double) are consistently defined

Stroustrup_book.indb 1032Stroustrup_book.indb 1032 5/8/15 10:31 AM5/8/15 10:31 AM

27.2 FUNCTIONS 1033

and used — even in different source files. A linker for C doesn’t do that kind of
checking. To call a function defined in C from C++ and to have a function de-
fined in C++ called from C, we need to tell the compiler what we are doing:

// calling C function from C++:

extern "C" double sqrt(double); // link as a C function

void my_c_plus_plus_fct()
{
 double sr = sqrt(2);
}

Basically extern "C" tells the compiler to use C linker conventions. Apart from
that, all is normal from a C++ point of view. In fact, the C++ standard sqrt(dou-
ble) usually is the C standard library sqrt(double). Nothing is required from the
C program to make a function callable from C++ in this way. C++ simply adapts
to the C linkage convention.

We can also use extern "C" to make a C++ function callable from C:

// C++ function callable from C:

extern "C" int call_f(S* p, int i)
{
 return p–>f(i);
}

In a C program, we can now call the member function f() indirectly, like this:

/* call C++ function from C: */

int call_f(S* p, int i);
struct S* make_S(int,const char*);

void my_c_fct(int i)
{
 /* . . . */
 struct S* p = make_S(x, "foo");
 int x = call_f(p,i);
 /* . . . */
}

No mention of C++ is needed (or possible) in C for this to work.

Stroustrup_book.indb 1033Stroustrup_book.indb 1033 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1034

The benefit of this interoperability is obvious: code can be written in a mix of
C and C++. In particular, a C++ program can use libraries written in C, and C
programs can use libraries written in C++. Furthermore, most languages (notably
Fortran) have an interface for calling to/from C.

In the examples above, we assumed that C and C++ could share the class
object pointed to by p. That is true for most class objects. In particular, if you have
a class like this,

// in C++:
class complex {
 double re, im;
public:
 // all the usual operations
};

you can get away with passing a pointer to an object to and from C. You can even
access re and im in a C program using a declaration:

/* in C: */
struct complex {
 double re, im;
 /* no operations */
};

The rules for layout in any language can be complex, and the rules for layout
among languages can even be hard to specify. However, you can pass built-in types
between C and C++ and also classes (structs) without virtual functions. If a class
has virtual functions, you should just pass pointers to its objects and leave the
actual manipulation to C++ code. The call_f() was an example of this: f() might
be virtual and then that example would illustrate how to call a virtual function
from C.

Apart from sticking to the built-in types, the simplest and safest sharing of
types is a struct defined in a common C/C++ header file. However, that strategy
seriously limits how C++ can be used, so we don’t restrict ourselves to it.

27.2.5 Pointers to functions
What can we do in C if we want to use object-oriented techniques (§14.2–4)? Ba-
sically, we need an alternative to virtual functions. For most people, the first idea
that springs to mind is to use a struct with a “type field” that describes what kind
of shape a given object represents. For example:

Stroustrup_book.indb 1034Stroustrup_book.indb 1034 5/8/15 10:31 AM5/8/15 10:31 AM

27.2 FUNCTIONS 1035

struct Shape1 {
 enum Kind { circle, rectangle } kind;
 /* . . . */
};

void draw(struct Shape1* p)
{
 switch (p–>kind) {
 case circle:
 /* draw as circle */
 break;
 case rectangle:
 /* draw as rectangle */
 break;
 }
}

int f(struct Shape1* pp)
{
 draw(pp);
 /* . . . */
}

This works. There are two snags, though:

• For each “pseudo-virtual” function (such as draw()), we have to write a
new switch-statement.

• Each time we add a new shape, we have to modify every “pseudo-virtual”
function (such as draw()) by adding a case to the switch-statement.

The second problem is quite nasty because it means that we can’t provide our
“pseudo-virtual” functions as part of a library, because our users will have to
modify those functions quite often. The most effective alternative involves
pointers to functions:

typedef void (*Pfct0)(struct Shape2*);
typedef void (*Pfct1int)(struct Shape2*,int);

struct Shape2 {
 Pfct0 draw;
 Pfct1int rotate;
 /* . . . */
};

Stroustrup_book.indb 1035Stroustrup_book.indb 1035 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1036

void draw(struct Shape2* p)
{
 (p–>draw)(p);
}

void rotate(struct Shape2* p, int d)
{
 (p–>rotate)(p,d);
}

This Shape2 can be used just like Shape1.

int f(struct Shape2* pp)
{
 draw(pp);
 /* . . . */
}

With a little extra work, an object need not hold one pointer to a function for each
pseudo-virtual function. Instead, it can hold a pointer to an array of pointers to
functions (much as virtual functions are implemented in C++). The main prob-
lem with using such schemes in real-world programs is to get the initialization of
all those pointers to functions right.

27.3 Minor language differences
This section gives examples of minor C/C++ differences that could trip you up
if you have never heard of them. Few seriously impact programming in that the
differences have obvious work-arounds.

27.3.1 struct tag namespace
In C, the names of structs (there is no class keyword) are in a separate namespace
from other identifiers. Therefore, every name of a struct (called a structure tag)
must be prefixed with the keyword struct. For example:

struct pair { int x,y; };
pair p1; /* error: no identifier pair in scope */
struct pair p2; /* OK */
int pair = 7; /* OK: the struct tag pair is not in scope */
struct pair p3; /* OK: the struct tag pair is not hidden by the int */
pair = 8; /* OK: pair refers to the int */

Stroustrup_book.indb 1036Stroustrup_book.indb 1036 5/8/15 10:31 AM5/8/15 10:31 AM

27.3 MINOR LANGUAGE DIFFERENCES 1037

Amazingly enough, thanks to a devious compatibility hack, this also works in
C++. Having a variable (or a function) with the same name as a struct is a fairly
common C idiom, though not one we recommend.

If you don’t want to write struct in front of every structure name, use a
 typedef (§20.5). The following idiom is common:

typedef struct { int x,y; } pair;
pair p1 = { 1, 2 };

In general, you’ll find typedefs more common and more useful in C, where you
don’t have the option of defining new types with associated operations.

In C, names of nested structs are placed in the same scope as the struct in
which they are nested. For example:

struct S {
 struct T { /* . . . */ };
 / * . . . */
};

struct T x; /* OK in C (not in C++) */

In C++, you would write

S::T x; // OK in C++ (not in C)

Whenever possible, don’t nest structs in C: their scope rules differ from what
most people naively (and reasonably) expect.

27.3.2 Keywords
Many keywords in C++ are not keywords in C (because C doesn’t provide the
functionality) and can be used as identifiers in C:

C++ keywords that are not C keywords

alignas class inline private true

alignof compl mutable protected try

and concept namespace public typeid

and_eq const_cast new reinterpret_cast typename

asm constexpr noexcept requires using

bitand delete not static_assert virtual

Stroustrup_book.indb 1037Stroustrup_book.indb 1037 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1038

C++ keywords that are not C keywords (continued)

bitor dynamic_cast not_eq static_cast wchar_t

bool explicit nullptr template xor

catch export operator this xor_eq

char16_t false or thread_local

char32_t friend or_eq throw

Don’t use these names as identifiers in C, or your code will not be portable to
C++. If you use one of these names in a header file, that header won’t be useful
from C++.

