
Speaking C++ As A Native†

Bjarne Stroustrup

AT&T Labs – Research

Abstract. C++ supports several styles (“multiple paradigms”) of programming. This allows great flexibility, nota-
tional convenience, maintainability, and close-to-optimal performance. Programmers who don’t know the basic native
C++ styles and techniques “speak” C++ with a thick accent, limiting themselves to relatively restrictive pidgin dialects.
Here, I present language features such as classes, class hierarchies,� abstract classes, and templates, together with the
fundamental programming styles they support. In particular, I show how to provide generic algorithms, function objects,
access objects, and delayed evaluation as needed to build and use flexible and efficient libraries. The aim is to give an
idea of what’s possible to provide, and some understanding of the fundamental techniques of modern C++ libraries.

INTRODUCTION

What can I tell you about C++ in physics computa-
tion? Clearly I can’t tell you about physics; I’m not a
physicist. Clearly I can’t tell you about math, because I
haven’t practiced it since I got my degree. And clearly I
can’t tell you about all of the wonderful C++ programs
and libraries that you have, because you know them and I
don’t.

Instead, I’m going to show a lot of little snippets of
code and explain why I think they are interesting and use-
ful. Before I do that, I’m going to talk a little about stan-
dard C++, assuming that you are not all up on the latest
state of the C++ world.

WHAT IS C++?

C++ is a general purpose programming language. It
can do more things than any language I’ve heard deemed
“general purpose.” It has a bias toward systems program-
ming: you can hack device drivers with C++; it has even
been used to program diesel engine fuel injectors. Per-
haps most significantly, C++ is a multiparadigm program-
ming language because it’s meant to support a variety of
ways of expressing yourself.

† This paper is an abridged and edited transcript, prepared by Mark
Fischler, Walter Brown, and Bjarne Stroustrup, based on the video
recording of the plenary talk.
� For lack of space, the discussion of class hierarchy design and the use
of abstract classes is missing from this transcript.

C++ supports:

• C-style programming — C++ is a better C, main-
taining C’s flexibility and run-time efficiency while
improving type checking;

• data abstraction — the ability to create types that
suit your needs;

• object-oriented programming — the idea of pro-
gramming with class hierarchies and runtime poly-
morphism; and

• generic programming — programming using type
parameterization on both data types and algorithms.

Why does C++ support these diverse approaches? Be-
cause the most effective styles of programming involve a
variety of techniques that people often classify as belong-
ing to different paradigms.

We’ve had an ISO standard (2) for about 2 years now.
While a set of minor clarifications is supposed to be
voted in next week,1 we’ve been working hard on sta-
bility (rather than on changes or new extensions).

This has led to a lot of implementations, and they are
converging to the standard. Thus, our ability to write code
which is portable across operating systems and machine
architectures is improving. Some of these implementa-
tions are even free; this is important to grad students and
others who like to try new things. C++ works on almost
all platforms, including all of the major ones.

1 The vote has since been held as scheduled: the resolutions approving a
Technical Corrigendum passed unanimously. Currently in the hands of
the Project Editor, the resulting ISO document will be formally issued
shortly (we hope) after he is finished with it.

As a result, there are lots of foundation libraries, lots of
scientific libraries, and lots of support for applications of
various sorts and for lots of environments. However, here
I’m going to show small elegant examples — the building
blocks for the programming styles — because you can
find just about anything else in a lot of other places.

USING A PROGRAMMING LANGUAGE

Ideals:

• directness — represent concepts directly in a pro-
gram; and

• independence — represent independent concepts in-
dependently in a program.

If you have some ideas, you want to write them down
so that your thoughts are reflected directly in the code.
What you want to say, you want to say clearly. If your
thoughts are muddled, you are going to get a lousy pro-
gram. That’s a different issue, and there the program
language designer can help only marginally: by support-
ing clear thinking better than woolly, muddled thinking.
That’s very hard to do without becoming paternalistic and
restrictive. C++ invariably errs to the side of allowing you
to say more rather than on the side of allowing you to say
just what I might consider good.

It should also be possible to represent independent
ideas independently. The alternative is a big glob of code
that does “everything” for you, but you can’t figure out
which part is connected to what. To avoid such messes,
you try to keep separate concerns and ideas separate, so
that if one thing needs to be changed, you can do so with-
out changing lots of apparently unrelated things.

The class is the main construct in C++. It is used to
express concepts. The class plays a lot of roles because
there are lots of different kinds of concepts. We can have,
for example, value types; function types; constraint dec-
larations; resource handles; node types; interfaces; and
many more.

