
C and C++: Case Studies in Compatibility

Bjarne Stroustrup

AT&T Labs
Florham Park, NJ, USA

ABSTRACT

This article gives examples of how one might go about increasing the degree of com-
patibility of C and C++. The ideal is full compatibility. Topics covered includes, vari-
adic functions, v vo oi id d*, b bo oo ol l, f f(v vo oi id d), c co on ns st t, i in nl li in ne e, and variable length arrays. These
topics allows a demonstration of concerns that must be taken into account when trying to
increase C/C++ compatibility.

A companion paper [Stroustrup,2002a] provides a ‘‘philosophical’’ view of the C/C++
relationship, and another companion paper presents a case for significantly increased
C/C++ compatibility and proposed full compatibility as the ideal. [Stroustrup,2002b].

1 Introduction

Making changes to a language in widespread use, such as C [C89] [C99] and C++ [C++98] is not easy. In
reality, even the slightest change requires discussion and consideration beyond what would fit in this arti-
cle. Consequently, each of the eleven ‘‘case studies’’ I present here lacks detail from the perspective of the
C and C++ ISO standards committees. However, the point here is not to present complete proposals or to
try to tell the standards committees how to do their job. The point is to give examples of directions that
might (or might not) be taken and examples of the kind of considerations that will be part of any work to
improve C and/or C++ in the direction of greater C/C++ compatibility. The examples are chosen to illus-
trate both the difficulties and the possibilities involved.

In many cases, the reader will ask ‘‘how did the designers of C and C++ get themselves into such a
mess?’’ My general opinion is that the designers (not excluding me) and committees (not excluding the
one on which I serve) got into those messes for reasons that looked good to competent people on the day,
but weren’t [Stroustrup,2002].

Let me emphasize that my answer is not a variant of ‘‘let C adopt C++’s rules’’. That would be both
arrogant and pointless. The opposite suggestion, ‘‘let C++ adopt C’s rules’’, is equally extreme and unreal-
istic. To make progress, both languages and language communities must move towards a common center.
My suggested resolutions are primarily based on considerations of

[1] what would break the least code
[2] how easy is it to recover from code broken by a change
[3] what would give the greatest benefits in the long run
[4] how complicated would it be to implement the resolution.

Many changes suggested here to increase C/C++ compatibility breaks some code and all involve some work
from implementers. Some of the suggested changes would, if seen in isolation, be detrimental to the lan-
guage in which they are suggested. That is, I see them as sacrifices necessary to achieve a greater good
(C/C++ compatibility). I would never dream of suggesting each by itself and would fight many of the sug-
gested resolutions except in the context of a major increase in C/C++ compatibility. A language is more
than the sum of its individual features.

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 2 -

2 Varadic Function Syntax

In C, a variadic function is indicated by a comma followed by an ellipsis at the end of an argument list. In
C++ the elipsis suffices. For example:

i in nt t p pr ri in nt tf f(c co on ns st t c ch ha ar r*, ...) ; / / C and C++
i in nt t p pr ri in nt tf f(c co on ns st t c ch ha ar r* ...) ; / / C++

The obvious resolution is for C to accept the plain ellipsis in addition to what is currently accepted. This
resolution breaks no code, imposes no run-time overhead, and the additional compiler complexity is negli-
gible. Any other resolution breaks lots of code without compensating advantages.

C requires a variadic function to have at least one argument specified; C++ doesn’t require that. For
example:

v vo oi id d f f(...) ; / / C++, not C

This case could be dealt with either by allowing the construct in C or by disallowing it in C++. The first
solution would break no user code, but could possibly cause problems for some C implementers. The latter
could break some code. However, such code is likely to be rare and obscure, and there are obvious ways of
rewriting it. Consequently, I suggest adopting the C rule and banning the construct in C++.

