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Abstract 1 Future space missions such as the Mars Science Laboratory demand the
engineering of some of the most complex man-rated autonomous software systems.
According to some recent estimates, the certification cost for mission-critical soft-
ware exceeds its development cost. The current process-oriented methodologies do
not reach the level of detail of providing guidelines for the development and valida-
tion of concurrent software. Time and concurrency are the most critical notions in an
autonomous space system. In this work we present the design and implementation
of a first concurrency and time centered framework for verification and semantic
parallelization of real-time C++ within the JPL Mission Data System Framework
(MDS). The end goal of the industrial project that motivated our work is to provide
certification artifacts and accelerated testing of the complex software interactions
in autonomous flight systems. As a case study we demonstrate the verification and
semantic parallelization of the MDS Goal Networks.
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1 Introduction

In this work we describe the design, implementation, and application of a first con-
currency and time centered framework for verification and semantic parallelization
of real-time C++ within the JPL Mission Data System Framework (MDS). MDS
provides an experimental goal- and state- based platform for testing and develop-
ment of autonomous real-time flight applications[22]. The end goal of the industrial
project that motivated our work is to provide certification artifacts and accelerated
testing of the complex software interactions in autonomous flight systems. The pro-
cess of software certification establishes the level of confidence in a software system
in the context of its functional and safety requirements. A software certificate con-
tains the evidence required for the system’s independent assessment by an authority
having minimal knowledge and trust in the technology and tools employed[6]. Pro-
viding such certification evidence may require the application of a number of soft-
ware development, analysis, verification, and validation techniques[20]. The dom-
inant paradigms for software development, assurance, and management at NASA
rely on the principle ”test-what-you-fly and fly-what-you-test”. This methodology
had been applied in a large number of robotic space missions at the Jet Propul-
sion Laboratory. For such missions, it has proven suitable in achieving adherence
to some of the most stringent standards of man-rated certification such as the DO-
178B[25], the Federal Aviation Administration (FAA) software standard. Its Level
A certification requirements demand 100% coverage of all high and low level as-
surance policies. Some future space exploration projects such as the Mars Science
Laboratory (MSL), Project Constellation, and the development of the Crew Launch
Vehicle (CLV) and the Crew Exploration Vehicle (CEV) suggest the engineering of
some of the most complex man-rated software systems. As stated in the Columbia
Accident Investigation Board Report[3], the inability to thoroughly apply the re-
quired certification protocols had been determined to be a contributing factor to the
loss of STS-107, Space Shuttle Columbia.
Schumann and Visser’s discussion in [26] suggests that the current certification
methodologies are prohibitively expensive for systems of such complexity. A de-
tailed analysis by Lowry[20] indicates that at the present moment the certification
cost of mission-critical space software exceeds its development cost. The challenges
of certifying and re-certifying avionics software has led NASA to initiate a number
of advanced experimental software development and testing platforms, such as the
Mission Data System (MDS)[22], as well as a number of program synthesis, model-
ing, analysis, and verification techniques and tools, such as The JavaPathFinder[2],
the CLARAty project[29], Project Golden Gate[10], The New Millenium Architec-
ture Prototype (NewMAAP)[9]. The high cost and demands of man-rated certifi-
cation have motivated the experimental development of several accelerated testing
platforms[1]. A great number of the experimental faster-than-real-time flight soft-
ware simulators require the parallelization of previously sequential real-time algo-
rithms. In this work we present the design and implementation of a first concurrency
and time centered framework for verification and semantic parallelization of real-
time C++ within the JPL Mission Data System Framework. Our notion of semantic
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parallelization implies the thread-safe concurrent execution of system algorithms
that utilize shared data, based on the application’s semantics and invariants. As a
practical industrial-scale application, we demonstrate the parallelization and verifi-
cation of the MDS’ Goal Networks, a critical component of the JPL’s Mission Data
System.

2 Challenges for Mission Critical Autonomous Software

In [21] Perrow studies the risk factors in the modern high technology systems. His
work identifies two significant sources of complexity in modern systems: interac-
tions and coupling. The systems most prone to accidents are those with complex
interactions and tight coupling. With the increase of the size of a system, the num-
ber of functions it has to serve, as well as its interdependence with other systems,
its interactions become more incomprehensible to human and machine analysis and
this can cause unexpected and anomalous behavior. Tight coupling is defined by
the presence of time-dependent processes, strict resource constraints, and little or
no possible variance in the execution sequence. Perrow classifies space missions
in the riskiest category since both hazard factors are present. In this work, we ar-
gue that the notions of concurrency and time are the most critical elements in the
design and implementation of an embedded autonomous space system. According
to a study on concurrent models of computation for embedded software by Lee
and Neuendorffer[18], the major contributing factors to the development and de-
sign complexity of such systems are the underlying sequential memory models and
the lack of first class representation of the notions of time and concurrency in the
applied programming languages.