A VALUE TYPE CLASS

One of the simplest examples I’ve come up with to il-
lustrate some of these ideas is a simple value type, Range.
A Range object holds a value guaranteed to be within
specified bounds:

void f(Range& r, int n)
{

try {
Range v1(0,3,10);

Range v2(7,9,100);
v1 = 7; // ok: 7 is in [0,10)
int i = v2; // extract value
r = 7; // may throw exception
v2 = n; // may throw exception
v2 = 3; // will throw exception:

// 3 is not in [7,100)
}
catch(Range_error) {
cerr << "Range error in f();"

}
}

A value within the bounds is fine. However, you will
not succeed if you attempt to enter a value that is not
within bounds into a Range. In that case, you get an ex-
ception. That is, Range throws an exception. You can
catch such exceptions, as shown above, and possibly re-
cover from the error. That way, you can pass around val-
ues guaranteed to be within the specified bounds.

A Range is a very simple concept and I can express it
quite directly in C++:

class Range { // simple value type
int value, low, high;

// invariant: low <= value < high
void check(int v)
{ if (v<low || high<=v)

throw Range_error();
}

public:
Range(int lw, int v, int hi)
: low(lw), value(v), high(hi)
{ check(v); }

Range(const Range& a)
{ low=a.low;

value=a.value;
high=a.high;

}

Range& operator=(const Range& a)
{ check(a.value); value=a.value; }

Range& operator=(int a)
{ check(a); value=a; }

// extract value:
operator int() const
{ return value; }

};

This example embodies the very simplest idea of an
object whose value is constrained. Notice the notion of

the invariant established in a constructor to make sure
that every Range object is valid and maintained by ev-
ery member function. The function check() says that, if
the given value is not in bounds, we throw an exception.
Each function that sets a value that could be out of bounds
check()s it first.

For example, the constructor uses check() when we
make an object from a triple (low, value, high): If the ini-
tial value wasn’t in bounds, the object will never be cre-
ated — the constructor will fail. That’s fine because then
you don’t have an invalid object to get yourself in trouble
with later. Assignments, too, check() when needed.

The representation of a Range (i.e., the integers value,
low, high) is private and only accessible by the functions
declared in class Range. Note how construction (initial-
ization) and assignment is specified by the programmer.

GENERALIZING A VALUE TYPE

I said that C++ is there to express ideas directly, but I
didn’t do quite what I said. While I’d said I was repre-
senting things in a range — and if the thing was not in the
range you threw an exception — the code used ints, not
“things.”

The code can actually work for any type of thing,
provided you can check the invariant that some thing is
higher than low and less than high. And so I can general-
ize by saying that a Range is a range over values of type
T, where T is anything that you can meaningfully check a
range of. So I rewrote Range, not in terms of integers, but
in terms of the arbitrary type T. This illustrates the C++
template concept:2

// simple value type
template<class T> class Range {

T value, low, high;
// invariant: low <= value < high

void check(const T& v)
{ if (v<low || high<=v)

throw Range_error(); }
public:

Range(const T& lw,
const T& v, const T& hi)

: low(lw), value(v), high(hi)
{ check(v); }

Range(const Range& a)
{ low=a.low;

2 Templates are often considered new because I didn’t invent them until
1988, but the world can be slow to catch on to new ideas.

value=a.value;
high=a.high;

}

Range& operator=(const Range& a)
{ check(a.value); value=a.value; }

Range& operator=(const T& a)
{ check(a); value=a; }

// extract value:
operator T() const { return value; }

};

Now we can say that we want a range of integers, or
a range of doubles, a range of characters, or even a range
of strings:

Range<int> ri(10, 10, 1000);
Range<double> rd(0, 3.14, 1000);
Range<char> rc(‘a’, ‘a’, ‘z’);
Range<string> rs("Algorithm",

"Function", "Zero");

The string is the standard library string type. Of course
you can compare strings: string comparison gives lexico-
graphical ordering. It works. For example, here “Func-
tion” is between “Algorithm” and “Zero.” So this gener-
alizes nicely.

CONSTRAINTS

If you look back at the previous example, I still did
not do exactly what I said. I’d said I was going to check
ranges for any type T for which it was meaningful to do
comparisons. But I didn’t write that; I defined Range
for an arbitrary type T. The construct template<class T>
is the good old mathematical “for all T.” How can we
impose the constraint that our objects should have a linear
ordering?

You can rely on the compiler to check. Code like this
will not compile if you feed it a type for which < or <=
doesn’t work. However, the error message can be very
verbose and cryptic, so let’s try to express this constraint
directly.

I want to ensure, for the class Range<T>, that T is
comparable and that T is assignable. How — in Standard
C++ — can I express that? Here is one way:

template<class T> struct Comparable {

// the constraints check:
static void constraints(T a, T b)

{ a<b; a<=b; }

// trigger the constraints check:
Comparable()
{ void (*p)(T,T) = constraints; }

};

Template<class T> struct Assignable {
// ...