Some C++ keywords are macros in C:

C++ keywords that are C macros

and bitor false or wchar_t

and_eq bool not or_eq xor

bitand compl not_eq true xor_eq

In C, they are defined in <iso646.h> and <stdbool.h> (bool, true, false). Don’t
take advantage of the fact that they are macros in C.

27.3.3 Defi nitions
C++ allows definitions in more places than C89. For example:

for (int i = 0; i<max; ++i) x[i] = y[i]; // definition of i not allowed in C

while (struct S* p = next(q)) { // definition of p not allowed in C
 /* . . . */
}

void f(int i)
{
 if (i< 0 || max<=i) error("range error");
 int a[max]; // error: declaration after statement not allowed in C
 /* . . . */
}

C (C89) doesn’t allow declarations as initializers in for-statements, as conditions,
or after a statement in a block. We have to write something like

Stroustrup_book.indb 1038Stroustrup_book.indb 1038 5/8/15 10:31 AM5/8/15 10:31 AM

27.3 MINOR LANGUAGE DIFFERENCES 1039

int i;
for (i = 0; i<max; ++i) x[i] = y[i];

struct S* p;
while (p = next(q)) {
 /* . . . */
}

void f(int i)
{
 if (i< 0 || max<=i) error("range error");
 {
 int a[max];
 /* . . . */
 }
}

In C++, an uninitialized declaration is a definition; in C, it is just a declaration so
that there can be two of them:

int x;
int x; /* defines or declares a single integer called x in C; error in C++ */

In C++, an entity must be defined exactly once. This gets a bit more interesting
if the two ints are in different translation units:

/* in file x.c: */
int x;

/* in file y.c: */
int x;

No C or C++ compiler will find any fault with either x.c or y.c. However, if x.c
and y.c are compiled as C++, the linker will give a “double definition” error. If x.c
and y.c are compiled as C, the linker accepts the program and (correctly according
to C rules) considers there to be just one x that is shared between code in x.c and
y.c. If you want a program where a global variable x is shared, say so explicitly:

/* in file x.c: */
int x = 0; /* the definition */

/* in file y.c: */
extern int x; /* a declaration, not a definition */

Stroustrup_book.indb 1039Stroustrup_book.indb 1039 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1040

Better still, use a header file:

/* in file x.h: */
extern int x; /* a declaration, not a definition */

/* in file x.c: */
#include "x.h"
int x = 0; /* the definition */

/* in file y.c: */
#include "x.h"
/* the declaration of x is in the header */

Better still, avoid the global variable.

27.3.4 C-style casts
In C (and C++), you can explicitly convert a value v to a type T by this minimal
notation:

(T)v

This “C-style cast” or “old-style cast” is beloved by poor typists and sloppy think-
ers because it’s minimal and you don’t have to know what it takes to make a T
from v. On the other hand, this style of cast is rightfully feared by maintenance
programmers because it is just about invisible and leaves no clue about the writ-
er’s intent. The C++ casts (named casts or template-style casts; see §A.5.7) were intro-
duced to make explicit type conversion easy to spot (ugly) and specific. In C, you
have no choice:

int* p = (int*)7; /* reinterpret bit pattern: reinterpret_cast<int*>(7) */
int x = (int)7.5; /* truncate double: static_cast<int>(7.5) */

typedef struct S1 { /* . . . */ } S1;
typedef struct S2 { /* . . . */ } S2;
S2 a;
const S2 b; /* uninitialized consts are allowed in C */

S1* p = (S1*)&a; /* reinterpret bit pattern: reinterpret_cast<S1*>(&a) */
S2* q = (S2*)&b; /* cast away const: const_cast<S2*>(&b) */
S1* r = (S1*)&b; /* remove const and change type; probably a bug */

Stroustrup_book.indb 1040Stroustrup_book.indb 1040 5/8/15 10:31 AM5/8/15 10:31 AM

27.3 MINOR LANGUAGE DIFFERENCES 1041

We hesitate to recommend a macro (§27.8) even in C, but it may be an idea to
express intent like this:

#define REINTERPRET_CAST(T,v) ((T)(v))
#define CONST_CAST(T,v) ((T)(v))

S1* p = REINTERPRET_CAST (S1*,&a);
S2* q = CONST_CAST(S2*,&b);

This does not give the type checking done by reinterpret_cast and const_cast,
but it does make these inherently ugly operations visible and the programmer’s
intent explicit.

27.3.5 Conversion of void*
In C, a void* may be used as the right-hand operand of an assignment to or
initialization of a variable of any pointer type; in C++ it may not. For example:

void* alloc(size_t x); /* allocate x bytes */

void f (int n)
{
 int* p = alloc(n*sizeof(int)); /* OK in C; error in C++ */
 /* . . . */
}

Here, the void* result of alloc() is implicitly converted to an int*. In C++, we
would have to rewrite that line to

int* p = (int*)alloc(n*sizeof(int)); /* OK in C and C++ */

We used the C-style cast (§27.3.4) so that it would be legal in both C and C++.
Why is the void*-to-T* implicit conversion illegal in C++? Because such con-

versions can be unsafe:

void f()
{
 char i = 0;
 char j = 0;
 char* p = &i;
 void* q = p;
 int* pp = q; /* unsafe; legal in C, error in C++ */
 pp = –1; / overwrite memory starting at &i */
}

Stroustrup_book.indb 1041Stroustrup_book.indb 1041 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1042

Here we can’t even be sure what memory is overwritten. Maybe j and part of p?
Maybe some memory used to manage the call of f() (f’s stack frame)? Whatever
data is being overwritten here, a call of f() is bad news.

Note that (the opposite) conversion of a T* to a void* is perfectly safe — you
can’t construct nasty examples like the one above for that — and those are allowed
in both C and C++.

Unfortunately, implicit void*-to-T* conversions are common in C and possi-
bly the major C/C++ compatibility problem in real code (see §27.4).

27.3.6 enum
In C, you can assign an int to an enum without a cast. For example:

enum color { red, blue, green };
int x = green; /* OK in C and C++ */
enum color col = 7; /* OK in C; error in C++ */

One implication of this is that we can use increment (++) and decrement (––) on
variables of enumeration type in C. That can be convenient but does imply a
hazard:

enum color x = blue;
++x; /* x becomes green; error in C++ */
++x; /* x becomes 3; error in C++ */

“Falling off the end” of the enumerators may or may not have been what we
wanted.

