
 

Programming with Exceptions 
Date: Apr 6, 2001 By Bjarne Stroustrup. Article is provided courtesy of Addison Wesley.  

This article presents two series of examples of motivating the Standard C++ notion of a basic 
guarantee of exception safety, and shows how the techniques required to provide that basic 
guarantee actually lead to simpler programs.  

Introduction 

One of the nice things about Standard C++ is that you can use exceptions for systematic error 
handling. However, when you take that approach, you have to take care that when an exception 
is thrown, it doesn't cause more problems than it solves. That is, you have to think about 
exception safety. Interestingly, thoughts about exception safety often lead to simpler and more 
manageable code. 

In this article, I first present concepts and techniques for managing resources and for designing 
classes in a program relying on exceptions. For this presentation, I use the simplest examples 
that I can think of. Finally, I explain how these ideas are directly reflected in the C++ standard 
library so that you can immediately benefit from them. 

Resources and Resource Leaks 

Consider a traditional piece of code: 

void use_file(const char* fn) 
{ 
        FILE* f = fopen(fn,"r"); 
        // use f 
        fclose(f); 
} 

This code looks plausible. However, if something goes wrong after the call of fopen() and 
before the call of fclose(), it's possible to exit use_file() without calling fclose(). In 
particular, an exception might be thrown in the use f code, or in a function called from there. 
Even an ordinary return could bypass fclose(f), but that's more likely to be noticed by a 
programmer or by testing. 

A typical first attempt to make use_file() fault-tolerant looks like this: 

void use_file(const char* fn) 
{ 
        FILE* f = fopen(fn,"r"); 
        try { 
                // use f 
        } 
        catch (...) { 
                fclose(f); 
                throw; 
        } 
        fclose(f); 
} 

The code using the file is enclosed in a try block that catches every exception, closes the file, 
and re-throws the exception. 

The problem with this solution is that it's ad hoc, verbose, tedious, and potentially expensive. 
Another problem is that the programmer has to remember to apply this solution everywhere a file 
is opened, and must get it right every time. Such ad hoc solutions are inherently error-prone. 
Fortunately, there is a more elegant solution. 

It's a fundamental rule that when a variable goes out of scope its destructor is called. This is true 
even if the scope is exited by an exception. Therefore, if we can get a destructor for a local 
variable to close the file, we have a solution. For example, we can define a class File_ptr that 
acts like a FILE*: 

class File_ptr { 
        FILE* p; 
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public: 
        File_ptr(const char* n, const char* a) { p = fopen(n,a); } 
        // suitable copy operations 
        ~File_ptr() { if (p) fclose(p); } 
 
        operator FILE*() { return p; }   // extract pointer for use 
}; 

Given that, our function shrinks to this minimum: 

void use_file(const char* fn) 
{ 
        File_ptr f(fn,"r"); 
        // use f 
} 

The destructor will be called independently of whether the function is exited normally or exited 
because an exception is thrown. That is, the exception-handling mechanism enables us to 
remove the error-handling code from the main algorithm. The resulting code is simpler and less 
error-prone than its traditional counterpart. 

The file example is a fairly ordinary resource leak problem. A resource is anything that our code 
acquires from somewhere and needs to give back. A resource that is not properly "given 
back'' (released) is said to be leaked. Other examples of common resources are memory, 
sockets, and thread handles. Resource management is the heart of many programs. Typically, 
we want to make sure than every resource is properly released, whether we use exceptions or 
not. 

You could say that I have merely shifted the complexity away from the use_file() function into 
the File_ptr class. That's true, but I need only write the File_ptr once for a program, and I 
often open files more frequently than that. In general, to use this technique we need one small 
"resource handle class'' for each kind of resource in a system. Some libraries provide such 
classes for the resources they offer, so the application programmer is saved that task. 

The C++ standard library provides auto_ptr for holding individual objects. It also provides 
containers, notably vector and string, for managing sequences of objects. 

The technique of having a constructor acquire a resource and a destructor release it is usually 
called resource acquisition is initialization. 

Class Invariants 

Consider a simple vector class: 

class Vector { 
        // v points to an array of sz ints 
        int sz; 
        int* v; 
public: 
        explicit Vector(int n);           // create vector of n ints 
        Vector(const Vector&); 
        ~Vector();                        // destroy vector 
        Vector& operator=(const Vector&); // assignment 
        int size() const; 
        void resize(int n);               // change the size to n 
        int& operator[](int);             // subscripting 
        const int& operator[](int) const; // subscripting 
}; 

A class invariant is a simple rule, devised by the designer of the class, that must hold whenever a 
member function is called. This Vector class has the simple invariant v points to an 
array of sz ints. All functions are written with the assumption that this is true. That is, they 
can assume that this invariant holds when they're called. In return, they must make sure that the 
invariant holds when they return. For example: 

int Vector::size() const { return sz; } 

This implementation of size() looks clean enough, and it is. The invariant guarantees that sz 
really does hold the number of elements, and since size() doesn't change anything, the 
invariant is maintained. 

The subscript operation is slightly more involved: 
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struct Bad_range { }; 
 
int& Vector::operator[](int i) 
{ 
        if (0<=i && i<sz) return v[i]; 
 
        trow Bad_range(); 
} 

That is, if the index is in range, return a reference to the right element; otherwise, throw an 
exception of type Bad_range. 

These functions are simple because they rely on the invariant v points to an array of 
sz ints. Had they not been able to do that, the code could have become quite messy. But how 
can they rely on the invariant? Because constructors establish it. For example: 

Vector::Vector(int i) :sz(i), v(new int[i]) { } 

In particular, note that if new throws an exception, no object will be created. It's therefore 
impossible to create a Vector that doesn't hold the requested elements. 