};

template<class T> class Range
: private Comparable<T>,
private Assignable<T> {

// ...
};

Range<int> r1(1,5,10); // ok
Range< complex<double> > r2(1,5,10);

// constraint error: no < or <=

I define a little template class Comparable, which will
compile if T fulfills the criteria I defined, namely that if
you have two T’s, you should be able to compare them
using < and <=. The constraints() function just checks
that constraint. It doesn’t do any real work; it just ex-
presses the constraint by exercising the aspect of the type
that I am interested in. The constructor makes sure con-
straints() is exercised: it can make a Comparable<T> if
and only if constraints() can be compiled for the type T.
As you will see, the compiler never actually generates any
code for this. I write Assignable in the same way.

Notice there are no macros and no magic here. Fur-
thermore, it is pretty minimal:

• I have a single line that names the property I want to
check;

• I have a single line that expresses that check; and

• I have a single line that expresses when it’s checked.

This is not particularly new; I wrote about constraints in
The Design and Evolution of C++ (6) in 1994, but this
is the first time I have been able to express general con-
straints in small and simple code snippets like this.

Now, when I take a range of things, the compiler
checks whether things are comparable. Compilers can
compile this so that it’s all a compile-time effort with no
run-time effect. So when I talk about representing con-
cepts as classes, it doesn’t mean that I have to create ob-
jects in the machine representing the concepts and invoke
operations on them to get work done. It simply means
that I can express my concept and have it work.

Of course ints are comparable, so Range<int> com-
piles. Next, we try for a range of double-precision

complex numbers, but you can’t make a Range< com-
plex<double> > because we check Comparable< com-
plex<double> >: we try to do a <, but that doesn’t work
— operator < is not defined for complex numbers — so
we get a compile-time error.

A compiler will check anything you do to a template
parameter class T even if you don’t write specific con-
straints checks. However, if you’ve ever tried, you know
that the error messages leave a lot to be desired. The main
point of the constraints() technique is to make the con-
straints explicit. Doing that yields good, specific error
messages and, importantly, it allows us to express a very
general notion of constraint.

Anything you can say in the language you can check in
a constraint. In particular, it is easy to express constraints
involving more than one type. For example, if you have a
template with three type arguments, T1, T2, and T3, you
can say that the result of multiplying a T1 by a T2 should
be assignable to a T3 by simply saying t3=t1*t2 for suit-
ably declared t1, t2, t3. Because you express this in the
language itself, rather than in some language designed to
express constraints, this technique is actually more pow-
erful than what is found in non-research languages and
in most research languages. And still, expressing a con-
straint is four simple lines of code; no magic is required.

MANAGING RESOURCES

One thing that comes up again and again in my world
is that there are a lot of resources to take care of. Memory
is the one resource people always talk about, but more
critical are things like file handles, thread handles, and
sockets. It doesn’t actually matter if you can clean up all
of your memory if you have left thread handles hanging
around, because they own memory you can’t clean up.

In general, it’s very, very difficult to deal with re-
sources. In practice, however, most resources live in a
scope and this is the simple and common case that I’m
going to show a solution for.

The general structure of the solution is to acquire a re-
source by initializing some object that holds it. So we
are introducing a class — a resource handle class — that
represents the notion of the resource. The class controls
access to the resource. Of course classes are good at that
that kind of control. You can access the resource only by
using functions that the handle provides for that — rep-
resentations are private. Creation is controlled by con-
structors, copying can be controlled, and final cleanup is
provided by destructors. A destructor is a function that is
guaranteed to be invoked upon exit from the scope of a
variable, and it just releases the resource at that point.

Actually, this technique is the key to exception safety,
but I don’t have time here to go into that in detail. If you
are interested, read Appendix E of The C++ Program-
ming Language, Special Edition (5). 3

To illustrate, I sketch a piece of code I’ve seen many
times in many versions in C and C++ programs: you grab
something, you use it, and then you release the resource:

void my_fct(const char* p)
{

FILE* f = fopen(p,"r"); // acquire
// use f
fclose(f); // release

}

This is fine as long as you actually get to releasing the
resource. If a C program does a longjump here you’re in
trouble; if a C++ code throws an exception here you’re in
trouble. In short, this is very simple but very unsatisfac-
tory code.

The naive fix that everybody uses when they first start
playing with exceptions is to wrap a try block around the
resource’s initialization and use:

void my_fct2(const char* p)
{

FILE* f = 0;
try {
f = fopen(p,"r");
// use f

}
catch () { // handle exception

// ...
}
if (f) fclose(f);

}

This is fine, but I find that it is only fine if you apply the
technique consistently and correctly. Here’s what we just
did:

• We found a problem in the code, a problem caused
by people failing to think things through and take
care of all the error conditions.