2.1 Parallelism and Complexity

The most commonly applied technique for controlling the interactions of concurrent
processes is the use of mutual exclusion locks. A mutual exclusion lock guaran-
tees thread-safety of a concurrent object by blocking all contending threads trying
to access it except the one holding the lock. In scenarios of high contention on
the shared data, such an approach can seriously affect the performance of the sys-
tem and significantly diminish its parallelism. For the majority of applications, the
problem with locks is one of difficulty of providing correctness more than one of
performance. The application of mutually exclusive locks poses significant safety
hazards and incurs high complexity in the testing and validation of mission-critical
software. Mutual exclusion locks can be optimized in some scenarios by utiliz-
ing fine-grained locks[15] or context-switching. Often due to the resource limita-
tions of flight-qualified hardware, optimized lock mechanisms are not a desirable
alternative[20]. Even for efficient locks, the interdependence of processes implied
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by the use of locks, introduces the dangers of deadlock, livelock, and priority in-
version. The incorrect application of locks is hard to determine with the traditional
testing procedures and a program can be deployed and used for a long period of time
before the flaws can become evident and eventually cause anomalous behavior.

2.1.1 Parallel Programming without Locks

To achieve higher safety and enhance the performance of our implementation, we
consider the application of lock-free synchronization. As defined by Herlihy[14], a
concurrent object is non-blocking (lock-free) if it guarantees that some process in the
system will make progress in a finite amount of steps. Non-blocking algorithms do
not apply mutually exclusive locks and instead rely on a set of atomic primitives sup-
ported by the hardware architecture. The most ubiquitous and versatile data structure
in the ISO C++ Standard Template Library [27] is vector, offering a combination of
dynamic memory management and constant-time random access. In our framework
for verification and semantic parallelization of real-time C++ we utilize the design
of the first lock-free design and implementation of a dynamically-resizable array in
ISO C++ (Section 5). It provides linearizable operations, disjoin-access parallelism
for random access reads and writes, lock-free memory allocation and management,
and fast execution.

2.2 Motivation and Contributions

As discussed by Lowry[20], in July 1997 The Mars Pathfinder mission experienced
a number of anomalous system resets that caused an operational delay and loss
of scientific data. The follow-up study identified the presence of a priority inver-
sion problem caused by the low-priority meteorological process blocking the high-
priority bus management process. It has been determined that it would have been
impossible to detect the problem with the black box testing applied at the time
to derive the certification artifacts. A more appropriate priority inversion inheri-
tance algorithm had been ignored due to its frequency of execution, the real-time
requirements imposed, and its high cost incurred on the slower flight-qualified com-
puter hardware. The subtle interactions in the concurrent applications of the modern
aerospace autonomous software are of critical importance to the system’s safety and
operation. Despite the challenges in debugging and verification of the system’s con-
current components, the existing certification process[25] does not provide guide-
lines at the level of detail reaching the development, application, and testing of con-
current programs. This is largely due to the process-oriented nature of the current
certification protocols and the complexity and high level of specialization of the
aerospace autonomous embedded applications. In the near future, NASA plans to
deploy a number of diverse vehicles, habitats, and supporting facilities for its immi-
nent missions to the Moon, Mars and beyond. The large array of complex tasks that
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these systems would have to perform implies their high level of autonomy. In [22]
Rasmussen et al. suggest that the challenges for these systems’ control is one of the
most demanding tasks facing NASA’s Exploration Systems Mission Directorate.
Some of the most significant challenges that the authors identify are managing a
large number of tightly-coupled components, performing operations in uncertain
remote environments, enabling the agents to respond and recover from anomalies,
guaranteeing the system’s correctness and reliability, and ensuring effective com-
munication across the system’s components. In the rest of the paper we describe
the definition, design, and implementation of a first concurrency and time centered
framework for verification and semantic parallelization of autonomous flight soft-
ware within the JPL’s MDS Framework. We integrate a nonblocking vector in our
parallel implementation of the Mission Data System’s Temporal Constraint Network
Library (TCN) in order to achieve higher thread safety and boost the performance
of the MDS Goal Networks component. We demonstrate how to specify, model,
and formally verify the TCN algorithms and their semantic invariants. Based on our
formal models and the application’s semantics, we derive a technique for automatic
and semantic parallelization of the TCN library’s constraint propagation algorithm.