Breaking code should never be done lightly. However, sometimes it is better to break code than to let a
problem fester. In making such a case, the likely importance of the construct banned should be taken into
account, as should the likelyhood of code using the construct hiding errors. The probable benefits of the
change have to be major. Whenever possible, meaning almost always, code broken by a language change
should be easily detected by a compiler.

Breaking code isn’t all bad. The odd easily diagnosable incompatibility that doesn’t affect link compat-
ibility, such as a the introduction of a new keyword, can be good for the long-term heath of the community.
It reminds people that the world changes and gives encouragement to review old code. Compatibility
switches are needed, though, to serve people who can’t/won’t touch old source code. I’m no fan of com-
piler options, but they are a fact of life and a compatibility switch providing practical backwards compati-
bility can be a price worth paying for progress.

3 Pointer to v vo oi id d and N NU UL LL L

In C, a v vo oi id d* can be assigned to any T T* without an explicit cast. In C++, it cannot. The reason for the C++
restriction is that a v vo oi id d* to T T* conversion can be unsafe [Stroustrup,2002]. On the other hand, this
implicit conversion is widely used in C. For example:

i in nt t* p p = m ma al ll lo oc c(s si iz ze eo of f(i in nt t)*n n) ; / / malloc()’s return type is void*
s st tr ru uc ct t X X* p p = N NU UL LL L; / / NULL is often a macro for (void*)0

From a C++ point of view, m ma al ll lo oc c() is itself best avoided in favor of n ne ew w, but C’s use of (v vo oi id d*)0 0 pro-
vides the benefit of distinguishing a nil pointer from plain 0 0. However, C++ retained the Classic C defini-
tion of N NU UL LL L and maintained a tradition for using plain 0 0 rather than the macro N NU UL LL L. Had assignment of
(v vo oi id d*)0 0 to a pointer been valid C++, it would have helped in overloading:

v vo oi id d f f(i in nt t) ;
v vo oi id d f f(c ch ha ar r*) ;

v vo oi id d g g()
{

f f(0 0) ; / / 0 is an int, call f(int)
f f((v vo oi id d*)0 0) ; / / error in C++, but why not call f(char*)?

}

What can be done to resolve this incompatibility:
[1] C++ accepts the C rule.
[2] C accepts the C++ rule.
[3] both languages ban the implicit conversion except for specific cases in the standard library, such as

NULL and m ma al ll lo oc c().
[4] C++ accepts the C rule for v vo oi id d* and both languages introduce a new type, say r ra aw w*, which

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 3 -

provides the safer C++ semantics.
I could construct several more scenarios, involving features such as a n nu ul ll l keyword, a n ne ew w operator for C,
and macro magic. Such ideas may have value in their own right. However, among the alternatives listed,
the right answer must be [1]. Resolution [2] breaks too much code, and [3] breaks too much code and is
also messy. Note that I say this while insisting that much of the code that [3] would break deserves to be
broken, and that ‘‘a type violation’’ is my primary criterion for deeming a C/C++ incompatibility ‘‘non-
gratuitous’’ [Koenig,1989]. This is an example where I suggest that in the interest of the C/C++ commu-
nity, we must leave our ‘‘language theory ivory towers’’, accept a wart, and get on with more important
things. Alternative [4] allows programmers to preserve type safety in new code (and in code converted to
use it), but don’t think that benefit is sufficient to add a new feature.

In addition, I would seriously consider a variant of [1] that also introduced a keyword meaning ‘‘the
N NU UL LL L pointer’’ to save C++ programmers from unnecessarily depending on a macro (see
[Stroustrup,2002a]).

4 w wc ch ha ar r_ _t t and b bo oo ol l

C introduced the typedef w wc ch ha ar r_ _t t for wide characters. C++ then adopted the idea, but needed a unique
wide character type to guide overloading for proper stream I/O etc., so w wc ch ha ar r_ _t t was made a keyword.