• Then we solved it by doubling the size of the code
and complicating the control structure.

The chance of forgetting something and not getting things
right is at least linear with the size of the code. So if I
recommended this, I would be recommending a way of

3 If your book doen’t have an appendix E, just go to my home pages (9)
and download a version, or augment Bjarne’s retirement fund by buying
a new copy :-).

dealing with careless errors that doubled the probablity
of careless errors. This particular problem actually held
back exceptions in C++ for at least a year.

Remember: if I have a concept, I’m suppose to repre-
sent it directly by a class. So I create a little handle class
to represent my notion of an open file:

// in some support library:
class File_handle {

FILE* p;
public:

File_handle(const char* pp,
const char* r)

:p(fopen(pp,r))
{ if (p==0) throw Bad_file(); }

File_handle(const string s,
const char* r)

:p(fopen(s.cstr(),r))
{ if (p==0) throw Bad_file(); }

~File_handle() // destructor
{ if (p) fclose(p); }

// access functions:
// ...

};

void my_fct3(string s)
{

File_handle f(s,"r");
// use f

}

The constructor creates the handle and opens the file. If
open() succeeds, all is fine. If open() fails, we don’t cre-
ate the handle and exit my_fct3() throwing an exception.
The destructor releases the resource — here, it closes the
file — if you managed to acquire it. The handle class is
the kind of stuff you stick in a support library. However,
if you have a resource that nobody else has, you have to
write a resource manager yourself. That will be maybe
ten lines of code that you write once and then use wher-
ever you acquire one of those resources. You typically
acquire a kind of resource in many places in your code,
but you need to write only one class to handle that safely.
On the other hand, if you use the try-block approach, you
have to get the error handling code right in every case.

The way you now write your code is to create a han-
dle for the file named s with read access. Then you use
the file through that handle. You don’t have to explicitly
close the file because that’s taken care of by the handle’s
destructor. So I’ve simplified the code while making it
exception-safe. The chances of making mistakes are now
much more limited.

CONTROL ABSTRACTION

There is a related problem that was open, I estimate,
for about 20 years. It’s trying to deal with the fact that a
lot of the code we write is of the form “Do some pre-
fix code, then do the real thing, then do some suffix
code.” Common examples of that include lock/unlock,
transaction-start/transaction-commit, debug-trace-on/off,
and “acquire the resource, do the operation, release the
resource.” If you’ve written a large program, you’ll have
code of this general style somewhere.

As shown below, I want to take some arbitrary class X
— say one you are going to write tomorrow so I couldn’t
possibly know what it is — and wrap it so that prefix
code and suffix code is implicitly done. When I write
x->count(), it should translate into prefix(), count(), suf-
fix(), and similarly for other member functions of your
class. Further, I shouldn’t have to know what prefix() and
suffix() are when I write the wrapper class:

void f(X& x)
{

Wrap<X> xx(x,prefix,suffix);
int n = xx->count();
// prefix(); n=x.count(); suffix();

xx->g(99);
// prefix(); x.g(99); suffix();

}

This is close to what people mean when they say “con-
trol abstractions.” It does something to the control flow in
your program, in a guaranteed and declarative manner.

The constraints on a solution to this problem are that
there should be optimal performance: It should be possi-
ble to inline prefix() and suffix(). This is very important
if these are, say, assembly code that does lock/unlock. It
has to work for pre-existing X’s. Oh, and by the way, I
can write it in 16 lines of standard C++:4

template<class T, class Suf>
class Wrap_proxy {

T* p;
Suf suffix;

public:
Wrap_proxy(T* pp, Suf s)
:p(pp), suffix(s) {}

~Wrap_proxy() { suffix(); }

T* operator->() { return p; }
};

4 The example looks longer because some of the lines are artificially
wrapped to fit the two-column format.

template<class T, class Pre, class Suf>
class Wrap {

T* p;
Pre prefix;
Suf suffix;

public:
Wrap(T& x, Pre pref, Suf s)
:p(&x), prefix(pref), suffix(s) {}

Wrap_proxy<T,Suf> operator->()
{ prefix();
return Wrap_proxy<T,Suf>(p,suffix);

}
};

This wraps an object by storing away the prefix and the
suffix and a pointer to the object. Whenever you call the
resulting wrapper object using operator arrow, the prefix
code is invoked, then a proxy is created and the proxy’s
operator->() is called. When you are finished with the
proxy, it is of course destroyed, calling the suffix code.
This works. I present it here to show that

• you can do some control abstraction in C++, and

• the range of notions you can represent as a class is
much wider than most people are willing to believe.

I describe the wrapper further in a paper (8).