Note that like structure tags, the names of enumerations are in their own
namespace, so you have to prefix them with the keyword enum each time you
use them:

color c2 = blue; /* error in C: color not in scope; OK in C++ */
enum color c3 = red; /* OK */

27.3.7 Namespaces
There are no namespaces (in the C++ sense of the word) in C. So what do you
do when you want to avoid name clashes in large C programs? Typically, people
use prefixes or suffixes. For example:

/* in bs.h: */
typedef struct bs_string { /* . . . */ } bs_string; /* Bjarne’s string */
typedef int bs_bool ; /* Bjarne’s Boolean type */

Stroustrup_book.indb 1042Stroustrup_book.indb 1042 5/8/15 10:31 AM5/8/15 10:31 AM

27.4 FREE STORE 1043

/* in pete.h: */
typedef char* pete_string; /* Pete’s string */
typedef char pete_bool ; /* Pete’s Boolean type */

This technique is so popular that it is usually a bad idea to use one- or two-
letter prefixes.

27.4 Free store
C does not provide the new and delete operators dealing with objects. To use the
free store, you use functions dealing with memory. The most important functions
are defined in the “general utilities” standard header <stdlib.h>:

void* malloc(size_t sz); /* allocate sz bytes */
void free(void* p); /* deallocate the memory pointed to by p */
void* calloc(size_t n, size_t sz); /* allocate n*sz bytes initialized to 0 */
void* realloc(void* p, size_t sz); /* reallocate the memory pointed to by p

to a space of size sz */

The typedef size_t is an unsigned type also defined in <stdlib.h>.
Why does malloc() return a void*? Because malloc() has no idea which type

of object you want to put in that memory. Initialization is your problem. For
example:

struct Pair {
 const char* p;
 int val;
};

struct Pair p2 = {"apple",78};
struct Pair* pp = (struct Pair*) malloc(sizeof(Pair)); /* allocate */
pp–>p = "pear"; /* initialize */
pp–>val = 42;

Note that we cannot write

pp = {"pear", 42}; / error: not C or C++98 */

in either C or C++. However, in C++, we would define a constructor for Pair
and write

Pair* pp = new Pair("pear", 42);

Stroustrup_book.indb 1043Stroustrup_book.indb 1043 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1044

In C (but not C++; see §27.3.4), you can leave out the cast before malloc(), but
we don’t recommend that:

int* p = malloc(sizeof(int)*n); /* avoid this */

Leaving out the cast is quite popular because it saves some typing and because
it catches the rare error of (illegally) forgetting to include <stdlib.h> before us-
ing malloc(). However, it can also remove a visual clue that a size was wrongly
calculated:

p = malloc(sizeof(char)*m); /* probably a bug — not room for m ints */

Don’t use malloc()/free() in C++ programs; new/delete require no casts, deal
with initialization (constructors) and cleanup (destructors), report memory allo-
cation errors (through an exception), and are just as fast. Don’t delete an object
allocated by malloc() or free() an object allocated by new. For example:

int* p = new int[200];
// . . .
free(p); // error

X* q = (X*)malloc(n*sizeof(X));
// . . .
delete q; // error

This might work, but it is not portable code. Furthermore, for objects with con-
structors or destructors, mixing C-style and C++-style free-store management is
a recipe for disaster.

The realloc() function is typically used for expanding buffers:

int max = 1000;
int count = 0;
int c;
char* p = (char*)malloc(max);
while ((c=getchar())!=EOF) { /* read: ignore chars on eof line */
 if (count==max–1) { /* need to expand buffer */
 max += max; /* double the buffer size */
 p = (char*)realloc(p,max);
 if (p==0) quit();
 }
 p[count++] = c;
}

Stroustrup_book.indb 1044Stroustrup_book.indb 1044 5/8/15 10:31 AM5/8/15 10:31 AM

27.5 C-STYLE STRINGS 1045

For an explanation of the C input operations, see §27.6.2 and §B.11.2.
The realloc() function may or may not move the old allocation into newly

allocated memory. Don’t even think of using realloc() on memory allocated
by new.

Using the C++ standard library, the (roughly) equivalent code is

vector<char> buf;
char c;
while (cin.get(c)) buf.push_back(c);

Refer to the paper “Learning Standard C++ as a New Language” (see the refer-
ence list in §27.1) for a more thorough discussion of input and allocation strategies.

27.5 C-style strings
In C, a string (often called a C string or a C-style string in C++ literature) is a zero-
terminated array of characters. For example:

char* p = "asdf";
char s[] = "asdf";

'a' 's' 'd' 'f' 09p:

'a' 's' 'd' 'f' 0s:

In C, we cannot have member functions, we cannot overload functions, and we
cannot define an operator (such as ==) for a struct. It follows that we need a set of
(nonmember) functions to manipulate C-style strings. The C and C++ standard
libraries provide such functions in <string.h>:

size_t strlen(const char* s); /* count the characters */
char* strcat(char* s1, const char* s2); /* copy s2 onto the end of s1 */
int strcmp(const char* s1, const char* s2); /* compare lexicographically */
char* strcpy(char* s1,const char* s2); /* copy s2 into s1 */

char* strchr(const char *s, int c); /* find c in s */
char* strstr(const char *s1, const char *s2); /* find s2 in s1 */

char* strncpy(char*, const char*, size_t n); /* strcpy, max n chars */
char* strncat(char*, const char, size_t n); /* strcat with max n chars */
int strncmp(const char*, const char*, size_t n); /* strcmp with max n chars */

Stroustrup_book.indb 1045Stroustrup_book.indb 1045 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1046

This is not the full set, but these are the most useful and most used functions. We
will briefly illustrate their use.

We can compare strings. The equality operator (==) compares pointer values;
the standard library function strcmp() compares C-style string values:

const char* s1 = "asdf";
const char* s2 = "asdf";

if (s1==s2) { /* do s1 and s2 point to the same array? */
 /* (typically not what you want) */
}

if (strcmp(s1,s2)==0) { /* do s1 and s2 hold the same characters? */

}

The strcmp() function does a three-way comparison of its two arguments. Given
the values of s1 and s2 above, strcmp(s1,s2) will return 0, meaning a perfect
match. If s1 was lexicographically before s2, it would return a negative number,
and if s1 was lexicographically after s2, it would return a positive number. The
term lexicographical means roughly “as in a dictionary.” For example:

strcmp("dog","dog")==0
strcmp("ape","dodo")<0 /* "ape" comes before "dodo" in a dictionary */
strcmp("pig","cow")>0 /* "pig" comes after "cow" in a dictionary */

The value of the pointer comparison s1==s2 is not guaranteed to be 0 (false). An
implementation may decide to use the same memory to hold all copies of a char-
acter literal, so we would get the answer 1 (true). Usually, strcmp() is the right
choice for comparing C-style strings.

We can find the length of a C-style string using strlen():

int lgt = strlen(s1);

Note that strlen() counts characters excluding the terminating 0. In this case, str-
len(s1)==4 and it takes 5 bytes to store "asdf". This little difference is the source
of many off-by-one errors.

We can copy one C-style string (including the terminating 0) into another:

strcpy(s1,s2); /* copy characters from s2 into s1 */

It is your job to be sure that the target string (array) has enough space to hold the
characters from the source.