3 Temporal Constraint Networks

A Temporal Constraint Network (TCN) defines the goal-oriented operation of a
control system in the context of a system under control. The Temporal Constraint
Networks (TCN) application is at the core of the Jet Propulsion Laboratory’s Mis-
sion Data System (MDS)[22] state-based and goal-oriented unified architecture for
testing and development of mission software. The framework’s state- and model-
based methodology and its associated systems engineering processes and develop-
ment tools have been successfully applied on a number of test applications including
the physical rovers Rocky 7 and Rocky 8 and a simulated Entry, Descent, and Land-
ing (EDL) component for the Mars Science Laboratory mission. A TCN consists of
a set of temporal constraints (TCs) and a set of time points (TPs). In this model of
goal-driven operation, a time point is defined as an interval of time when the con-
figuration of the system is expected to satisfy a property predicate. The width of the
interval corresponds to the temporal uncertainty inherent in the satisfaction of the
predicate. Similarly, temporal constraints have an associated interval of time corre-
sponding to the acceptable bounds on the interactions between the control system
and the system under control during the performance of a specific activity. A TCN
graph topology represents a snapshot at a given time of the known set of activities
the control system has performed so far, is currently engaged in, and will be per-
forming in the near future up to the horizon of the elaborated plan initially created
as a solution for a set of goals. The topology of a temporal constraint network must
satisfy a number of invariants.

(a) A TCN is a directed acyclic graph where the edges represent the set of all time
points (St ps) and the vertices the set of all temporal constraints (Stcs)
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(b) For each time point T Pi ∈ St ps, there is a set of temporal constraints that are
immediate successors (Ssucci ) of T Pi and a set, Spredi , consisting of all of T Pi’s
immediate predecessors

(c) Each temporal constraint TC j ∈ Stcs has exactly one successor T Psucc j and one
predecessor T Ppred j

(d) For each pair {T Pi,TC j}, where T Pi ≡ TCsucc j , TC j ∈ Spredi must hold. The
reciprocal invariant must also be valid, namely for each pair of {T Pi,TC j} such
that T Pi ≡ TCpred j , TC j ∈ Ssucci

(e) The firing window of a time point T Pi ∈ St ps is represented by the pair of time
instances {T Pmini ,T Pmaxi}. Assuming that the current moment of time is repre-
sented by Tnow, then T Pmini ≤ Tnow ≤ T Pmaxi , for every T Pi ∈ St ps.

General-purpose programming languages lack the capabilities to formally specify
and check domain-specific design constraints. Direct representation and verification
of the TCN invariants in the implementation source code would result in a slow
and cumbersome solution. However, any implementation (in C++, Java or another
programming language) must operate under the assumptions that the basic TCN
invariants are satisfied. Thus, prior to implementing a solution to the TCN constraint
propagation problem, it is necessary to guarantee the correctness and consistency of
the topology of the goal network.

4 Verification and Automatic Parallelization Framework

In this section we describe the design, implementation, and practical application of
our framework for verification and semantic parallelization of real-time C++ within
JPL’s MDS Framework (Figure 1). The input to the framework is the MDS mission
planning and execution module that is based on the definition of temporal constraint
networks. At the core of the most recent implementations at JPL of this critical
module is an optimized iterative algorithm for the real-time propagation of temporal
constraints, developed and described by Lou in [19]. Constraint propagation poses
performance challenges and speed bottlenecks due to the algorithm’s frequent exe-
cution and the necessary real-time update of the goal network’s topology. The end
goal of our work is, given the implementation of the optimized iterative propagation
scheme and the topology of a particular goal network, to establish the correctness
of the core TCN semantic invariants (see Section 3) and automatically derive an
implementation that can be executed concurrently on one of the JPL’s experimental
testbeds for accelerated testing[1]. Our approach for achieving concurrent execution
is based on the idea of identifying Time Phases within a goal network, which allow
the semantic parallelization of the constraint propagation algorithm. In this work, we
define semantic parallelization as the thread-safe concurrent execution of an algo-
rithm (whose operation is dependent on shared data), derived from the application’s
semantics and invariants. In the following sections we describe how we reach our
goal of verification and semantic parallelization of the mission planning and control
module by constructing and executing a formal verification model in Alloy[16] that
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represents the implementation’s core semantics and functionality. We refine a for-
mal modeling and analysis methodology, initially suggested by Rouquette[24], that
helps us analyze the logical properties of the goal network model and automatically
derive a meta-model for our parallel solution.