C++ introduced a Boolean type named by the keyword b bo oo ol l. C then introduced a macro b bo oo ol l (in a
standard header) naming a keyword _ __ _B Bo oo ol l. The C choices were made to increase C++ compatibility
while avoiding breaking existing code using b bo oo ol l as an identifier.

For people using both languages, this is a mess (see the appendix of [Stroustrup,2002]). Again we can
consider alternative resolutions:

[1] C adopts w wc ch ha ar r_ _t t and b bo oo ol l as keywords.
[2] C++ adopts C’s definitions, and abolishes w wc ch ha ar r_ _t t and b bo oo ol l as keywords.
[3] C++ abolishes w wc ch ha ar r_ _t t and b bo oo ol l as keywords and adopts w wc ch ha ar r_ _t t and b bo oo ol l as typedefs, defined in

some standard library header, for keywords _ __ _W Wc ch ha ar r and _ __ _B Bo oo ol l. C adopts _ __ _W Wc ch ha ar r as the type
for which w wc ch ha ar r_ _t t is a typedef.

[4] Both languages adopts a new mechanism, possibly called t ty yp pe en na am me e that is similar to t ty yp pe ed de ef f except
that it makes new type rather than just a synonym. t ty yp pe en na am me e is then be used to provide b bo oo ol l and
w wc ch ha ar r_ _t t in some standard header. The keywords b bo oo ol l, w wc ch ha ar r_ _t t, and _ __ _B Bo oo ol l would no longer be
needed.

[5] C++ introduces w wc ch ha ar r as a keyword, removes w wc ch ha ar r_ _t t as a keyword, and introduces w wc ch ha ar r_ _t t as a
typedef for w wc ch ha ar r in the appropriate standard header. C introduces b bo oo ol l and w wc ch ha ar r as keywords.

Many C++ facilities depend on overloading, so C++ must have specific types, rather than just t ty yp pe ed de ef fs.
Therefore [2] is not a possible resolution. I consider [3] complicated (introducing two ‘‘special words’’
where one would do) and its compatibility advantages are illusory. If b bo oo ol l is a name in a standard header,
all code had better avoid that word because there is no way of knowing whether that header might be used
in the future, and any usage that differ from the standard will cause confusion and maintenance problems
[Stroustrup,2002]. Suggestion [4] is an intriguing idea, but in this particular context, it shares the weak-
nesses of [3]. Solution [1] is the simplest, and is a distinct possibility. However, I think that having a key-
word, w wc ch ha ar r_ _t t, with a name that indicates that it is a typedef is also a mistake, so I suggest that [5] is the
best solution.

One way of looking at an incompatibility is ‘‘what could we have done then, had we known what we
know now? What is the ideal solution?’’ That was how I found [5]. Preserving w wc ch ha ar r_ _t t as a typedef is a
simple backwards compatibility hack. In addition, either C must remove _ __ _B Bo oo ol l as a keyword, or C++ add
it. The latter should be done because it is easy and breaks no code.

5 Empty Function Argument Specification

In C, the function prototype

i in nt t f f() ;

declares a function f f that may accept any number of arguments of any type (but f f may not be variadic) as
long as the arguments and types match the (unknown) definition of the function. In C++, the function
declaration

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 4 -

i in nt t f f() ;

declares f f as a function that accepts no arguments. In both C and C++,

i in nt t f f(v vo oi id d) ;

declares f f as a function that accepts no arguments.
In addition, the C99 committee (following C89) deprecated

i in nt t f f() ;

This f f() incompatibility could be resolved cleanly by banning the C++ usage. However, that would break
a majority of C++ programs ever written and force everyone to use the more verbose notation

i in nt t f f(v vo oi id d) ;

which many consider an abomination [Stroustrup,2002].
The obvious alternative would be to break C code that relies on being able to call a function declared

without arguments with arguments. For example:

i in nt t f f() ;

i in nt t g g(i in nt t a a)
{

r re et tu ur rn n f f(a a) ; / / not C++, deprecated in C
}

I think that banning such calls is the right solution. It breaks C code, but the usage is most error-prone, has
been deprecated in C since 1989, and have been caught by compiler warnings and lint for much longer.
Thus,

i in nt t f f() ;

should declare f f to be a function taking no arguments. Again, a backwards compatibility switch might be
useful.