Stroustrup_book.indb 1046Stroustrup_book.indb 1046 5/8/15 10:31 AM5/8/15 10:31 AM

27.5 C-STYLE STRINGS 1047

The strncpy(), strncat(), and strncmp() functions are versions of strcpy(),
 strcat(), and strcmp() that will consider a maximum of n characters, where n is
their third argument. Note that if there are more than n characters in the source
string, strncpy() will not copy a terminating 0, so that the result will not be a valid
C-style string.

The strchr() and strstr() functions find their second argument in the string
that is their first argument and return a pointer to the first character of the match.
Like find(), they search from left to right in the string.

It is amazing both how much can be done with these simple functions and
how easy it is to make minor mistakes. Consider a simple problem of concate-
nating a user name with an address, placing the @ character in between. Using
std::string this can be done like this:

string s = id + '@' + addr;

Using the standard C-style string function we can write that as

char* cat(const char* id, const char* addr)
{
 int sz = strlen(id)+strlen(addr)+2;
 char* res = (char*) malloc(sz);
 strcpy(res,id);
 res[strlen(id)+1] = '@';
 strcpy(res+strlen(id)+2,addr);
 res[sz–1]=0;
 return res;
}

Did we get that right? Who will free() the string returned from cat()?

TRY THIS

Test cat(). Why 2? We left a beginner’s performance error in cat(); find it and
remove it. We “forgot” to comment our code. Add comments suitable for
someone who can be assumed to kn ow the standard C-string functions.

27.5.1 C-style strings and const
Consider:

char* p = "asdf";
p[2] = 'x';

T

Stroustrup_book.indb 1047Stroustrup_book.indb 1047 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1048

This is legal in C but not in C++. In C++, a string literal is a constant, an im-
mutable value, so p[2]='x' (to make the value pointed to "asxf") is illegal. Unfor-
tunately, few compilers will catch the assignment to p that leads to the problem.
If you are lucky, a run-time error will occur, but don’t rely on that. Instead, write

const char* p = "asdf"; // now you can’t write to "asdf" through p

This recommendation applies to both C and C++.
The C strchr() has a similar but even harder-to-spot problem. Consider:

char* strchr(const char* s, int c); /* find c in constant s (not C++) */

const char aa[] = "asdf"; /* aa is an array of constants */
char* q = strchr(aa, 'd'); /* finds 'd' */
q = 'x'; / change 'd' in aa to 'x' */

Again, this is illegal in C and C++, but C compilers can’t catch it. Sometimes this
is referred to as transmutation: it turns consts into non-consts, violating reasonable
assumptions about code.

In C++, the problem is solved by the standard library declaring strchr()
differently:

char const* strchr(const char* s, int c); // find c in constant s
char* strchr(char* s, int c); // find c in s

Similarly for strstr().

27.5.2 Byte operations
In the distant dark ages (the early 1980s), before the invention of void*, C (and
C++) programmers used the string operations to manipulate bytes. Now the
basic memory manipulation standard library functions have void* parameters
and return types to warn users about their direct manipulation of essentially
untyped memory:

/* copy n bytes from s2 to s1 (like strcpy): */
void* memcpy(void* s1, const void* s2, size_t n);

/* copy n bytes from s2 to s1 ([s1:s1+n) may overlap with [s2:s2+n)): */
void* memmove(void* s1, const void* s2, size_t n);

/* compare n bytes from s2 to s1 (like strcmp): */
int memcmp(const void* s1, const void* s2, size_t n);

Stroustrup_book.indb 1048Stroustrup_book.indb 1048 5/8/15 10:31 AM5/8/15 10:31 AM

27.5 C-STYLE STRINGS 1049

/* find c (converted to an unsigned char) in the first n bytes of s: */
void* memchr(const void* s, int c, size_t n);

/* copy c (converted to an unsigned char)
 into each of the first n bytes that s points to: */
void* memset(void* s, int c, size_t n);

Don’t use these functions in C++. In particular, memset() typically interferes with
the guarantees offered by constructors.

27.5.3 An example: strcpy()
The definition of strcpy() is both famous and infamous as an example of the terse
style that C (and C++) is capable of:

char* strcpy(char* p, const char* q)
{
 while (*p++ = *q++);
 return p;
}

We leave to you the explanation of why this actually copies the C-style string q
into p. Post-increment is described in §A.5: The value of p++ is the value of p
before increment.

TRY THIS

Is this implementation of strcpy() correct? Explain why.

If you can’t explain why, we won’t consider you a C programmer (however com-
petent you are at programming in other languages). Every language has its own
idioms, and this is one of C’s.

27.5.4 A style issue
We have quietly taken sides in a long-standing, often furiously debated, and
largely irrelevant style issue. We declare a pointer like this:

char* p; // p is a pointer to a char

and not like this:

char *p; /* p is something that you can dereference to get a char */

T

Stroustrup_book.indb 1049Stroustrup_book.indb 1049 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1050

The placement of the whitespace is completely irrelevant to the compiler, but
programmers care. Our style (common in C++) emphasizes the type of the vari-
able being declared, whereas the other style (more common in C) emphasizes the
use of the variable. Note that we don’t recommend declaring many variables in a
single declaration:

char c, *p, a[177], *f(); /* legal, but confusing */

Such declarations are not uncommon in older code. Instead, use multiple lines
and take advantage of the extra horizontal space for comments and initializers:

char c = 'a'; /* termination character for input using f() */
char* p = 0; /* last char read by f() */
char a[177]; /* input buffer */
char* f(); /* read into buffer a; return pointer to first char read */

Also, choose meaningful names.

27.6 Input/output: stdio
There are no iostreams in C, so we use the C standard I/O defined in <stdio.
h> and commonly referred to as stdio. The stdio equivalents to cin and cout are
stdin and stdout. Stdio and iostream use can be mixed in a single program (for
the same I/O streams), but we don’t recommend that. If you feel the need to mix,
read up on stdio and iostreams (especially ios_base::sync_with_stdio()) in an
expert-level textbook. See also §B.11.

27.6.1 Output
The most popular and useful function of stdio is printf(). The most basic use of
printf() just prints a (C-style) string:

#include<stdio.h>

void f(const char* p)
{
 printf("Hello, World!\n");
 printf(p);
}

Stroustrup_book.indb 1050Stroustrup_book.indb 1050 5/8/15 10:31 AM5/8/15 10:31 AM

27.6 INPUT/OUTPUT: STDIO 1051

That’s not particularly interesting. The interesting bit is that printf() can take an
arbitrary number of arguments, and the initial string controls if and how those
extra arguments are printed. The declaration of printf() in C looks like this:

int printf(const char* format, . . .);

The . . . means “and optionally more arguments.” We can call printf() like this:

void f1(double d, char* s, int i, char ch)
{
 printf("double %g string %s int %d char %c\n", d, s, i, ch);
}

Here, %g means “Print a floating-point number using the general format,” %s
means “Print a C-style string,” %d means “Print an integer using decimal dig-
its,” and %c means “Print a character.” Each such format specifier picks the next
so-far-unused argument, so %g prints d, %s prints s, %d prints i, and %c prints
ch. You can find the full list of printf() formats in §B.11.2.

