
Bjarne Stroustrup is the designer and original implementer of C++ and the author of "The C++
Programming Language" and “The Design and Evolution of C++”. His research interests include
distributed systems, design, programming techniques, software development tools, and
programming languages. He is actively involved in the ANSI/ISO standardization of C++.
Dr. Stroustrup is the College of Engineering Chair Professor in Computer Science at Texas A&M
University. He retains a link with AT&T Labs – Research as an AT&T Fellow. Member of the
National Academy of Engineering. ACM fellow. IEEE Fellow. Bjarne Personal Page

Part1: On learning and using of C++
1. Why do you go to TAMU to teach programming? What’s your favorite thing about
the university? – xingranliuyun

 It was time for a change and I felt I had something to teach. I had friends at
TAMU and it was one of the few universities that seemed serious about growing
and improving. Some of the most enjoyable work has been designing and giving a
first programming course to 1st year students.

2. Undeniably, the biggest problem of C++ is learning. Language-lawyer is a
phenomenon that appears almost solely in C++. Many C++ programmers wasted so
much time fighting against the language details, of which some are essential and some
are unnecessary. C++ has many traps which we have to bear in mind before we can
safely use it; C++ has so many pitfalls which leads to a tremendous amount of
language tricks (some might call them “idioms” or “techniques”); they, together, lead
to a very steep learning curve. Confronted with so many complexities, how can one
learn and use C++ effectively from a practitioner’s perspective? -- pongba&liujiang

 You may be accurate about the complexities of using C++, but then you may
also be underestimating the trickery involved in learning and using other
languages. Some problems only surface when the user population gets large and
diverse. Also, C++ is used in a huge range of application areas and often the
alternative to C++ is to learn several languages. Obviously, a professional should
know several languages, but this should be taken into account when estimating
difficulty/complexity. Also, if the complexity isn’t in the language, it tends to be
elsewhere, such as in the application code.

3. Of all the complexities in C++, some are essential, some are unnecessary (technical
embarrassments, like you said). What’re those, exactly? What’s the right attitude
towards them when learning or using the language? – pongba

 This is too big a question for a short answer, but I’m convinced that it would be
possible to design a C++like language of maybe a tenth of the size of C++. The
exercise would be non-trivial, though.

Examples: both the syntax and the type rules are too irregular. There could be a

http://www.research.att.com/%7Ebs

much simpler syntax and a far simpler and more regular type system, but C
compatibility and C++98 compatibility would have to go out the window. Also,
most of the default are the wrong way around or awkward: for example,
constructors should be explicit by default, floating-point numbers should not be
implicitly convertible to integers, and names should not by default be accessible
from different translation units.

Attitude: Don’t get stuck on details. Focus on becoming a professional (not a
language laywer). Don’t be too much in a hurry.

4. What’s the first principle of learning C++? – pongba

 The way to master C++ is to focus on the fundamental concepts and techniques,
rather than the language features – and in particular, not the minute details of
language features.

5. What’s the first principle of using C++? – pongba

 map ideas (concepts) directly into classes and templates

6. C++ is really hard to learn; normally one will have to read no less than 10 books to
be adequately good at C++ programming. I really hope your new book is going to
change the situation. – stevenmou

 So do I, and the feedback from people who have read drafts is encouraging. I
think that one or two (well chosen) books will suffice for becoming a good C++
programmer. I have known people who did that. Don’t think that knowing the
most rules and buzzwords makes you the best programmer. A language is simply
there for you to use to express ideas. Most of being a good programmer is clear
thinking and application domain knowledge.

7. Nowadays, few systems are built with a single language. We tend to combine the
power of different languages. In this case, C++ is often used to build parts of a system.
How can we identify whether C++ is suitable for a specific module? Are there any
fingerprints that could help us make decision on whether or not to use C++? -- Mike
Meng

 C++’s main strengths are in flexibility and performance. If you need neither,
use something else. One way of looking at a problem is to see if a set of classes – a
small library – would help make the code cleaner, easier to get correct, and easier
to maintain. If so, C++ may be the best choice for the design, implementation, and
use of that little library.