C++ TCN 
Implementation

Parallel C++ TCN 
Implementation

Alloy Model

XSD

XML

automatic

manual

Contains a particular 
Topology and the notion

 of Time phases

Used for :
1.Check graph invariants

2. Compute the time phases

Express the notions
Of TP, TC, TPH,

And model invariants

Topology with 
Time phases

EMF

EMF

XSD to C++

XSD to C++

Lock-Free 
Synchronization

Fig. 1 A Framework for Verification and Semantic Parallelization

4.1 The Problem of TCN Constraint Propagation

A classic solution to the problem of constraint propagation in TCN is the direct ap-
plication of Floyd-Warshall’s all-pairs-shortest-path algorithm[4], offering a com-
plexity of O(N3), where N is the number of time points in the TCN topology. Since,
by definition, the goal of the TCN propagation algorithm is to compute the real-time
values of the network’s temporal constraints, the algorithm is frequently executed
and, given the massive scale of a real world goal network, can cause significant bot-
tleneck for the overall system’s performance. In [19], Lou describes an innovative
and effective TCN propagation scheme with a complexity close to linear. Lou’s TCN
propagation is based on the concept of alternating forward and backward propaga-
tion passes. A forward pass updates the time interval at each time point by consid-
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ering only its incoming temporal constraints (Algorithm 1). Similarly, a backward
pass recomputes the time windows at each time point by considering only its out-
going temporal constraints (Algorithm 2). The scheme utilizes a shared container,
named a propagation queue, to keep track of all time points whose successor time
points’ windows are about to be updated next (during a forward pass) and all time
points whose predecessor time points’ windows are about to be updated next (dur-
ing a backward pass). A forward pass begins by selecting all time points with no
predecessors and inserts them into the propagation queue. A backward pass begins
by selecting all time points with no successors and inserts them into the propagation
queue. Each iteration is carried out until:

(a) An iteration completes without updating any temporal constraints (thus indicat-
ing that there are no more updates to be performed during the pass). In this case,
the TCN topology is considered to be temporally consistent.

(b) The iteration has stumbled upon a time window of negative value and the algo-
rithm terminates with the outcome of having a temporally inconsistent network.

As stated by Lou [19], prior to the execution of the optimized propagation scheme,
it is critical to guarantee the validity of the core TCN invariants for the topology of
the particular goal network. For example, the propagation scheme operates under
the assumption that the goal network graph is cycle free. Should there be cycles, the
propagation would enter into an endless loop.

mintmp← t p.min;
maxtmp← t p.max;
for j = 0 to t p.preds size do

mintmp← std::max(mintmp, t p.preds[ j].pred.min+ t p.preds[ j].min);
maxtmp← std::min(maxtmp, t p.preds[ j].pred.max+ t p.preds[ j].max);

end
if t p.min! = mintmp then

ASSERT( t p.min < mintmp );
t p.min← mintmp;
vstate.aIncr(vstate.count);
/* atomically increment the state vector’s

counter */
end
if t p.max! = maxtmp then

ASSERT( t p.max > maxtmp );
t p.max← maxtmp;
vstate.aIncr(vstate.count);
/* atomically increment the state vector’s

counter */
end
return !(mintmp > maxtmp);

Algorithm 1: Forward Pass. Arguments: a reference to the time point about to be
updated (tp) and a reference to the global data structure recording the state updates
(vstate)
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mintmp← t p.min;
maxtmp← t p.max;
for j = 0 to t p.succs size do

mintmp← std::max(mintmp, t p.succs[ j].succ.min− t p.succs[ j].max);
maxtmp← std::min(maxtmp, t p.succs[ j].succ.max− t p.succs[ j].min);

end
if t p.min! = mintmp then

ASSERT( t p.min < mintmp );
t p.min← mintmp;
vstate.aIncr(vstate.count);
/* atomically increment the state vector’s

counter */
end
if t p.max! = maxtmp then

ASSERT( t p.max > maxtmp );
t p.max← maxtmp;
vstate.aIncr(vstate.count);
/* atomically increment the state vector’s

counter */
end
return !(mintmp > maxtmp);

Algorithm 2: Backward Pass. Arguments: a reference to the time point about to be
updated (tp) and a reference to the global data structure recording the state updates
(vstate)

4.2 Modeling, Formal Verification, and Automatic Parallelization

Alloy[16] is a lightweight formal specification and verification tool for the auto-
mated analysis of user-specified invariants on complete or partial models. The Al-
loy Analyzer is implemented as a front-end, performing the role of a model-finder,
to a boolean SAT-solver. Formal verification and modeling of JPL’s flight software
has been previously demonstrated to be effective and successful by Holzmann[12].
We use the Alloy specification language[16] to formally represent and check the
semantics of the temporal constraint networks library (Algorithm 3) and its main
invariants (Algorithm 4). In our C++ goal networks implementation we have ap-
plied generic programming techniques and concepts[23], so that we can maintain a
higher level of expressiveness. As a result we have achieved a significant similarity
in the way the main TCN notions and invariants are expressed in our actual imple-
mentation and the Alloy verification models. In the future, we intend to utilize a
static analysis tool such as The Pivot[28] in order to automate this transition (this is
the last non-automated component of the presented framework).