Unfortunately, printf() is not type safe. For example:

char a[] = { 'a', 'b' }; /* no terminating 0 */

void f2(char* s, int i)
{
 printf("goof %s\n", i); /* uncaught error */
 printf("goof %d: %s\n", i); /* uncaught error */
 printf("goof %s\n", a); /* uncaught error */

}

The effect of the last printf() is interesting: it prints every byte in memory follow-
ing a[1] until it encounters a 0. That could be a lot of characters.

This lack of type safety is one reason we prefer iostreams over stdio even
though stdio works identically in C and C++. The other reason is that the stdio
functions are not extensible: you cannot extend printf() to print values of your
own types, the way you can using iostreams. For example, there is no way you
can define your own %Y to print some struct Y.

There is a useful version of printf() that takes a file descriptor as its first
argument:

int fprintf(FILE* stream, const char* format, . . .);

Stroustrup_book.indb 1051Stroustrup_book.indb 1051 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1052

For example:

fprintf(stdout,"Hello, World!\n"); // exactly like printf("Hello, World!\n");
FILE* ff = fopen("My_file","w"); // open My_file for writing
fprintf(ff,"Hello, World!\n"); // write "Hello, World!\n" to My_file

File handles are described in §27.6.3.

27.6.2 Input
The most popular stdio functions include

int scanf(const char* format, . . .); /* read from stdin using a format */
int getchar(void); /* get a char from stdin */
int getc(FILE* stream); /* get a char from stream */
char* gets(char* s); /* get characters from stdin */

The simplest way of reading a string of characters is using gets(). For example:

char a[12];
gets(a); /* read into char array pointed to by a until a '\n' is input */

Never do that! Consider gets() poisoned. Together with its close cousin scan-
f("%s"), gets() used to be the root cause of about a quarter of all successful hack-
ing attempts. It is still a major security problem. In the trivial example above, how
would you know that at most 11 characters would be input before a newline? You
can’t know that. Thus, gets() almost certainly leads to memory corruption (of the
bytes after the buffer), and memory corruption is a major tool of crackers. Don’t
think that you can guess a maximum buffer size that is “large enough for all uses.”
Maybe the “person” at the other end of the input stream is a program that does
not meet your criteria for reasonableness.

The scanf() function reads using a format just as printf() writes using a for-
mat. Like printf() it can be very convenient:

void f()
{
 int i;
 char c;
 double d;
 char* s = (char*)malloc(100);
 /* read into variables passed as pointers: */
 scanf("%i %c %g %s", &i, &c, &d, s);
 /* %s skips initial whitespace and is terminated by whitespace */
}

Stroustrup_book.indb 1052Stroustrup_book.indb 1052 5/8/15 10:31 AM5/8/15 10:31 AM

27.6 INPUT/OUTPUT: STDIO 1053

Like printf(), scanf() is not type safe. The format characters and the arguments
(all pointers) must match exactly, or strange things will happen at run time. Note
also that the %s read into s may lead to an overflow. Don’t ever use gets() or
scanf("%s")!

So how do we read characters safely? We can use a form of %s that places a
limit on the number of characters read. For example:

char buf[20];
scanf("%19s",buf);

We need space for a terminating 0 (supplied by scanf()), so 19 is the maximum
number of characters we can read into buf. However, that leaves us with the
problem of what to do if someone does type more than 19 characters. The “extra”
characters will be left in the input stream to be “found” by later input operations.

The problem with scanf() implies that it is often prudent and easier to use
getchar(). The typical way of reading characters with getchar() is

while((x=getchar())!=EOF) {
 /* . . . */
}

EOF is a stdio macro meaning “end of file”; see also §27.4.
The C++ standard library alternative to scanf("%s") and gets() doesn’t suffer

from these problems:

string s;
cin >> s; // read a word
getline(cin,s); // read a line

27.6.3 Files
In C (or C++), files can be opened using fopen() and closed using fclose(). These
functions, together with the representation of a file handle, FILE, and the EOF
(end-of-file) macro, are found in <stdio.h>:

FILE *fopen(const char* filename, const char* mode);
int fclose(FILE *stream);

Basically, you use files like this:

void f(const char* fn, const char* fn2)
{
 FILE* fi = fopen(fn, "r"); /* open fn for reading */
 FILE* fo = fopen(fn2, "w"); /* open fn2 for writing */

Stroustrup_book.indb 1053Stroustrup_book.indb 1053 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1054

 if (fi == 0) error("failed to open input file");
 if (fo == 0) error("failed to open output file");

 /* read from file using stdio input functions, e.g., getc() */
 /* write to file using stdio output functions, e.g., fprintf() */

 fclose(fo);
 fclose(fi);
}

Consider this: there are no exceptions in C, so how do we make sure that the files
are closed whichever error happens?

27.7 Constants and macros
In C, a const is never a compile-time constant:

const int max = 30;
const int x; /* const not initialized: OK in C (error in C++) */

void f(int v)
{
 int a1[max]; /* error: array bound not a constant (OK in C++) */
 /* (max is not allowed in a constant expression!) */
 int a2[x]; /* error: array bound not a constant */

 switch (v) {
 case 1:
 /* . . . */
 break;
 case max: /* error: case label not a constant (OK in C++) */
 /* . . . */
 break;
 }
}

The technical reason in C (though not in C++) is that a const is implicitly acces-
sible from other translation units:

/* file x.c: */
const int x; /* initialize elsewhere */

Stroustrup_book.indb 1054Stroustrup_book.indb 1054 5/8/15 10:31 AM5/8/15 10:31 AM

27.8 MACROS 1055

/* file xx.c: */
const int x = 7; /* here is the real definition */

In C++, that would be two different objects, each called x in its own file. Instead
of using const to represent symbolic constants, C programmers tend to use mac-
ros. For example:

#define MAX 30

void f(int v)
{
 int a1[MAX]; /* OK */

 switch (v) {
 case 1:
 /* . . . */
 break;
 case MAX: /* OK */
 /* . . . */
 break;
 }
}

The name of the macro MAX is replaced by the characters 30, which is the value of
the macro; that is, the number of elements of a1 is 30 and the value in the second
case label is 30. We use all capital letters for the MAX macro, as is conventional.
This naming convention helps minimize errors caused by macros.

27.8 Macros
Beware of macros: in C there are no really effective ways of avoiding macros, but
their use has serious side effects because they don’t obey the usual C (or C++)
scope and type rules. Macros are a form of text substitution. See also §A.17.2.

How do we try to protect ourselves from the potential problems of macros
apart from (relying on C++ alternatives and) minimizing their use?

