
Stroustrup November 2020 Raw text

1

The raw text of Owen Hughes interview for TechRepublic C++ programming language: How
it became the invisible foundation for everything, and what's next November 2020.

• What was your initial motivation behind designing C++?
o I wanted to build a multi-computer system with a communication system

that could be either shared-memory or a network. My focus was on the
software. I needed
 To write low-level, close-to-hardware code, such as memory

managers, process schedulers, and device drivers.
 To separate software components so that they could be running on

separate computers communicating in well-defined ways.
o No language could do both, so I had to build something that could. “C

with Classes” (as C++ was initially called) combined C’s ability to work
close to the hardware with an efficient variant of Simula’s classes for
abstraction and code organization.

• What do you see as the biggest milestones for C++ over the course of its ~35-

year history?
o In 1979, during the first month of my work on C++ (then called “C with

Classes”), I added function prototypes and classes with constructors and
destructors.

o In the fall of 1985, the first C++ compiler (Cfront) and the first C++ book
(“The C++ Programming Language”) were released on the same day.

o In 1989, the ANSI (later ISO) standards effort started – initiated by IBM, HP,
and Sun.

o In 1994, Alex Stepanov’s framework of iterators, algorithms, and containers
(the STL) was accepted.

o In 1998, the first ISO standard was issued including templates and
exceptions. In the years following, C++98 became a solid workhorse.

o C++11 made C++ feel like a new language. The type-safe support for
concurrency was essential. C++11 supplied a dense web of mutually
supporting features such as constexpr functions for compile-time
computation, lambdas, auto for type deduction, and variadic templates. It
laid a solid foundation for future evolution.

o C++20 comes close to meeting my aims for C++ (as articulated in “The
Design and Evolution” in 1994) with modules for better code hygiene and
much faster compilation, concepts for better generic code, coroutines for

https://www.techrepublic.com/article/c-programming-language-how-it-became-the-invisible-foundation-for-everything-and-whats-next/
https://www.techrepublic.com/article/c-programming-language-how-it-became-the-invisible-foundation-for-everything-and-whats-next/

Stroustrup November 2020 Raw text

2

more flexible order of execution, and improved support for compile-time
computation.

For “details” of C++’s design and Evolution see my HOPL (ACM SIGPLA
History of Programming Languages) papers, especially the most recent one:
Thriving in a crowded and changing world: C++ 2006-2020.

• How much has the language evolved since its inception – would the original

design still be recognizable today?

o The original design is very visible today. There are simple programs from
the early years – 40 years ago – that would still run today. Stability is an
important feature for a language used for systems that has to work for
decades. In fact, many of the early ideas (e.g., as documented in “The
Design and Evolution of C++” from 1994) became available only in C++20.

o Today’s C++ is of course far more powerful and expressive than the early
C++. I knew from the start that I couldn’t build the ideal language, so I had
to aim for gradual development – evolution. In fact, I did not believe in the
idea of a perfect language – perfect for what? For whom? Evolution is
necessary to meet the challenges of a changing world and to incorporate
new ideas.

• Where do you see C++ in terms of its place in the current developer landscape?

Where are we seeing most commonly used; similarly, are there places where it’s
seeing increased/ decreased use?

o If you have a problem that requires efficient use of hardware and also to
handle significant complexity, C++ is an obvious candidate. If you don’t
have both needs either a low-level efficient language or a high-level
wasteful language will do. This was understood from day #1.

o C++’s abstraction mechanisms allow us to meet safety requirements. If
you want type- and resource-safe code, you can do that in C++ without
significant cost. The key here is to enforce modern C++ design and
programming techniques. The C++ Core Guidelines aims at that and to
offer enforcement using static analysis. The analyser shipped with
Microsoft Visual Studio offer protection against memory corruption and
resource leaks; other analysers are offering increasing numbers of

https://dl.acm.org/doi/abs/10.1145/3386320
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

Stroustrup November 2020 Raw text

3

guarantees. We need to distinguish between what can be done (according
to the ISO standard) and what makes sense (is safe and efficient).

o It is extremely hard to determine where C++ is used and for what. A first
estimate for both questions is “everywhere.” In any large system, you
typically find C++ in the lower-level and performance-critical parts. Such
parts of a system are often not seen by end-users or even by developers of
other parts of the system, so I sometimes refer to C++ as “an invisible
foundation of everything.” Counting programmers is hard and simple Web
surveys typically just measure “noise”; that is what is being talked about as
opposed to what is being used. Surveys (e.g., the JetBrains one) show a
C++ user population of at least 4.5 million with a steady growth o about
100,000 developers a year.