8. I read your talk with Bill Venners in which you complained about the pervasive of

Object Oriented Programming. Does that mean that you decide not to support this
specific style of programming? Generally, what kind of style in your opinion can be
labeled as “good”? -- Mike Meng

 It’s hard to be specific. Most of my code is a combination of object-oriented,
generic, and small free-standing classes. “Good” is a function of the quality of the
match between ideas and code. Trying to define “good” in terms of language
features or programming style fashions is a mistake.

Part2: On future of C++
1. What do you think of the prevalence of the “easy-learning” languages, do you think
their population indicates the future trend? – kamala

 Maybe. The question is how many programmers there will be, what is
considered programming, and what kind of professional background is considered
reasonable for systems builders. I note that there may be more C++ programmers
today than there has ever been (if not, it’s close). However, many tend to build
infrastructure and is rarely heard from or noticed.

2. What’s the future direction of Generic Programming in C++ (especially after
C++09)? Are there any new exciting things (besides those already in C++09) on the
horizon? – longshanksmo

 I don’t know. Features such as concepts, auto, initializer lists, variadic
templates, and rvalue references will revolutionize the way we express generic
code. We will learn from that. I think that we’ll find that the integration of those
features will be imperfect and lead to improvements.

3. C++, as a general-purpose programming language, is having its field squeezed by
the more modern languages, where would C++ be in the foreseeable future,
particularly in the concurrency age; would what used to be the unique advantage of
C++ still be the unique advantage? – stlf

 C++ never had a unique advantage. It had strengths and weaknesses, as it has
today and as all languages have. C++’s strengths include flexibility, performance,
and co-existence with other languages (notably, C, Fortran, and assembler). If
C++’s field really is being squeezed (and how would we know?) the reason will
either be “marketing” against which the C++ community have few direct defenses
or “because we have discovered to express our designs in frameworks that do not
require flexibility and are efficient enough”. The latter is objectively a good thing.
C++ is primarily a systems programming language and when an application area
has matured to the point where “one standard way” will do, the systems
programming language will be deployed elsewhere. I note a significant increase in
the use of C++ in embedded systems programming.

4. C++ was and still is designed to be efficient; in order to achieve that, there’re some
non-trivial design trade-offs made to keep the abstraction penalty as low as possible
(e.g. templates). However, they’re not trade-offs without costs. For example, the static
nature of templates makes it inflexible when it comes to runtime needs. In that case,
Ruby’s duck-typing seems to be a more natural implementation of
generic-programming, although much less efficient. However, concurrent
programming will definitely bring us a much heavier optimization means, in which
case, would the compromise made in the design of C++ to keep the abstraction low
still make sense, when people can resort to concurrency to gain efficiency? – pongba

 Ruby is often 50 times slower than C++. I don’t think they are comparable
languages. If you need performance in a scripting language, you implement your
primitives in something like C++. If you need to do ad hoc programming at an
application level where performance doesn’t matter, you use a scripting language.
It is a mistake to look for “the one true programming language.”

Also, I really appreciate strong static typing and design based on that for
correctness. There is far too much talk about performance and far too little about
correctness and structure.

Besides, the individual processors are not getting any faster - in fact they are
getting slower, being optimized for chip space and power consumption - so that
low abstraction penalty could become more important for tasks that are not easily
parallelized (and that is a lot of tasks).

Remember: It costs thousands of instructions to start up a task on a processor and
to get the result back, so there is a huge win in being able to execute in less
instructions so that no spawning is needed. It's just like inlining vs. function call
(the function call pre-and postamble costs). Also, more and more, we are going to
measure speed in memory accesses rather than instructions - instructions are
getting really cheap. Currently every multiprocessor/multicore is memory
bandwidth limited - and also most single processors.