GENERIC PROGRAMMING

Now I’m going to explain some of the basics of
generic programming as it is represented in the C++ stan-
dard library. The first idea is that you can make yourself a
lot of useful containers, such as vector<T>, list<T>, and
map<K,V>. Since the standard library has all these and
more, and since these containers’ quality is really quite
good, you can just use them without having to write them
yourself.

Further, there are some very common things — you
can find them in Knuth or Sedgwick — that we frequently
do to all kinds of containers:

• find an element in a container,

• sort a container,

• perform an operation on each element of a container,

• remove elements that meet a given criteria from a
container,

• copy a container.

You don’t want to hand-code these algorithms each time
you use them. That would just be a waste, a nuisance,
and a well-known source of bugs. People don’t write their
own sorts anymore, except for the few people who actu-
ally have a chance of getting them right. Similarly with
the other basic algorithms, so they’re provided in the stan-
dard library.

And we don’t want to repeat the code for each algo-
rithm for each container. That would be a nuisance and a
maintenance hazard.

The standard library is organized as a framework of
containers and algorithms. This organization is the work
of Alex Stepanov. The problem was “how do you pro-
vide an algorithm over a set of containers that includes
the Standard ones as well as those you have defined your-
self?” The key idea is to say that any container can be
seen as a sequence of elements. A sequence has a begin-
ning and an end, and if you have access to an element you
can get to the next element. That’s all there is to it.

begin end
| |
v v

elem -> elem -> ... -> 0

Something that refers to an element of a sequence is
called an iterator. The obvious C-style notation is that
++ for an iterator means “refer to the next element” and *
means “get the value of the element referred to.” This se-
quence notion is very general: it covers vectors, it covers
lists, it covers trees. While the implementation of these
notions may be different, the semantics of getting to the
next element and getting the value of the next element are
independent of what kind of data structure you are talking
about as long as you can view the elements as part of a
sequence.

Here is some pseudo-code expressing what we want
to do: copy a sequence from begining to its end onto out-
put, find the value in the sequence, and count the number
of occurrences of the value in the sequence; we want to
make it into real code:

// copy sequence to output:
copy(begin,end,output)

// find value in sequence:
find(begin,end,value)

// count occurrences of value
// in sequence:
count(begin,end,value)

One of the ideals of programming is the idea of direct
representation of ideas in code. Given this pseudocode,
what is the smallest step we could do to turn it into real

code? Well, that would be doing nothing. We can’t quite
do that in C++: we have to put a semicolon after each
expression to make it a statement.

We are also getting close to the other major ideal here:
to represent independent concepts independently in the
code. Notice what we have kept independent here.

• Container type: When we look at elements, we don’t
have to know which kind of container we are looking
at. There’s the notion that a container should have
a beginning and an end, and — given its notion of
begin and end — we can start at the beginning and
examine each element until we reach the end. That’s
all that’s required of a container.

• Element type: Element types are independent of the
container types. A type is not required to be part
of some class hierarchy to be used for elements in a
container. The container notion does not intrude on
the notion of an element.

• Algorithm: We separate algorithms from the con-
tainers. An algorithm need not be a member of a
(container) class.

• Comparison criteria: When we do anything inter-
esting with algorithms, we have comparison criteria,
polices, and such. Each can be independently speci-
fied.

We can vary these four things (containers, elements,
algorithms, and policies) independently. This is what al-
lows the standard library to be five or six thousand lines
of code, yet to do more than many libraries 20 times its
size.

Let me show you some code for a simple linear search
to find, in the sequence from first to last, the value val:

template<class In, class T>
// find val in sequence [first,last):
In find(In first, In last, T val)
{

while (first!=last && *first!=val)
// while we haven’t reached the end
// and haven’t found what we seek

++first; // carry on
return first;

}

This is real code: The standard library looks like this.
We’ve paramenterized find() so that we don’t need to
know which kind of iterator is used to represent the se-
quence. The type of element is another parameter.

So, we go through a loop until we have reached the end
or found what we are looking for. As long as we haven’t
reached the end and as long as we haven’t found the value

we are looking for, we make the iterator refer to the next
element and try again.

You may or may not like C or C++ syntax, but this
is colloquial. If you want to deal with this class of lan-
guages, you’d better get used to it. Familiarity is often
confused with what is natural. I don’t think I’m doing
that: this notation is not natural, but it’s familiar to a lot
of people. People can come to love it; I’m not sure they
should, but they do.