In addition, we utilize the Alloy Analyzer to implement our semantic paralleliza-
tion approach. Our method for semantic parallelization of the goal network is based
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on the observation that in a topology we can identify groups of time points that
would allow the concurrent execution of the propagation passes. A possible crite-
rion for identifying such groups would be to identify the time points in a topology
that allow disjoin-access to the shared data. Given the method used to compute
the time window [T Pmini ,T Pmaxi ] for each T Pi ∈ St ps, we have observed that the
functionally-independent time points are the time points that are equidistant (with
respect to the longest path) from the root of the graph. Thus, in our methodology,
we define a Time Phase T phi as the set of the time points (ST phi ) in a topology
that are equidistant, with respect to the longest path, from the root of the graph. In
such a way, by definition, the computations of [T Pmina ,T Pmaxa ] and [T Pminb ,T Pmaxb ]
for every pair of {T Pa,T Pb}, such that T Pa ∈ ST phi and T Pb ∈ ST phi , are mutually
independent and allow disjoin-access to the shared data. With the support of Alloy
Analyzer we define and identify the time phases in a goal network graph (Algorithm
5 and Algorithm 6). Figure 2 provides an example of a goal network containing 15
time points and 6 time phases.

/* declaration of the Temporal Constraint signature

*/
sig TC { tc pred: one TP, tc succ: one TP} ;
/* declaration of the Time Point signature */
sig TP { tp preds: set TC, tp succs: set TC} ;

Algorithm 3: Definition of the notions of Temporal Constraint and Time Point

all tc:TC | tc in tc.tc pred.tp succs;
all tc:TC | tc in tc.tc succ.tp preds;
all tc:TP | some tp.tp preds⇒ tp.tp preds.tc succ = tp;
all tc:TP | some tp.tp succs⇒ tp.tp succs.tc pred = tp;
no ∧(tc pred.tp preds) & iden;
no ∧(tc succ.tp succs) & iden;
/* last two lines check for cycles */

Algorithm 4: Main TCN invariants expressed in the Alloy Specification Language

/* declaration of the Time Phase signature */
sig Tph{events: set TP, next: one Tph, tcn: one TCN};
/* declaration of the TCN signature */
sig TCN{epoch : TP, tps: set TP, tcs: set TC, init: one Tph};

Algorithm 5: Definition of the notions of Time Phase and Temporal Constraint
Network (with time phases)
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forall p:Tph do
p.events.tp succs.tc succ in p.∧next.events;
p.events.tp preds.tc pred in p.∧∼next.events;
p in p.tcn.init.*next;
p.events in p.tcn.tps;
no p.events & p.∧(next).events;

end
Algorithm 6: Main Time Phase invariants expressed in the Alloy Specification
Language

Having identified the time phases in our temporal constraint network specifica-
tion in Alloy, the aim of the rest of our tool-chain is to automatically derive the
C++ implementation of the parallel solution through a number of code transforma-
tion techniques. Following Rouquette’s methodology[24] for model transformation
through the application of the Object Constraint Language (OCL) and the Eclipse
Modeling Framework (EMF), we are able to automatically derive an intermediary
XML and XSD representations of the graph’s topology and the TCN semantic no-
tions, respectively. We apply an XML parser (XercesC) and a CodeSynthesis XSD
transformation tool to deliver the C++ implementation of the goal network and our
parallel propagation method.

TP0(epoch)

(1,7)

TP3

TP2

TP5

TP11

TP10
(2,5)

(6,6)

(4,15)

(1,4)

(0,8)

(1,4)

(3,11)

TP1

TP4
TP6

TP7

TP8

TP9 TP12

TP13 TP14

(1,7)

(0,9)

(0,4)

(2,5)

(3,8)

(2,5)

(3,4)
(5,6)

(2,5)

(2,5)

(1,6)

Fig. 2 A Parallel TCN Topology with 15 Time Points and 6 Time Phases
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To achieve higher safety and better performance, our parallel propagation scheme
employs a number of innovative multi-processor synchronization techniques. In our
implementation we have encountered and addressed the following challenges:

(1) Achieving low-overhead parallelization. Our experiments indicated that the
wide-spread Pthreads are computationally expensive when applied to the par-
allel propagation algorithm. Given the frequent real-time changes in the graph
topology, employing a thread per iteration for the computations of each time
phase comes at a prohibitive cost. To avoid this problem, we have incorpo-
rated in our design the application of the Intel tasks from the Threading Build-
ing Blocks Library[15]. Our experiments indicate that the Intel tasks provide
low-cost overhead when applied in the concurrent execution of the forward and
backward passes of the propagation scheme.