6 Prototypes

In C++, no function can be called without a previous declaration. In C, a non-variadic function may be
called without a previous prototype, but doing so has been deprecated since 1989. For example:

i in nt t f f(i i)
{

i in nt t x x = g g(i i) ; / / error in C++, deprecated in C
/ / ...

}

All compilers and lints that I know of have mechanisms for detecting such usage.
The alternatives are clear:
[1] Allow such calls (as in C, but deprecated)
[2] Disallow calls to undeclared function (as in C++)

The resolution must be [2] to follow C++ and the intent of the C committee, as represented by the depreca-
tion. Choosing [1] would seriously weaking the type checking in C++ and go against the general trend of
programming without compensating benefits.

7 Old-style Function Definition

C supports the Classic C function declaration syntax; C++ does not. For example:

i in nt t f f(a a,b b) d do ou ub bl le e b b; /* not C++ */
{

/* ... */
}

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 5 -

i in nt t g g(c ch ha ar r *p p)
{

f f(p p,p p) ; / / uncaught type error
/ / ...

}

The problem with the call of f f arise because a function defined using the old-style function syntax has a dif-
ferent semantics from a function declared using the modern (prototype-style, C++-style) definition syntax.
The function f f is not considered prototyped so type checking and conversion is not done.

Resolving this cannot be done painlessly. I see three alternatives:
[1] adopt C’s rules (i.e. allow old-style definitions with separate semantics)
[2] adopt C++’s rules (i.e. ban old-style definitions)
[3] allow old-style definitions with exactly the same semantics as other function definitions

[1] is not a possible solution because it eliminates important type checking and leads to surprises. I con-
sider [2] the best solution, but see no hope for its acceptance. It has the virtues of simplicity, simple
compile-time detection of all errors, and simple conversion to a more modern style. However, my impres-
sion is that old-style function definitions are still widely used and sometimes even liked for aesthetic rea-
sons. That leaves [3], which has the virtues of simple implementation and better type checking, but suffers
from the possibility of silent changes of the meaning of code. Warnings and a backwards compatibility
switch would definitely be needed.

8 Enumerations

In C, an i in nt t can be assigned to a value of type an e en nu um m without a cast. In C++, it cannot. For example:

e en nu um m E E { a a, b b };

E E x x = 1 1; / / error in C++, ok in C
E E x x = 9 99 9; / / error in C++, ok in C

I think that the only realistic resolution would be for C++ to adopt the C rule. The C++ rule provides better
type safety, but the amount of C code relying on treating an enumerator as an i in nt t is too large to change, and
I don’t see a third alternative.

The definition of e en nu um m in C and C++ also differ in several details relating to size. However, the simple
fact that C and C++ code today interoperate while using e en nu um ms indicates that the definitional issues can be
reconciled.

9 Constants

In C, the default storage class of a non-local c co on ns st t is extern and in C++ it is static. The result is one of the
hardest-to-resolve incompatibilities. Consider:

c co on ns st t i in nt t x x; / / uninitialized const
c co on ns st t i in nt t y y = 2 2;

i in nt t f f(i in nt t i i)
{

s sw wi it tc ch h (i i) {
c ca as se e y y: / / use y as a constant expression

r re et tu ur rn n i i;
/ / ...
}

}

An uninitialized c co on ns st t is not allowed in C++, and the use of a c co on ns st t in a constant expression is not allowed
in C. Both of those uses are so widespread in their respective languages that examples such as the one
above must be allowed. This precludes simply adopting the rule from one language or the other.