• Give all macros we defi ne ALL_CAPS names.
• Don’t give anything that isn’t a macro an ALL_CAPS name.
• Never give a macro a short or “cute” name, such as max or min.
• Hope that everybody else follows this simple and common convention.

Stroustrup_book.indb 1055Stroustrup_book.indb 1055 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1056

The main uses of macros are

• Defi nition of “constants”
• Defi nition of function-like constructs
• “Improvements” to the syntax
• Control of conditional compilation

In addition, there is a wide variety of less common uses.
We consider macros seriously overused, but there are no reasonable and com-

plete alternatives to the use of macros in C programs. It can even be hard to avoid
them in C++ programs (especially if you need to write programs that have to be
portable to very old compilers or to platforms with unusual constraints).

Apologies to people who consider the techniques described below “dirty
tricks” and believe such are best not mentioned in polite company. However, we
believe that programming is to be done in the real world and that these (very
mild) examples of uses and misuses of macros can save hours of grief for the
novice programmer. Ignorance about macros is not bliss.

27.8.1 Function-like macros
Here is a fairly typical function-like macro:

#define MAX(x, y) ((x)>=(y)?(x):(y))

We use the capital MAX to distinguish it from the many functions called max (in
various programs). Obviously, this is very different from a function: there are no
argument types, no block, no return statement, etc., and what are all those paren-
theses doing? Consider:

int aa = MAX(1,2);
double dd = MAX(aa++,2);
char cc = MAX(dd,aa)+2;

This expands to

int aa = ((1)>=(2)?(1):(2));
double dd = ((aa++)>=(2)?(aa++):(2));
char cc = ((dd)>=(aa)?(dd):(aa))+2;

Had “all the parentheses” not been there, the last expansion would have ended
up as

char cc = dd>=aa?dd:aa+2;

Stroustrup_book.indb 1056Stroustrup_book.indb 1056 5/8/15 10:31 AM5/8/15 10:31 AM

27.8 MACROS 1057

That is, cc could easily have gotten a different value from what you would reason-
ably expect looking at the definition of cc. When you define a macro, remember
to put every use of an argument as an expression in parentheses.

On the other hand, not all the parentheses in the world could save the second
expansion. The macro parameter x was given the value aa++, and since x is used
twice in MAX, a can get incremented twice. Don’t pass an argument with a side
effect to a macro.

As it happens, some genius did define a macro like that and stuck it in a pop-
ular header file. Unfortunately, he also called it max, rather than MAX, so when
the C++ standard header defines

template<class T> inline T max(T a,T b) { return a<b?b:a; }

the max gets expanded with the arguments T a and T b, and the compiler sees

template<class T> inline T ((T a)>=(T b)?(T a):(T b)) { return a<b?b:a; }

The compiler error messages are “interesting” and not very helpful. In an emer-
gency, you can “undefine” a macro:

#undef max

Fortunately, that macro was not all that important. However, there are tens of
thousands of macros in popular header files; you can’t undefine them all without
causing havoc.

Not all macro parameters are used as expressions. Consider:

#define ALLOC(T,n) ((T*)malloc(sizeof(T)*n))

This is a real example that can be very useful for avoiding errors stemming from
a mismatch of the intended type of an allocation and its use in a sizeof:

double* p = malloc(sizeof(int)*10); /* likely error */

Unfortunately, it is nontrivial to write a macro that also catches memory exhaus-
tion. This might do, provided that you define error_var and error() appropriately
somewhere:

#define ALLOC(T,n) (error_var = (T*)malloc(sizeof(T)*n), \
 (error_var==0)\
 ?(error("memory allocation failure"),0)\
 :error_var)

Stroustrup_book.indb 1057Stroustrup_book.indb 1057 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1058

The lines ending with \ are not a typesetting problem; it is the way you break a
macro definition across lines. When writing C++, we prefer to use new.

27.8.2 Syntax macros
You can define macros that make the source code look more to your taste. For
example:

#define forever for(;;)
#define CASE break; case
#define begin {
#define end }

We strongly recommend against this. Many people have tried this idea. They (or
the people who maintain their code) find that

• Many people don’t share their idea of what is a better syntax.
• The “improved” syntax is nonstandard and surprising; others get confused.
• There are uses of the “improved” syntax that cause obscure compile-time

errors.
• What you see is not what the compiler sees, and the compiler reports

errors in the vocabulary it knows (and sees in source code), not in yours.

Don’t write syntactic macros to “improve” the look of code. You and your best
friends might find it really nice, but experience shows that you’ll be a tiny mi-
nority in the larger community, so that someone will have to rewrite your code
(assuming it survives).

27.8.3 Conditional compilation
Imagine you have two versions of a header file, say, one for Linux and one for
Windows. How do you select in your code? Here is a common way:

#ifdef WINDOWS
 #include "my_windows_header.h"
#else
 #include "my_linux_header.h"
#endif

Now, if someone had defined WINDOWS before the compiler sees this, the effect is

#include "my_windows_header.h"

Otherwise it is

#include "my_linux_header.h"

Stroustrup_book.indb 1058Stroustrup_book.indb 1058 5/8/15 10:31 AM5/8/15 10:31 AM

27.9 AN EXAMPLE: INTRUSIVE CONTAINERS 1059

The #ifdef WINDOWS test doesn’t care what WINDOWS is defined to be; it just
tests that it is defined.

Most major systems (including all operating system variants) have macros
defined so that you can check. The check whether you are compiling as C++ or
compiling as C is

#ifdef __cplusplus
 // in C++
#else
 /* in C */
#endif

A similar construct, often called an include guard, is commonly used to prevent a
header file from being #included twice:

/* my_windows_header.h: */
#ifndef MY_WINDOWS_HEADER
#define MY_WINDOWS_HEADER
 /* here is the header information */
#endif

The #ifndef test checks that something is not defined; i.e., #ifndef is the opposite
of #ifdef. Logically, these macros used for source file control are very different
from the macros we use for modifying source code. They just happen to use the
same underlying mechanisms to do their job.

27.9 An example: intrusive containers
The C++ standard library containers, such as vector and map, are non- intrusive;
that is, they require no data in the types used as elements. That is how they
generalize nicely to essentially all types (built-in or user-defined) as long as those
types can be copied. There is another kind of container, an intrusive container, that is
popular in both C and C++. We will use an intrusive list to illustrate C-style use
of structs, pointers, and free store.