(2) Allowing fast and safe access to the shared data. The parallel algorithm re-
quires the safe and efficient concurrent synchronization of its shared data: the
propagation queue and the vector containing control data (reflecting the updates
during an iteration). By the definition of our algorithm, the propagation queue
is synchronized by allowing only disjoint-access writes. While the access to
the shared vector is less frequent, its concurrent synchronization is more chal-
lenging since we do not have a guarantee that the concurrent writes would be
disjoint. The application of mutual exclusion locks is a possible but likely an in-
effective solution due to the risks of deadlock, livelock, and priority inversion.
Moreover, the interdependency of processes implied by the use of locks dimin-
ishes the parallelism of a concurrent system. A lock-free object guarantees that
within a set of contending processes, there is at least one process that will make
progress within a finite number of steps. We have employed the implementation
of the lock-free vector described in Section 5 in order to meet our goals for
thread-safe and effective non-blocking synchronization. The lock-free vector
provides the functionality of the popular STL C++ vector as well as linearizable
and safe operations with complexity of O(1) and fast execution (outperforming
the STL vector protected by a mutex by a factor of 10 or more).

A number of graph properties, in a particular TCN topology, impact the applica-
tion and performance of the parallel propagation scheme. We expect better perfor-
mance (with respect to the sequential propagation scheme) when:

(1) The computational load per time point is high. This is the case of a real-world
massive-scale goal network. For instance, instructing the Mars Science Labo-
ratory to autonomously find its way in a Martian crater, probe the soil, capture
images, and communicate to Mission Control will result in a goal network con-
taining tens or hundreds of thousands of time points. In a small experimental
graph topology with a low computational cost per time point (such as a few
arithmetic operations), a single processor computation will perform best (when
we take into account the parallelization overhead).

(2) Time phases with large number of time points: a topology implying a sequen-
tial ordering of the planned events will not benefit from a parallel propagation
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scheme. The parallel propagation algorithm is beneficial to goal networks rep-
resenting a large number of highly interactive concurrent system processes.

5 Nonblocking Synchronization

The most common technique for controlling the interactions of concurrent processes
is the use of mutual exclusion locks. A mutual exclusion lock guarantees thread-
safety of a concurrent object by blocking all contending threads trying to access it
except the one holding the lock. In scenarios of high contention on the shared data,
such an approach can seriously affect the performance of the system and signifi-
cantly diminish its parallelism. For the majority of applications, the problem with
locks is one of difficulty of providing correctness more than one of performance. The
application of mutually exclusive locks poses significant safety hazards and incurs
high complexity in the testing and validation of mission-critical software. Mutual
exclusion locks can be optimized in some scenarios by utilizing fine-grained locks
[15]. Often due to the resource limitations of flight-qualified hardware, optimized
lock mechanisms are not a desirable alternative [20]. Even for efficient locks, the
interdependence of processes implied by the use of locks, introduces the dangers
of deadlock, livelock, and priority inversion.The incorrect application of locks is
hard to determine with the traditional testing procedures and a program can be de-
ployed and used for a long period of time before the flaws can become evident and
eventually cause anomalous behavior.

To achieve reliability, avoid the dangers of priority inversion, deadlock, and live-
lock, and at the same time gain performance, we rely on the notion of lock-free syn-
chronization. Lock-free systems typically utilize CAS in order to implement a an
optimistic speculation on the shared data. A contending process attempts to make
progress by applying one or more writes on a local copy of the shared data. After-
wards, the process attempts to swap (CAS) the global data with its updated copy.
Such an approach guarantees that from within a set of contending processes, there
is at least one that succeeds within a finite number of steps. The system is non-
blocking at the expense of some extra work performed by the contending processes.
Linearizability is an important correctness condition for concurrent nonblocking ob-
jects: a concurrent operation is linearizable if it appears to execute instantaneously
in a given point of time between the time t1 of its invocation and the time t2 of
its completion. The consistency model implied by the linearizability requirements
is stronger than the widely applied Lamport’s sequential consistency model [17].
According to Lamport’s definition, sequential consistency requires that the results
of a concurrent execution are equivalent to the results yielded by some sequential
execution (given the fact that the operations performed by each individual processor
appear in the sequential history in the order as defined by the program). Our vector’s
nonblocking algorithms are directly derived from the lock-free operations of the first
implementation of a lock-free dynamically resizable array presented by Dechev at
el. in [5]. The operations of our vector are lock-free and linearizable and in addition
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they provide disjoin-access parallelism for random access reads and writes and fast
execution (outperforming the STL vector protected by a mutex by a factor of 10 or
more [5]).