The key idea of the preceding section was that we should avoid resource leaks. So, clearly, 
Vector needs a destructor that frees the memory acquired by a Vector: 

Vector::~Vector() { delete[] v; } 

Again, the reason that this destructor can be so simple is that we can rely on v pointing to 
allocated memory. 

Now consider a naive implementation of assignment: 

Vector& Vector::operator=(const Vector& a) 
{ 
        sz = a.sz;              // get new size 
        delete[] v;             // free old memory 
        v = new int[n];         // get new memory 
        copy(a.v,a.v+a.sz,v);   // copy to new memory 
} 

People who have experience with exceptions will look at this assignment with suspicion. Can an 
exception be thrown? If so, is the invariant maintained? 

Actually, this assignment is a disaster waiting to happen: 

int main() 
try 
{ 
        Vector vec(10); 
        cout << vec.size() << '\n';   // so far, so good 
        Vector v2(40*1000000);         // ask for 160 megabytes 
        vec = v2;                      // use another 160 megabytes 
} 
catch(Range_error) { 
        cerr << "Oops: Range error!\n"; 
} 
catch(bad_alloc) { 
        cerr << "Oops: memory exhausted!\n"; 
} 

If you hope for a nice error message Oops: memory exhausted! because you don't have 
320MB to spare, you might be disappointed. If you don't have (about) 160MB free, the 
construction of v2 will fail in a controlled manner, producing that expected error message. 
However, if you have 160MB, but not 320MB (as I do on my laptop), that's not going to happen. 
When the assignment tries to allocate memory for the copy of the elements, a bad_alloc 
exception is thrown. The exception handling then tries to exit the block in which vec is defined. 
In doing so, the destructor is called for vec, and the destructor tries to deallocate vec.v. 
However, operator=() has already deallocated that array. Some memory managers take a 
dim view of such (illegal) attempts to deallocate the same memory twice. One system went into 
an infinite loop when someone deleted the same memory twice. 

What really went wrong here? The implementation of operator=() failed to maintain the class 
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invariant v points to an array of sz ints. That done, it was just a matter of time 
before some disaster happened. Once we phrase the problem that way, fixing it is easy: Make 
sure that the invariant holds before throwing an exception. Or, even simpler: Don't throw a good 
representation away before you have an alternative: 

Vector& Vector::operator=(const Vector& a) 
{ 
        int* p = new int[n];    // get new memory 
        copy(a.v,a.v+a.sz,p);   // copy to new memory 
        sz = a.sz;              // get new size 
        delete[] v;             // free old memory 
        v = p; 
} 

Now, if new fails to find memory and throws an exception, the vector being assigned will simply 
remain unchanged. In particular, our example above will exit with the correct error message: 
Oops: memory exhausted!. 

Please note that Vector is an example of a resource handle; it manages its resource (the 
element array) simply and safely through the resource acquisition is initialization technique 
described earlier. 

Exception Safety 

The notions of resource management and invariants allow us to formulate the basic exception 
safety guarantee of the C++ standard library. Simply put, we can't consider any class exception 
safe unless it has an invariant and maintains it even when exceptions occur. Furthermore, we 
can't consider any piece of code to be exception-safe unless it properly releases all resources it 
acquired. 

Thus, the standard library provides this guarantee: 

Basic guarantee for all operations: The basic invariants of the standard library are 
maintained, and no resources, such as memory, are leaked.  

The standard library further defines these guarantees: 

Strong guarantee for key operations: In addition to providing the basic guarantee, either 
the operation succeeds, or has no effects. This guarantee is provided for key library 
operations, such as push_back(), and single-element insert() on a list. 

Nothrow guarantee for some operations: In addition to providing the basic guarantee, 
some operations are guaranteed not to throw an exception. This guarantee is provided 
for a few simple operations, such as swap() and freeing memory. 

These concepts are invaluable when thinking about exception safety. Trying to add enough try-
blocks to a program to deal with every problem is simply too messy, too complicated, and can 
easily lead to inefficient code. Structuring code as described earlier, with the aim of providing the 
strong guarantee where possible and the basic guarantee always, is easier and leads to more 
maintainable code. Note that the Vector::operator=() actually provides the strong 
guarantee. Often the strong guarantee comes naturally when you try not to delete an old 
representation before you've constructed a new one. The basic guarantee is used more when 
you're optimizing code to avoid having to duplicate information. 

More Information 

You can find a much more exhaustive discussion of exception safety and techniques for writing 
exception-safe code in Appendix E, "Standard-Library Exception Safety," in The C++ 
Programming Language, Special Edition (Addison-Wesley, 2000, ISBN 0-201-70073-5), here 
abbreviated TC++PL for simplicity. If you have a version of TC++PL without that appendix, you 
can download a copy of the appendix from my home pages at http://www.research.att.com/~bs. 

If you're not acquainted with exceptions in C++, I strongly recommend that you learn about them 
and their proper use. Used well, exceptions can significantly simplify code. Naturally, I 
recommend TC++PL, but any modern C++ book—:meaning one that's written to take advantage 
of the ISO C++ standard and its standard library—:should have an explanation. 

If you're not yet comfortable with standard library facilities such as string and vector, I 
strongly encourage you to try them. Code that directly messes around with memory management 
and elements in arrays is among the most prone to resource leaks and nasty exception-safety 
problems. Such code is rarely systematic and the data structures involved rarely have simple and 
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useful invariants. A very brief introduction to basic standard library facilities can be found in 
Chapter 3 of TC++PL, "A Tour of the Standard Library.'' That, too, can be downloaded from my 
home pages. 
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