What we can do now is to take a vector of integers
and, say, apply find() to it for some value x, Did we hit
the end? If so, x wasn’t there; otherwise, we found x:

void f(vector<int>& v, int x)
{

vector<int>::iterator p
= find(v.begin(), v.end(), x);

if (p != v.end())
{ /* we found x */ }

// ...
}

Since this is a vector, the iterator is almost certainly
implemented as an ordinary pointer. So ++first simply
makes first point to the next element in the vector. It’s
a standard machine instruction that adds a constant to
a pointer. That’s simple and efficient. Looking for the
value *first means dereference a pointer. If you measure
this code, you will find that it’s optimal; you cannot write
better-performing code in C.

Now, let’s try with a list of strings. I try to find the
string s in it, using find():

void f(list<string>& lst, string s)
{

list<string>::iterator q
= find(lst.begin(), lst.end(), s);

if (q != lst.end())
{ /* we found s */ }

// ...
}

An iterator for a list is unlikely to be implemented as
a pointer to an element. It’s going to be a pointer to some
kind of link node. When we do a comparison here, it
compares two link nodes. That’s fine; that’s still a simple
and efficient pointer comparison. When I dereference —
when I want to get a value — I grab into that node to ex-
tract its value field. When I increment the list iterator to
get to the next element, I indirect through a “next field”
to the link node for the next element. Again, you can see
that this is exactly the code you would have hand writ-
ten in any language you care to use: C, assembler, C++,
whatever.

When we get out of the loop, we’ve found s or we’ve
reached the end. The find() algorithm is really basic.
However, there’s lots and lots of code like that in the C++
standard library. It’s deceptively simple, but it is fast and
it is general.

Looking for a specific value is a special case of looking
for something that meets some criteria. In my work, I
more often look for something that fulfills a predicate P.
That is, I’m not looking for a specific value such as 7, I’m
looking for a value less than a threshold, or higher than a
threshold, or something like that. So, I want to specify a
predicate, something that express my criteria:

template<class In, class Pred>
In find_if(In b, In e, Pred p)
{

while(b!=e && !p(*b))
// while we haven’t reached the end
// and haven’t found what we seek

++b; // carry on
return b;

}

We just replace the earlier “not equal to” by “not meeting
my criteria,” and all of the code works again. Of course
the find() function is just a simplification of find_if()
where P is “equals.” Here, I look in a vector of strings
v for a string "foo", using a predicate less than "foo":

void f(vector<string>& v)
{

vector<string>::iterator p
= find_if(v.begin(), v.end(),

Less_than<string>("foo"));
if (p != v.end())
{ /* found: *p < "foo" */ }

// ...
}

We go through the vector, from the beginning to the end,
looking for something that’s less than "foo". If we didn’t
reach the end, we found something that meets that criteria
and p now points to an element that did. This generates
what I would consider the obvious code.

We can use find_if() for a list of records, where we
want to check that the name field in the record is equal to
that of a record that I’m interested in. For a lot of data
processing that is exactly what you need: you check a
notion of equality which is not the equality of the value
of the record, it’s the equality of some field of the record.
Here, some notion of name-equality is used:.

void f(list<record>& lst,
const Record& my_rec)

{

list<Record>::iterator q
= find_if(lst.begin(), lst.end(),

Name_eq(my_rec));
if (q != lst.end()) {
// found: *q has same key as my_rec

}
// ...

}

FUNCTION OBJECTS

I have illustrated a general form of flexibility.
Name_eq is the archetype of a predicate: it holds a value
that you compare against. That value is stored when you
construct the Name_eq object, and operator() — the ap-
plication operator — simply does the comparison:

class Name_eq {
const string s;

public:
Name_eq(const Record& r)
: s(r.name) {}

static bool
operator() const (const Record& r)
{ return r.n == s; }

};

We use Name_eq like this:

void f(list<record>& lst,
const Record& my_rec)

{
// ...
find_if(lst.begin(), lst.end(),

Name_eq(my_rec));
// ...

}

For each element in lst, the predicate objects created
by Name_eq(my_rec) is invoked. That function object
compares the name field of the current element with the
copy of name field of my_rec that was stored away by
Name_eq(my_rec).

Here is an archetypal function object. Such an object
has a state that is established when you construct that ob-
ject and that is used (in the application operator, opera-
tor()) as you go along:

template<class S> class F {
S s; // state

public:
F(const S& ss) : s(ss)
{ /* establish initial state */ }

void operator() (const S& ss)
{ /* do something with ss to s */ }

// reveal state:
operator S() { return s; }

};

This is very general. It is more general than a function
because a function cannot be initialized to work against a
contained state: A function object, in contrast, can carry
state and you can extract the state from it. By param-
eterizing algorithms with such function objects you can
express arbitrary predicates and policies.

It’s quite common to pass a function object along, up-
dating its state by an operation on each element of a con-
tainer. The simplest example of that is to take a sum:
you initialize a sum object to zero in its constructor —
this would be the state, here a numeric value. As you go
along, you add elements of the container to that value.
When you are finished, you extract the resulting value
sum from the sum object.