5.1 Practical Lock-Free Programming Techniques

The practical implementation of a hand-crafted lock-free container is notoriously
difficult. A nonblocking container’s design suggests the update (in a linearizable
fashion) of several memory locations. The use of a double-compare-and-swap prim-
itive (DCAS) has been suggest by Detlefs et al. in [7], however such complex atomic
operations are rarely supported by the hardware architecture. Harris et al. propose in
[13] a software implementation of a multiple-compare-and-swap (MCAS) algorithm
based on CAS. This software-based MCAS algorithm has been applied by Fraser in
the implementation of a number of lock-free containers such as binary search trees
and skip lists [11]. The cost of the MCAS operation is expensive requiring 2M + 1
CAS instructions. Consequently, the direct application of the MCAS scheme is not
an optimal approach for the design of lock-free algorithms. The vector’s random
access, data locality, and dynamic memory management pose serious challenges for
its non-blocking implementation. To illustrate the complexity of a CAS-based de-
sign of a dynamically resizable array, Table 1 provides an analysis of the number of
memory locations that need to be update upon the execution of some of the vector’s
basic operations.

Table 1 Vector - Operations
Operations Memory Locations

push back Vector×Elem→ void 2: element and size
pop back Vector→ Elem 1: size
reserve Vector× size t→Vector n: all elements
read Vector× size t→ Elem none
write Vector× size t×Elem→Vector 1: element
size Vector→ size t none

5.2 Overview of the Lock-free Operations

In this section we present a brief overview of the most critical vector’s lock-free
algorithms (see [5] for the full set of the nonblocking algorithms). To help tail op-
erations update the size and the tail of the vector (in a linearizable manner), the de-
sign presented in [5] suggests the application of of a helper object, named ”Write
Descriptor (WD)” that announces a pending tail modifications and allows in-
terrupting threads help the interrupted thread complete its operations. A pointer to
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the WD object is stored in the ”Descriptor” together with the container’s size
and a reference counter required by the applied memory management scheme [5].
The approach requires that data types bigger than word size are indirectly stored
through pointers and avoids storage relocation and its synchronization hazards by
utilizing a two-level array. Whenever push back exceeds the current capacity,
a new memory block twice the size of the previous one is added. The remaining
part of this section presents the pseudo-code of the tail operations (push back and
pop back) and the random access operations (read and write at a given location
within the vector’s bounds). We use the symbols ˆ, &, and . to indicate pointer
dereferencing, obtaining an object’s address, and integrated pointer dereferencing
and field access respectively.

repeat
desccurrent ← vector.desc;
CompleteWrite(vector,desccurrent .pending);
if vector.memory[bucket] == NULL then

AllocBucket(vector,bucket);
end
writeop← new WriteDesc(At(desccurrent .size),elem,desccurrent .size);
descnext ← new Descriptor(desccurrent .size+1,writeop);

until CAS(&vector.desc,desccurrent ,descnext) ;
CompleteWrite(vector,descnext .pending);

Algorithm 7: push back vector,elem

return At(vector, i);
Algorithm 8: Read vector, i

At(vector, i)ˆ← elem;
Algorithm 9: Write vector, i,elem

repeat
desccurrent ← vector.desc;
CompleteWrite(vector,desccurrent .pending);
elem← At(vector,desccurrent .size−1);
descnext ← new Descriptor(desccurrent .size−1,NULL);

until CAS(&vector.desc,desccurrent ,descnext) ;
return elem;

Algorithm 10: pop back vector

if writeop.pending then
CAS(At(vector,writeop.pos),writeop.valueold ,writeop.valuenew);
writeop.pending← f alse;

end
Algorithm 11: CompleteWrite vector,writeop

Push back (add one element to end) The first step is to complete a pending
operation that the current descriptor might hold. In case that the storage capacity
has reached its limit, new memory is allocated for the next memory bucket. Then,
push back defines a new ”Descriptor” object and announces the current write
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operation. Finally, push back uses CAS to swap the previous ”Descriptor”
object with the new one. Should CAS fail, the routine is re-executed. After succeed-
ing, push back finishes by writing the element.

Pop back (remove one element from end) Unlike push back, pop back
does not utilize a ”Write Descriptor”. It completes any pending operation of
the current descriptor, reads the last element, defines a new descriptor, and attempts
a CAS on the descriptor object.

Non-bound checking Read and Write at position i The random access read
and write do not utilize the descriptor and their success is independent of the
descriptor’s value.