• How does C++ account for being such a popular programming language? What

have been the major design and use factors that have got it to where it is today?
o C++’s success was obviously a surprise. A language without rich sponsors,

serious marketing, or a development centre is not supposed to succeed on
a large scale, but C++ did so over four decades.

o I see C++’s success as a function of its original design aims (efficient use
of hardware plus powerful abstraction mechanisms) and its careful
evolution based on feedback from real-world use. If I should single out
language features, it would be
 classes with constructors and destructors
 templates (now with concepts for expressing requirements)

o It was essential that the evolutionary strategy emphasized stability and
compatibility.

• How does one lead the development of an entire programming language? What

are the challenges that go with a project so large and how does one manage
them?

o You start small, articulate fundamental principles, articulate long-term
ideals, and develop based on feedback from real-world use (sticking to the
principles and ideals).

o From the earliest days, I realized that I didn’t have (dictatorial) control of
the language, only influence. Once you have users who depend on your

https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/

Stroustrup November 2020 Raw text

4

work, you are responsible. Only through paying attention, careful thought,
and hard work can you contribute constructively.

o Over the years many people contributed to C++ (the language and the
standard library). In the beginning, it was just a few colleagues at Bell Labs,
then dozens of people in the standard committee, and now on the order
of 400 people in the standards committee (there were 252 people at the
most recent face-to-face meeting in Prague where we approved C++20)
plus a wider community that pays attention to C++’s evolution and tries to
influence it. That’s an opportunity and a huge problem. My recent HOPL
paper has a discussion of the difficulties of keeping a language coherent
given so much enthusiasm.

o The hardest part is to decide what’s important and maintain a coherency.
Once you know what you want, eventually, you find a good technical way
of doing it.

• Similarly: when designing a programming language, how do you reach a

consensus on deciding which new features to adopt and omit?
o Through lots of hard work and discussion. This takes time and patience.
o You must try to add only what really helps people and then only a few

such things because if we accepted every feature that would help
someone, the language would sink under its own weight. We can’t accept
even all good features.

o I remind people of the Vasa, the beautiful 17th century Swedish battleship
that sank in Stockholm harbour on its maiden voyage. At the insistence of
the King (highest management!) and against the better judgement of the
technical people, it had been piled high with beautiful statues and great
guns. Top heavy, it was overturned by a gust of wind. I repeatedly talked
and wrote about the about the Vasa as a caution to people enthusiastically
wanting to improve C++ by adding features: Remember the Vasa! So far,
C++ hasn’t tumbled over.

• C++ is considered a somewhat more challenging programming language for
newcomers to get to grips with. Do you think this is a fair assumption? What
features have been added in recent years to make it more accessible?

o C++ is indeed complex and it takes effort to learn to use it well.
Unfortunately, people don’t just want simplicity, they what something

https://dl.acm.org/doi/pdf/10.1145/3386320
https://dl.acm.org/doi/pdf/10.1145/3386320
https://www.stroustrup.com/P0977-remember-the-vasa.pdf

Stroustrup November 2020 Raw text

5

impossible: a simpler language, with more features, and no breakage of
their existing code.

o My approach to that “trilemma” is to
 add features to make simple things simple to do (e.g., though

generalization or direct support for common cases)
 maintain compatibility/stability
 articulate rules for using modern C++ well and ways of enforcing

those rules.
o For example, a range-for loop, e.g.,

 for (auto& x : vec) x=0;
o is simpler and gives less opportunities for errors than a traditional C-style

loop, e.g.,
 for (int i=0; i<vec.size(); ++i) vec[i]=0;

o Another favourite example is to avoid verbosity and leaks by using local
objects rather than direct use of new:
 void poor(int i) { X* p = new X(i); … delete p; }
 void better(int i) { X x(i) … }

o If you really need a pointer, you can use a smart pointer:
 void if_needed(int i) { auto p = make_shared<X>(i); … }

o We really don’t need to write verbose, error-prone, old-style C++ any
more.

• How much direct involvement do you have in the development of C++ today?

o I’m involved in quite a few things:
 I’m part of the direction group, discussing and presenting

recommendations about the future of C++: Direction for ISO C++.
 I follow the evolution group and take part in discussions about new

language features (such as unified function calls, operator dot,
contracts, exceptions, static reflection, and functional-style pattern
matching) and to a lesser extent other groups such as library and
education.

 I follow administrative activities, but try to do as little as possible
there; I am not a great administrator.

o Naturally, many things are different this year with meetings cancelled
and/or moved to the Web because of the virus. I find that difficult and it is
slowing up much-needed work.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2000r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0131r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4477.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1711r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1947r0.pdf

Stroustrup November 2020 Raw text

6

o I do my bit to explain C++ to the world at large through my books,
articles, videos, and interviews. Before the virus, I also travelled a lot to
learn and teach.