Let’s define a doubly-linked list with nine operations:

void init(struct List* lst); /* initialize lst to empty */
struct List* create(); /* make a new empty list on free store */
void clear(struct List* lst); /* free all elements of lst */
void destroy(struct List* lst); /* free all elements of lst, then free lst */

void push_back(struct List* lst, struct Link* p); /* add p at end of lst */
void push_front(struct List*, struct Link* p); /* add p at front of lst */

Stroustrup_ch27.indd 1059Stroustrup_ch27.indd 1059 5/11/15 11:06 AM5/11/15 11:06 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1060

/* insert q before p in lst: */
void insert(struct List* lst, struct Link* p, struct Link* q);
struct Link* erase(struct List* lst, struct Link* p); /* remove p from lst */

/* return link n “hops” before or after p: */
struct Link* advance(struct Link* p, int n);

The idea is to define these operations so that their users need only use List*s and
Link*s. This implies that the implementation of these functions could be changed
radically without affecting those users. Obviously, the naming is influenced by the
STL. List and Link can be defined in the obvious and trivial manner:

struct List {
 struct Link* first;
 struct Link* last;
};

struct Link { /* link for doubly-linked list */
 struct Link* pre;
 struct Link* suc;
};

Here is a graphical representation of a List:

first
last

List:

pre
suc

Link:
pre
suc

pre
suc

It is not our aim to demonstrate clever representation techniques or clever al-
gorithms, so there are none of those here. However, do note that there is no
mention of any data held by the Links (the elements of a List). Looking back at
the functions provided, we note that we are doing something very similar to de-
fining a pair of abstract classes Link and List. The data for Links will be supplied
later. Link* and List* are sometimes called handles to opaque types; that is, giving
Link*s and List*s to our functions allows us to manipulate elements of a List with-
out knowing anything about the internal structure of a Link or a List.

Stroustrup_book.indb 1060Stroustrup_book.indb 1060 5/8/15 10:31 AM5/8/15 10:31 AM

27.9 AN EXAMPLE: INTRUSIVE CONTAINERS 1061

To implement our List functions, we first #include some standard library
headers:

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>

C doesn’t have namespaces, so we need not worry about using declarations or
using directives. On the other hand, we should probably worry that we have
grabbed some very common short names (Link, insert, init, etc.), so this set of
functions cannot be used “as is” outside a toy program.

Initializing is trivial, but note the use of assert():

void init(struct List* lst) /* initialize *lst to the empty list */
{
 assert(lst);
 lst–>first = lst–>last = 0;
}

We decided not to deal with error handling for bad pointers to lists at run time.
By using assert(), we simply give a (run-time) system error if a list pointer is null.
The “system error” will give the file name and line number of the failed assert();
assert() is a macro defined in <assert.h> and the checking is enabled only during
debugging. In the absence of exceptions, it is not easy to know what to do with
bad pointers.

The create() function simply makes a List on the free store. It is a sort of com-
bination of a constructor (init() initializes) and new (malloc() allocates):

struct List* create() /* make a new empty list */
{
 struct List* lst = (struct List*)malloc(sizeof(struct List));
 init(lst);
 return lst;
}

The clear() function assumes that all Links are created on the free store and free()
s them:

void clear(struct List* lst) /* free all elements of lst */
{
 assert(lst);
 {

Stroustrup_book.indb 1061Stroustrup_book.indb 1061 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1062

 struct Link* curr = lst–>first;
 while(curr) {
 struct Link* next = curr–>suc;
 free(curr);
 curr = next;
 }
 lst–>first = lst–>last = 0;
 }
}

Note the way we traverse using the suc member of Link. We can’t safely access a
member of a struct object after that object has been free()d, so we introduce the
variable next to hold our position in the List while we free() a Link.

If we didn’t allocate all of our Links on the free store, we had better not call
clear(), or clear() will create havoc.

The destroy() function is essentially the opposite of create(), that is, a sort of
combination of a destructor and a delete:

void destroy(struct List* lst) /* free all elements of lst; then free lst */
{
 assert(lst);
 clear(lst);
 free(lst);
}

Note that we are making no provisions for calling a cleanup function (destructor)
for the elements represented by Links. This design is not a completely faithful im-
itation of C++ techniques or generality — it couldn’t and probably shouldn’t be.

The push_back() function — adding a Link as the new last Link — is pretty
straightforward:

void push_back(struct List* lst, struct Link* p) /* add p at end of lst */
{
 assert(lst);
 {
 struct Link* last = lst–>last;
 if (last) {
 last–>suc = p; /* add p after last */
 p–>pre = last;
 }
 else {
 lst–>first = p; /* p is the first element */
 p–>pre = 0;

Stroustrup_book.indb 1062Stroustrup_book.indb 1062 5/8/15 10:31 AM5/8/15 10:31 AM

27.9 AN EXAMPLE: INTRUSIVE CONTAINERS 1063

 }
 lst–>last = p; /* p is the new last element */
 p–>suc = 0;
 }
}

However, we would never have gotten it right without drawing a few boxes and
arrows on our doodle pad. Note that we “forgot” to consider the case where the
argument p was null. Pass 0 instead of a pointer to a Link and this code will fail
miserably. This is not inherently bad code, but it is not industrial strength. Its
purpose is to illustrate common and useful techniques (and, in this case, also a
common weakness/bug).

The erase() function can be written like this:

struct Link* erase(struct List* lst, struct Link* p)
/*
 remove p from lst;
 return a pointer to the link after p
*/
{
 assert(lst);
 if (p==0) return 0; /* OK to erase(0) */

 if (p == lst–>first) {
 if (p–>suc) {
 lst–>first = p–>suc; /* the successor becomes first */
 p–>suc–>pre = 0;
 return p–>suc;
 }
 else {
 lst–>first = lst–>last = 0; /* the list becomes empty */
 return 0;
 }
 }
 else if (p == lst–>last) {
 if (p–>pre) {
 lst–>last = p–>pre; /* the predecessor becomes last */
 p–>pre–>suc = 0;
 }
 else
 lst->first = lst-> last = 0; /* the list becomes empty */
 return 0;

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1064

 }
 else {
 p–>suc–>pre = p–>pre;
 p–>pre–>suc = p–>suc;
 return p–>suc;
 }
}

We will leave the rest of the functions as an exercise, as we don’t need them for
our (all too simple) test. However, now we must face the central mystery of this
design: Where is the data in the elements of the list? How do we implement a
simple list of names represented by a C-style string? Consider:

struct Name {
 struct Link lnk; /* the Link required by List operations */
 char* p; /* the name string */
};

So far, so good, though how we get to use that Link member is a mystery; but
since we know that a List likes its Links on the free store, we write a function cre-
ating Names on the free store:

struct Name* make_name(char* n)
{
 struct Name* p = (struct Name*)malloc(sizeof(struct Name));
 p–>p = n;
 return p;
}

Or graphically:

first
last

List:

pre
suc

Link:
pre
suc

pre
suc

n n n

Stroustrup_book.indb 1064Stroustrup_book.indb 1064 5/8/15 10:31 AM5/8/15 10:31 AM

27.9 AN EXAMPLE: INTRUSIVE CONTAINERS 1065

Now let’s use that:

int main()
{
 int count = 0;
 struct List names; /* make a list */
 struct List* curr;
 init(&names);

 /* make a few Names and add them to the list: */
 push_back(&names,(struct Link*)make_name("Norah"));
 push_back(&names,(struct Link*)make_name("Annemarie"));
 push_back(&names,(struct Link*)make_name("Kris"));

 /* remove the second name (with index 1): */
 erase(&names,advance(names.first,1));

 curr = names.first; /* write out all names */
 for (; curr!=0; curr=curr–>suc) {
 count++;
 printf("element %d: %s\n", count, ((struct Name*)curr)–>p);
 }
}

So we “cheated.” We used a cast to treat a Name* as a Link*. In that way, the user
knows about the “library-type” Link. However, the “library” doesn’t know about
the “application-type” Name. Is that allowed? Yes, it is: in C (and C++), you can
treat a pointer to a struct as a pointer to its first element and vice versa.