It follows that some subtlety is needed in the resolution, and subtlety implies the need for experimenta-
tion and examination of lots of existing code to see that undesired side effects really are absent. That said,
here is a suggestion: Distinguish between initialized and uninitialized c co on ns st ts . Initialized c co on ns st ts follow the
C++ rule. This preserves c co on ns st ts in constant expressions, and if an initialized c co on ns st t needs to be accessed

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 6 -

from another translation unit, e ex xt te er rn n must be explicitly used:

c co on ns st t i in nt t c c1 1 = 1 17 7; / / local to this translation unit
e ex xt te er rn n c co on ns st t i in nt t c c2 2 = 7 7; / / available in other translation units

On the other hand, follow the C rule for uninitialized c co on ns st ts. For example:

c co on ns st t i in nt t c c3 3; / / available in other translation units
s st ta at ti ic c c co on ns st t i in nt t c c4 4; / / error: uninitialized const

10 Inlining

Both C and C99 provide i in nl li in ne e. Unfortunately, the semantics of i in nl li in ne e differ [Stroustrup,2002]. Basically,
the C++ rules require an inline function to be defined with identical meaning in every translation unit, even
though an implementation is not required to detect violations of this ‘‘one definition rule’’, and many
implementations can’t. On the other hand, C99 allows inline functions in different translation units to dif-
fer, while imposing restrictions intented to avoid potential linker problems. A good resolution would

[1] not impose burdens on C linker technology
[2] not break the C++ type system
[3] break only minimal and pathological code
[4] not increase the area of undefined or implementation-specified behavior

An ideal solution would strengthen [3] and [4], but that’s unfortunately impossible.
Requirement [2] basically implies that the C++ ODR must be the rule, even if its enforcement must – in

the Classic C tradition [Stroustrup,2002a] – be left to a lint-like utility. This leaves the problem of what to
do about uses of s st ta at ti ic c data. For example:

/ / use of static variables in/from inlines ok in C++, errors in C:

s st ta at ti ic c i in nt t a a;
e ex xt te er rn n i in nl li in ne e i in nt t c co ou un nt t() { r re et tu ur rn n ++a a; }

e ex xt te er rn n i in nl li in ne e i in nt t c co ou un nt t2 2() { s st ta at ti ic c i in nt t b b = 0 0; b b+=2 2; r re et tu ur rn n b b; }

Accepting such code would put a burden on C linkers; not accepting it would break C++ code. I think the
most realistic choice is to ban such code, realizing that some implementations would accept it as an exten-
sion. The reason that I can envision banning such code is that I consider it rare and relatively unimportant.
Naturally, we’d have to look at a lot of code before accepting that evaluation.

There is a more important use of static data in C++ that cannot be banned: static class members. How-
ever, since static class members have no equivalent in C, this is not a compatibility problem.

11 Static

C++ deprecates the use of s st ta at ti ic c for declaring something ‘‘local to this translation unit’’ in favor of the
more general notion of namspaces. The possible resolutions are

[1] withdraw that deprecation in C++
[2] deprecate or ban that use of s st ta at ti ic c in C and introduce namespaces.

Only [1] is realistic.

12 Variable-Sized Data Structures

Classic C arrays are too low level for many uses: They have a fixed size, specified as a constant, and an
array doesn’t carry its size with it when passed as a function argument. Both C++ and C99 added features
to deal with that issue:

[1] C++ added standard library containers. In particular, it added s st td d: :v ve ec ct to or r. A v ve ec ct to or r can be speci-
fied by a size that is a variable, a v ve ec ct to or r can be resized, and a v ve ec ct to or r knows its size (that is, a v ve ec ct to or r
can be passed as an object with it’s size included, there is a member function for examining that
size, and the size can be changed).

[2] C99 added Variable Length Arrays (VLAs). A VLA can be specified by a size that is a variable, but
a VLA cannot be resized, and a VLA doesn’t know its size.