• What is the nature of your current role at Morgan Stanley, and how do you juggle

that with your position as Honorary Doctor at Universidad Carlos III de Madrid?

o At Morgan Stanley, I’m a Technical Fellow. There, I mostly deal with
distributed systems, programming techniques, and teaching. My work with
the ISO C++ standard and on the C++ Core Guidelines are considered
part of my job there.

o My Carlos III doctorate is honorary, so there are no formal obligations,
though if it wasn’t for the virus, I would have visited them this year to give
a talk and meet with people, just as I did last year. Every year, I give
software design course using C++ at Columbia University in New York
City.

• Your students have reserved you a Twitter page – what’s the story there? Have

you used it yet, or do they manage your social media activity?

o I lurk. I see what’s going on and only very occasionally respond. I try to
limit my activities to my papers, talks, and interviews. I dislike the rapid-fire
exchanges on social media and prefer the more thoughtful and considered
forms of communication.

o I don’t currently have graduate students and I don’t have my
communication managed or filtered by anyone. Of course, I often try out
ideas with friends and colleagues before making them more widely
available. I appreciate it when someone takes an action to protect me as a
student did when he grabbed @stroustrup for me before I knew about
twitter.

• We see programming as being a very sought-after skill in the current climate in
particular – how do you see the role of software engineers evolving in the next
few years as more companies go digital, as well as with the rise of low-code/ no-
code solutions?

o There are many kinds of programming. Some are relatively simple and can
be done by essentially everyone. Other kinds are highly specialized and

https://twitter.com/stroustrup?lang=en

Stroustrup November 2020 Raw text

7

require skilled experts and experienced engineers. Most are in-between
these extremes. I fear that the various kinds of tasks and level of expertise
are often confused. There really is a vast difference between setting up a
simple web site and building the infrastructure for a service on which lives
or livelihoods critically depends. I am primarily interested in the latter: how
it is done, what tools are used, and how the experts are educated.

o I think what we will see is that “digital” will become an immensely varied
field with an extremely broad range of tasks and skills. It is not simply a
linear progression from the simple to the complex. Especially at the expert
level, there are degrees of specialization that requires many years of
experience at the expert levels.

• The issue of developer burnout is a big topic right now. What do you see as

being the main challenges for the developers of today, and what can IT
managers/ CIOs do to support them better?

o Actually, I suffer from a bit of burnout myself. For my work, I depend
critically on talking with people to learn about their problems and hear
how my ideas might help them. In this time of the pandemic, I am
deprived of much-needed feedback. “Virtual” talks and interviews are not
the same, and the dynamic of Zoom meetings are inferior to real face-to-
face meetings when it comes to discussing design and ideas. To make
matters worse, every organization tries to keep active and relevant by
adding meetings. Some do it to survive.

o What can managers and executives do to help? Hard to say in general, but
in many cases doing less would help. Know “your people” and interact with
them in ways that suit and help individuals – don’t generalize and
formalize. Keep an eye out to ensure that no one is left isolated unless
they really want to be left alone. Encourage work that can be done in
isolation and by small groups. Leave meetings and “virtual events” to
informal initiatives. After all, it is the informal contacts and interactions
that most people feel lacking. Support and encourage such informal
activities, but don’t add to the burden of many meetings.

o In the software industry we are lucky to be able to work remotely, rather
than taking the risks of daily constant interactions with potentially infected
people. We should not complain too much.

Stroustrup November 2020 Raw text

8

• What are the main features we can we expect in C++20 and C++23, and where
do you hope to see C++ going beyond this?

o We (the ISO standards committee) have a plan:

”for C++23, let's work towards having the following things in that standard:
Library support for coroutines
Executors
Networking
A modular standard library

Without a particular ship vehicle yet, we should also make progress on
Reflection
Pattern matching
Contracts”

Given the upsets and obstacles caused by the pandemic, it is unlikely we
will get more than one or two of those features as early as 2023, but we try
our best. Beyond that, there is work on Unicode, numerics, game
development and low latency, tooling, AI, and much more.

o We ship a feature (language and library) when it is ready and we issue a
revised standard every 3 years. C++14, C++17, and C++20 shipped on
time. It is worth noting that the standards effort and the major
implementors are very much in sync: almost all of C++20 is shipping in
2020.

o It is crucial that C++ remains coherent and is a stable platform for
development.

o I recommend my recent HOPL paper as a far more detailed discussion of C++’s
design, evolution, and use. It also has a host of code examples to illustrate
design decisions and specific language features.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0592r3.html
https://dl.acm.org/doi/pdf/10.1145/3386320