6 Framework Application for Accelerated Testing

The presented design and implementation of our parallel propagation technique en-
able the incorporation of the optimized propagation approach described by Lou[19]
in an experimental framework for accelerated testing currently still under develop-
ment at NASA. Accelerated testing platforms suggest a paradigm shift in the cer-
tification process employed by NASA from system testing with the actual flight
hardware and software to accelerated cost-effective certification using hardware
simulators and distributed software implementations. Such frameworks aim faster-
than-real-time testing and analysis of the complex software interactions in JPL’s
autonomous flight systems. A number of these platforms require automated refac-
toring of previously sequential code into modular parallel implementations. Prelimi-
nary results reported in academic work[1] as well as experience reports from a num-
ber of commercial tools (such as Simics by Virtutech and ADvantage BEACON by
Applied Dynamics International) suggest the possible speedup of the flight system
testing by a significant factor. We have followed Rouquette’s methodology[24] that
suggests the application of formal modeling and validation techniques that provide
certification evidence for a number of functional dependencies in order to compen-
sate for the added hazards in establishing the fidelity of the simulators. Due to the
incomplete status of the accelerated testing framework as well as the lack of the
actual flight hardware, it is difficult to measure a priori the effect of our parallel
propagation scheme in achieving acceleration (with respect to the execution on the
actual flight hardware) in the process of flight software testing. To gain insight of the
possible performance gains and the algorithm’s behavior we ran performance tests
on a conventional Intel IA-32 SMP machine with two 2.0GHz processor cores with
1GB shared memory and 4 MB L2 shared cache running the MAC OS 10.5.1 oper-
ating system. In our performance analysis we have measured the execution time in
seconds of two versions of our parallel propagation algorithm (one applying mutu-
ally exclusive locks and the other relying on nonblocking synchronization) and the
original sequential scheme presented by Lou[19]. In the experiments (Figure 3), we
have generated a number of TCN graph topologies (each consisting of 4 to 8 Time
Phases), in a manner similar to the pseudo-random graph generation methodology
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described in [8]. In the presented results on Figure 3 the x− axis represents the
average measured execution time (in seconds) of each propagation scheme and the
y−axis represents the number of time points in the exponentially increasing graph
size (starting with a graph of 20000 TPs and reaching a TCN having 160000 TPs).
In the experimental setup we observed that the parallel propagation algorithm of-
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Fig. 3 Performance Analysis. x-axis represents the number of TPs in each experimental TCN
topology, y-axis represents the execution time in seconds of each of the three propagation algo-
rithms

fers effective execution and a considerable speedup in all scenarios on our dual-core
platform. We measured performance acceleration reaching 28% in the case of the
nonblocking implementation and 20% for our algorithm relying on mutually exclu-
sive locks. Lock-free algorithms deliver significant speedup in applications utilizing
shared data under high contention[5]. In a scenario like our parallel TCN propa-
gation scheme with medium or low contention on the shared data, besides safety
and prevention of priority inversion and deadlock, a lock-free implementation can
guarantee better scalability. As our experimental results suggest, the gains from the
lock-fee implementation gradually progress and we observe better scalability with



18 Dechev et al.

respect to the blocking propagation scheme. Based on the experimental results, we
expect that the integration of our parallel propagation algorithm in the accelerated
testing framework (consisting of several dozen processing units) will deliver signif-
icant benefits in reaching cost-effective and reliable flight software certification of
control modules based on massive real-world goal networks.

7 Conclusion

The notions of time and concurrency are of critical importance for the design and
development of autonomous space systems. The current certification methodologies
do not reach the level of detail of providing guidelines for the development and val-
idation of concurrent and real-time software. The increasing number of complex
interactions and tight coupling of the future autonomous space systems pose signifi-
cant challenges for their development and man-rated certification. A number of plat-
forms for accelerated testing suggest a paradigm shift by applying a combination of
modeling and verification methods, code generation tools, and software paralleliza-
tion for establishing a cost-effective and reliable certification process. In the light of
the challenges posed by the design and development of these highly experimental
approaches, we presented in this work a first time- and concurrency-centered frame-
work for validation and semantic parallelization of real-time C++ within JPL’s MDS
Framework. We demonstrated the application of our framework in the validation
of the semantic invariants of the Temporal Constraint Network Library. Temporal
constraint networks are at the core of the mission planning and control architec-
ture of the Mission Data System framework. In addition, we presented an approach
for automatic semantic parallelization of the propagation scheme establishing the
consistency of the temporal constraints in a goal network. Our parallel propagation
scheme is based on the identification of time phases within a goal network and is
implemented through the application of model transformation and formal analysis
techniques to the model specifications of the TCN semantics. We have relied on
innovative lock-free synchronization techniques to achieve better performance and
higher safety of our parallel implementation. Our preliminary tests indicate that our
parallel propagation approach, upon integration in the accelerated testing frame-
work, can support cost-effective and reliable flight software certification of control
modules based on massive real-world goal networks. In our future work we plan
to focus on developing a component for automatic derivation of the model spec-
ification directly from implementation source code. This can be accomplished by
utilizing the high-level internal program representation and the analysis tools pro-
vided by The Pivot[28], a framework for static analysis and transformations in C++.
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