Obviously, this List example is also C++ exactly as written.

TRY THIS

A common refrain among C++ programmers talking with C programmers
is, “Everything you can do, I can do better!” So, rewrite the intrusive List
example in C++, showing how to make it shorter and easier to use without
making the code slower or the objects bigger.

T

Stroustrup_book.indb 1065Stroustrup_book.indb 1065 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1066

Drill
 1. Write a “Hello, World!” program in C, compile it, and run it.
 2. Define two variables holding “Hello” and “World!” respectively; concat-

enate them with a space in between; and output them as Hello World!.
 3. Define a C function that takes a char* parameter p and an int parameter x

and print out their values in this format: p is "foo" and x is 7. Call it with
a few argument pairs.

Review
In the following, assume that by C we mean ISO standard C89.

 1. Is C++ a subset of C?
 2. Who invented C?
 3. Name a highly regarded C textbook.
 4. In what organization were C and C++ invented?
 5. Why is C++ (almost) compatible with C?
 6. Why is C++ only almost compatible with C?
 7. List a dozen C++ features not present in C.
 8. What organization “owns” C and C++?
 9. List six C++ standard library components that cannot be used in C.
 10. Which C standard library components can be used in C++?
 11. How do you achieve function argument type checking in C?
 12. What C++ features related to functions are missing in C? List at least

three. Give examples.
 13. How do you call a C function from C++?
 14. How do you call a C++ function from C?
 15. Which types are layout compatible between C and C++? (Just) give

examples.
 16. What is a structure tag?
 17. List 20 C++ keywords that are not keywords in C.
 18. Is int x; a definition in C++? In C?
 19. What is a C-style cast and why is it dangerous?
 20. What is void* and how does it differ in C and C++?
 21. How do enumerations differ in C and C++?
 22. What do you do in C to avoid linkage problems from popular names?
 23. What are the three most common C functions from free-store use?
 24. What is the definition of a C-style string?
 25. How do == and strcmp() differ for C-style strings?

Stroustrup_book.indb 1066Stroustrup_book.indb 1066 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 EXERCISES 1067

 26. How do you copy C-style strings?
 27. How do you find the length of a C-style string?
 28. How would you copy a large array of ints?
 29. What’s nice about printf()? What are its problems/limitations?
 30. Why should you never use gets()? What can you use instead?
 31. How do you open a file for reading in C?
 32. What is the difference between const in C and const in C++?
 33. Why don’t we like macros?
 34. What are common uses of macros?
 35. What is an include guard?

Terms
#defi ne
#ifdef
#ifndef
Bell Labs
Brian Kernighan
C/C++
compatibility
conditional compilation
C-style cast
C-style string

Dennis Ritchie
FILE
fopen()
format string
intrusive
K&R
lexicographical
linkage
macro
malloc()

non-intrusive
opaque type
overloading
printf()
strcpy()
structure tag
three-way comparison
void
void*

Exercises
For these exercises it may be a good idea to compile all programs with both a C
and a C++ compiler. If you use only a C++ compiler, you may accidentally use
non-C features. If you use only a C compiler, type errors may remain undetected.

 1. Implement versions of strlen(), strcmp(), and strcpy().
 2. Complete the intrusive List example in §27.9 and test it using every

function.
 3. “Pretty up” the intrusive List example in §27.9 as best you can to make

it convenient to use. Do catch/handle as many errors as you can. It is
fair game to change the details of the struct definitions, to use macros,
whatever.

 4. If you didn’t already, write a C++ version of the intrusive List example in
§27.9 and test it using every function.

 5. Compare the results of exercises 3 and 4.

Stroustrup_book.indb 1067Stroustrup_book.indb 1067 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 • THE C PROGRAMMING LANGUAGE1068

 6. Change the representation of Link and List from §27.9 without changing
the user interface provided by the functions. Allocate Links in an array of
links and have the members first, last, pre, and suc be ints (indices into
the array).

 7. What are the advantages and disadvantages of intrusive containers com-
pared to C++ standard (non-intrusive) containers? Make lists of pros
and cons.

 8. What is the lexicographical order on your machine? Write out every
character on your keyboard together with its integer value; then, write
the characters out in the order determined by their integer value.

 9. Using only C facilities, including the C standard library, read a sequence
of words from stdin and write them to stdout in lexicographical order.
Hint: The C sort function is called qsort(); look it up somewhere. Alter-
natively, insert the words into an ordered list as you read them. There is
no C standard library list.

 10. Make a list of C language features adopted from C++ or C with Classes
(§27.1).

 11. Make a list of C language features not adopted by C++.
 12. Implement a (C-style string, int) lookup table with operations such as

find(struct table*, const char*), insert(struct table*, const char*, int),
and remove(struct table*, const char*). The representation of the table
could be an array of a struct pair or a pair of arrays (const char*[] and
int*); you choose. Also choose return types for your functions. Document
your design decisions.

 13. Write a program that does the equivalent of string s; cin>>s; in C; that
is, define an input operation that reads an arbitrarily long sequence of
whitespace-terminated characters into a zero-terminated array of chars.

 14. Write a function that takes an array of ints as its input and finds the
smallest and the largest elements. It should also compute the median and
mean. Use a struct holding the results as the return value.

 15. Simulate single inheritance in C. Let each “base class” contain a pointer
to an array of pointers to functions (to simulate virtual functions as free-
standing functions taking a pointer to a “base class” object as their first ar-
gument); see §27.2.3. Implement “derivation” by making the “base class”
the type of the first member of the derived class. For each class, initialize
the array of “virtual functions” appropriately. To test the ideas, implement
a version of “the old Shape example” with the base and derived draw()
just printing out the name of their class. Use only language features and
library facilities available in standard C.

 16. Use macros to obscure (simplify the notation for) the implementation in
the previous exercise.

Stroustrup_book.indb 1068Stroustrup_book.indb 1068 5/8/15 10:31 AM5/8/15 10:31 AM

CHAPTER 27 POSTSCRIPT 1069

Postscript
We did mention that compatibility issues are not all that exciting. However, there
is a lot of C code “out there” (billions of lines of code), and if you have to read
or write it, this chapter prepares you to do so. Personally, we prefer C++, and
the information in this chapter gives part of the reason for that. And please don’t
underestimate that “intrusive List” example — both “intrusive Lists” and opaque
types are important and powerful techniques (in both C and C++).

Stroustrup_book.indb 1069Stroustrup_book.indb 1069 5/8/15 10:31 AM5/8/15 10:31 AM