Interestingly, function objects also run faster than
equivalent functions because little function objects inline
better than functions. The reason is that when you pass
a function you are passing a pointer to function and opti-
mizers are not very good at dealing with pointers. On the
other hand, if you pass a function object, you’re passing
an object rather than a pointer; when you do the operation
on the object, you have the object, you have the function,
and inlining is easy.

This is the reason that the generic general sort() in
C++ often runs several times faster than qsort() in C. I
have measured it from 2 to 7 times faster on things like
floating-point numbers and simple strings. It’s not really
magic, these generic programming techniques just fit bet-
ter with compiler technology than do C-style parameteri-
zation with pointers to functions.

DELAYED EVALUATION

You can use function objects directly. However, some-
times you’d like to use “the natural notation.” That of-
ten means using operators like +, -, and *. In particular,
we often want to express vector and matrix manipulation
using conventional notation, e.g. v=m*v2+v. In addi-
tion, we want to evaluate such experessions without us-
ing temporaries, and without having expensive function
calls compromise your run-time performance. The point
of the following example is partly to avoid temporary val-
ues and partly to show you how to get the “natural” nota-
tion without overhead.

Matrix m;

Vector v, v2, v3;
// ...
v = m * v2 + v3;

The basic implementation idea is to generate a single
function, mul_add_and_assign(v,m,v2,v3), that knows
that it’s supposed to multiply, add, and assign. If this is
on some form of CRAY you can write very beautiful code
vectorizing such compound operations, but given only
v=m*v2+v3, compilers are generally not smart enough
to vectorize without help from the programmer. To help,
we write something like this:

struct MV { // object representing
// the need to multiply

Matrix* m;
Vector* v;
MV(Matrix& mm, Vector& vv)
: m(&mm), v(&vv) {}

};

MV operator * (const Matrix& m,
const Vector& v)

{ return MV(m,v); }

MVV operator + (const MV& mv,
const Vector& v)

{ return MVV(mv.m,mv.v,v); }

v = m*v2+v3;
// v = MVV(MV(m,v2),v3);
// mul_add_and_assign(m,v2,v3,v);

We make a little function object MV that simply keeps
track that it has seen an m and a v. This represents the
notion that m wants to be multiplied by v. We have op-
erator *, given a matrix and a vector, make one of these
MV objects. MV(m,v) expresses the notion that m would
like to be multiplied by v. We do a similar thing for
operator +: if you get an MV and a vector, it creates
an MVV object that holds the matrix and the two vec-
tors. So when we execute m*v2+v3, we just construct
little objects until we have MVV(MV(m,v2),v3) — un-
ravelling the expression collecting information — and
in the end we use the collected information to generate
mul_add_and_assign(v,m,v2,v3).

The above example collects references to matrices and
vectors. I chose matrices and vectors for this example be-
cause I know that lots of people must use large vectors
and matrices. Copying a 10000x10000 matrix is expen-
sive to most people. Another example of the delayed eval-
uation technique is to collect the value, the format, and
an output stream so that when all of these things are to-
gether I can output the value with the right format onto the
stream. Again, this relies on function objects. The whole

thing is done by creating little function objects to hold
the information until you got to the final function. Inlin-
ing is very important. So is pass-by-value, because these
function objects get passed along, then the optimizer gets
them, and they just disappear.

Function objects tend to be templates. An example
here would be a matrix of doubles stored densely: Ma-
trix<double,Dense>. Most current C++ vector and ma-
trix libraries work with these techniques, so they gen-
erate fast code. This is why many of you have seen
graphs comparing the performance of Fortran and C++,
with C++ winning. If you haven’t seen such graphs, look
for links on my C++ page. That was “known” to be im-
possible, but it’s always nice to disprove a myth. These
libraries’ vector and matrix classes have little “policy ob-
jects” associated with them so a matrix is not just a matrix
of doubles, it’s also something that controls, for further
optimization, the way elements are stored and accessed.
These “policy objects” controls need only be seen by ex-
pert users who care.

CLASS HIERARCHIES

I’ve spoken about C++ at length, giving a variety of
examples, yet I haven’t shown a single class hierarchy.
According to some people’s definition of OO, this means
I haven’t yet talked about Object-Oriented Programming.
I should do so, because OOP is important and because
some of the most interesting and important uses of C++
are in application domains that use class hierarchies ef-
fectively. However, object-oriented programming is the
use of C++ that people know best — at least they think
they know best. So here I have emphasized the other pro-
gramming styles.

I think one of the keys to modern C++ is lots of lit-
tle objects, as opposed to huge hierarchies. One of the
reasons that hierarchies get large and massive is that you
throw too much into them. Little objects representing
policies, values, constraints, etc., are very useful and can
provide generality, flexibility, and efficiency. In partic-
ular, “little objects” can be used to design leaner hierar-
chies by not relying exclusively on facilities represented
within a hierarchy.