The syntax of the two constructs differ and either could be argued to be more convenient and readable than

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 7 -

that the other:

v vo oi id d f f(i in nt t m m)
{

i in nt t a a[m m] ; / / variable length array
v ve ec ct to or r<i in nt t> v v(m m) ; / / standard library vector
/ / ...

}

A VLA behaves much like a v ve ec ct to or r without the ability to resize. On the other hand, VLAs are designed
with a heavier emphasis on run-time performance. In particular, elements of a VLA can be, but are not
required to be, allocated on the stack.

For C/C++ compatibility, there are two obvious alternatives;
[1] Accept VLAs as defined in C99
[2] Ban VLAs.

Choosing [1] seems obvious. After all, VLAs are arguable the C99 committee’s greatest contribution to C
and the most significant language feature added to C since prototypes and c co on ns st t were imported from C with
Classes. They are easy to implement, efficient, reasonably easy to use, and backwards compatible.

Unfortunately, from a C++ point of view, VLAs have several serious problems†:
[a] They are a very low-level mechanism, requiring programmers to remember sizes and pass them

along. This is error-prone. This same lack of size information means that operations, such as copy-
ing, and range checking cannot be simply provided.

[b] A VLA can allocate an arbitrary amount of memory, specified at run time. However, there is no
standard mechanism for detecting or handling memory exhaustion. This is particularly bothersome
because a VLA looks so much like an ordinary array, for which the memory requirements can be
calculated at compile time. For example:

#d de ef fi in ne e M M1 1 9 99 9

i in nt t f f(i in nt t m m2 2)
{

i in nt t a a[M M1 1] ; / / array, space requirement known
i in nt t b b[m m2 2] ; / / VLA, space requirement unknown
/ / ...

}

This can lead to undefined behavior and obscure bugs.
[c] There is no guarantee that memory allocated for elements of a VLA are freed if a function contain-

ing it is exited abnormally (such as by an exception or a l lo on ng gj jm mp p). Thus, use of VLAs can lead to
memory leaks.

[d] By using the array syntax, many programmers will see VLAs as ‘‘favored by the language’’ or ‘‘rec-
ommended’’ over alternatives, such as s st td d: :v ve ec ct to or r, and as more efficient (even if only potentially
so).

[e] VLAs are part of C, and s st td d: :v ve ec ct to or r is not, so if VLAs were accepted for the sake of C/C++ com-
patibility, people would accept the problems with VLAs and use them in the interest of maximal
portability.

The net effect is that by accepting VLAs, the result would be a language that encouraged something that,
from a C++ point of view, is unnecessarily low-level, unsafe, and can leak memory.

It follows that a third alternative is needed. Consider:
[3] Ban VLAs and replace it with v ve ec ct to or r (possibly provided as a built-in type).
[4] Define a VLA to be equivalent and interchangeable with a suitably designed container, a ar rr ra ay y.

Naturally, [3] is unacceptable because VLAs exist in the C standard, but it would have been a close-to-ideal
__________________
† It has been suggested that considering VLAs from a C++ point of view is unfair and disrespectful to the C committee because C is
not C++ and C/C++ compatibility isn’t part of the C standard committee’s charter. I mean no disrespect to the C committee, its mem-
bers, or to the ISO process that the C committee is part of. However, given that a large C/C++ community exist and that VLAs will in-
evitably be used together with C++ code (either through linkage or through permissive compiler switches), an analysis is unavoidable
and needed.