5. Are there any differences between the design principles of C++09 and that of C++98
(the ones in D&E)? Is there going to be a change in the design principles of C++1x? –
liang

 Not really, at least from my perspective. My HOPL3 paper “Evolving a
language in and for the real world: C++ 1991-2006.” explains the principles and
the evolution of C++ over the last 15 years. That’s the place to look for a more
detailed answer. It’s available from my home pages.

6. You once said that there’s a smaller, better language inside C++ dying to get out,

what’s that language like, specifically? Is D it? – liang

 No. Nor is it Java or C#.

7. Money has always been C++ committee’s biggest problem, how would the
committee operate in the coming 10 years? – liang

 I don’t know. Inertia will be a major problem. I fear it’ll operate in just the
same manner, and that wouldn’t be good. However, I have reason to believe that it
will move to a shorter release cycle (maybe 3 years). I don’t see the money
problems getting solved. People with money tend to prefer to spend them on
proprietary solutions that they imagine will give them a competitive advantage –
even if a joint effort would help everybody much more.

8. What responsibilities will you take in the future development of C++? -- liang

 Let’s get C++0x finished before I think too hard about that.

9. What do you think of the place C++ is currently at in the Visual Studio language
family? They have C# as the main static language, VB10&IronPython as dynamic
languages, whereas C++ is the only choice when it comes to native code; Do you think
that indicates C++’s place in the real-world development? Like Visual C++ Team said
themselves: “We haven’t forgotten C++”; does this represent the attitude to C++ in the
industry? – liang

 C# is not a static language. It relies on the huge .Net framework. The amount of
“native code” (read: C++) even within Microsoft is increasing and many of
Microsoft’s competitors (in a variety of business fields) do not want to depend
completely on Microsoft, so they minimize their exposure to .Net. C++ is a far
more portable language than anything you’ll find in the .Net family (even
C++/CLI). I think that the ones that do not will see business problems in the future
as they become incapable of innovating in any way that doesn’t fit .Net and is also
done (in roughly the same way) by their competitors. To succeed in the long run,
you need flexibility at many levels of your tool chain.

10. C++ is a language “designed by committee”; in which way does the nature of the
C++ standard committee affect the evolution of C++, for good and for bad. – abware

 To the extent that C++ is designed by committee, it is bad and there are parts of
the language that doesn’t blend as well with other parts of the language as they
should for that reason. What the committee seems good at is finding problems and
limitation with individual features, but then improvements of individual features
are not often as elegant as improvements to the interaction among features. This is
definitely also true for interactions between library components and between

library components and language features. Again, read the HOPL3 paper.

11. How do you choose between adding new features to an existing language and
inventing a new language? Sometimes, new features added to an existing language
may look unnatural or difficult to use, but those features may be made more elegant if
using a different syntax. -- WalterWalk

 You look at the problem. A successful language is successful because it
addresses some problem better than the alternatives. Most new languages fail. I
strongly prefer to start by building libraries.

12. What should be done in next generation of programming language from a
researcher's view? – bipengace

 I don’t know. I have never been a language researcher. Language research is
almost always sterile. What works is using language-based tools to address
interesting problems; sometimes the result is a new language or a new language
feature. It is hard to know exactly how many languages are invented and die every
year (for starters, how do you define “new language”), but a good estimate is about
2000 of each every decade – the survivors can be counted on a few hands. Have a
look at my paper “A rationale for semantically enhanced library languages.”

13. Is there any chance that, by proper “tailoring” (i.e. cutting out the obscure or
normally uselessly complex features), we can provide a “smaller” C++, which is a
subset of C++ and whose code can be compiled by any standard C++ compiler, and
standardize this one, providing consistent ABIs and standard libraries. – cloudwu

 How do you decide what is “obscure and useless”? If you do it well, you can
express it as a coding standard and enforce that. Unfortunately, my experience is
that most coding standards are written by people who are inexperienced and
fearful and do more harm than good by enforcing their fears. I think that the result
of such “tailoring” should be (and if done well almost inevitably will be) domain
specific. As an example see the JSF++ coding standard for safety critical
embedded applications (i.e. airplane control). Link on my C++ page.