I do not want to be misunderstood: class hierarchies
and their use in object-oriented programming are impor-
tant. Lack of space, unfortunately, keeps me from de-
scribing this last piece of my talk in this transcript (but
it is in the video of my talk that you can view from the
ACAT2000 conference website).

SUMMARY

Try to think of C++ as a new language. A lot of you
have used it for a long time; you will know that there are
techniques that didn’t work a few years ago when you last
tried. A lot of these now work.

This is a good time to be adventurous because the stan-
dard is out, the compilers are starting to support the stan-
dard, not just in language features but also in terms of ef-
ficiency. On the other hand, of course, be careful! Not ev-
ery technique works for every project and for every group
of people. But this is a good time to start to see what con-
cepts you can express more directly and more efficiently
than before.

For those of you who are beginning with C++, please
remember that C++ is not just C with a few useless and
inefficient bits added; you can write cleaner, shorter, and
faster-running code in C++ than in C if you know how.
An example is sorting: the general, generic, and type-
safe sort() in the C++ standard library is not just easier
to use than the C-style qsort(), it is often several times
faster. And C++ is not just class hierarchies, there is a lot
more to it. A lot of modern C++ techniques are focussed
on templates, containers, and function objects.

Prefer the C++ standard library style to traditional C
style; it is simply easier to express ideas using vector, list,
and string, rather than with arrays, pointers, and casts. If
you are not careful, you can get overhead in both cases.
You have to understand things to write good code; you
can’t just blindly plow along in either the C++ style or the
C style and expect to produce efficient and maintainable
code.

FOR MORE INFORMATION

There’s a lot of reference material available. You can
look at my “Third Edition” book (5) — the “Special Edi-
tion” is the hardcover version — or you can get the Stan-
dard itself (2) via the web. My Special Edition was up-
dated last year from my Third Edition: I added another
100 pages, corrected many errors, and clarified numerous
issues. I’m now confident enough to offer $16 for every
new bug reported to me. I haven’t yet been ruined.

The Design and Evolution of C++ (6) is for people
who are interested in why things are the way they are.
Answers to many “why?” questions about the design of
C++ can be found there. It is the closest thing we have
for a rationale for the design of C++.

I’m the editor of Addison Wesley’s C++ In Depth se-
ries. I’ll mention two of the books here. One is Herb Sut-
ter’s book on exceptions (10), which gives a lot of exer-
cises and discussions, going into greater detail about ex-

ception handling techniques than I do in my Special Edi-
tion. Another is Andy Koenig and Barbara Moo’s book
called Accelerated C++ (3) which basically is a tutorial
on modern C++; it is probably the first such introduction.
It introduces templates four chapters before it introduces
pointers. This gives you an idea of how much the world
has changed.

There are some papers on the web. In (7), I do a micro-
analysis of some very simple C and C++ examples used
in education. The results were good enough — from a
C++ perspective — to cause a firestorm of letters to the
editor when it was published last year. I consider it non-
controversial. The code is available on my web site (9) so
you can run it yourself.

There are many useful links on my C++ page
(www.research.att.com/ bs/C++.html). In particular, the
ACCU site (1) has many useful book reports. These re-
views are done by professionals and are reasonably unbi-
ased — as opposed to most reviews that you find on the
web. Many of my favorite links can be found on my home
pages: FAQ’s, the standard itself, compilers, garbage col-
lectors, papers, book chapters, etc.

REFERENCES

1. Association of C and C++ Users. www.accu.org

2. International Standard Organization, The C++ Program-
ming Language, 1998.

3. Koenig, Andrew and Barbara Moo, Accelerated C++, Addi-
son Wesley Longman, 2000.

4. Stroustrup, Bjarne, Learning Standard C++ as a New Lan-
guage, C/C++ Users Journal. pp 43-54. May 1999.

5. Stroustrup, Bjarne, The C++ Programming Language, Spe-
cial Edition, Addison Wesley Longman, 2000.

6. Stroustrup, Bjarne, The Design and Evolution of C++, Ad-
dison Wesley Longman, 1994.

7. Stroustrup, Bjarne, Why C++ isn’t Just an Object-oriented
Programming Language, Addendum to OOPSLA’95 Pro-
ceedings. OOPS Messenger. October 1995.

8. Stroustrup, Bjarne, Wrapping C++ Member Function Calls,
The C++ Report. June 2000, Vol 12/No 6.

9. Stroustrup, Bjarne, www.research.att.com/~bs

10. Sutter, Herb. Exceptional C++, Addison Wesley Longman,
2000.