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 8 -

solution. However, we can use the idea as a springboard to a more acceptable resolution. How would
a ar rr ra ay y have to be designed to bridge the gap between VLAs and C++ standard library containers? Consider
possible implementations of VLAs. For C-only, a VLA and its size are needed together only at the point of
allocation. If extended to support C++, destructors must be called for VLA elements, so the size must (con-
ceptually, at least) be stored with a pointer to the elements. Therefore, a naive implementation of a ar rr ra ay y
would be something like this:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s a ar rr ra ay y {
i in nt t s s;
T T* e el le em me en nt ts s;

p pu ub bl li ic c:
a ar rr ra ay y(i in nt t n n) ; / / allocate "n" elements and let "elements" refer to them
a ar rr ra ay y(T T* p p, i in nt t n n) ; / / make this array refer to p[0..n-1]
o op pe er ra at to or r T T*() { r re et tu ur rn n e el le em me en nt ts s; }
i in nt t s si iz ze e() c co on ns st t { r re et tu ur rn n s s; }

/ / the usual container operations, such as = and [], much like vector
};

Apart from the two-argument constructor, this would simply be an ordinary container which could be
designed to allocate from the stack, just like some VLA implementations. The key to compatibility is its
integration with VLAs:

v vo oi id d h h(a ar rr ra ay y<d do ou ub bl le e> a a) ; / / C++

v vo oi id d g g(i in nt t m m, d do ou ub bl le e v vl la a[m m]) ; / / C99

v vo oi id d f f(i in nt t m m, d do ou ub bl le e v vl la a1 1[m m] , a ar rr ra ay y<d do ou ub bl le e> a a1 1)
{

a ar rr ra ay y<d do ou ub bl le e>a a2 2(v vl la a1 1,m m) ; / / a2 refers to vla1
d do ou ub bl le e* p p = a a1 1; / / p refers to a1’s elements

h h(a a1 1) ;
h h(a ar rr ra ay y(v vl la a1 1,m m)) ; / / a bit verbose
h h(m m,v vl la a1 1) ; / / ???

g g(m m,v vl la a1 1) ;
g g(a a1 1.s si iz ze e() ,a a1 1) ; / / a bit verbose
g g(a a1 1) ; / / ???

}

The calls marked with ??? cannot be written in C++. Had they gotten past the type checking, the result
would have executed correctly because of structural equivalence. If we somehow accept these calls, by a
general mechanism or by a special rule for a ar rr ra ay y and VLAs, a ar rr ra ay ys and VLAs would be completely inter-
changeable and a programmer could choose whichever style best suited taste and application.

Clearly, the a ar rr ra ay y idea is not a complete proposal, but it shows a possible direction for coping with a
particularly nasty problem of divergent language evolution.

13 Afterword

There are many more compatibility issues that must be dealt with by a thorough description of C/C++
incompatibilities and their possible resolution. However, the examples here should give a concrete basis
for a debate both on principles and practical resolutions. Again, please note that the suggested resolutions
don’t make much sense in isolation, I see them as part of a comprehensive review to eliminate C/C++
incompatibilities.

I suspect that the main practical problem in eliminating the C/C++ incompatibilities, would not be one
of the compatibility problems listed above. The main problem would be that starting from Dennis Ritchie’s
original text, the two standards have evolved independently using related but subtly different vocabularies,
phrases, and styles. Reconciling those would take painstaking work of several experienced people for sev-
eral months. The C++ standard is 720 pages, the C99 standard is 550 pages. I think the work would be
worth it for the C/C++ community. The result would be a better language for all C and C++ programmers.

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 9 -

14 References

[C89] ISO/IEC 9899:1990, Programming Languages – C.
[C99] ISO/IEIC 9899:1999, Programming Languages – C.
[C++98] ISO/IEC 14882, Standard for the C++ Language.
[Koenig,1989] Andrew Koenig and Bjarne Stroustrup: C++: As close to C as possible – but no closer.

The C++ Report. July 1989.
[Stroustrup,2002] Bjarne Stroustrup: Sibling Rivalry: C and C++. AT&T Labs - Research Technical

Report TD-54MQZY, January 2002.
http://www.research.att.com/˜bs/sibling_rivalry.pdf.

[Stroustrup,2002a] Bjarne Stroustrup: C and C++: Siblings. The C/C++ Journal.
[Stroustrup,2002b] Bjarne Stroustrup: C and C++: A Case for Compatibility. The C/C++ Journal.

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002


