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ABSTRACT

This paper outlines a design for an exception handling mechanism for C++. It pre-
sents the reasoning behind the major design decisions and considers their implications for
implementation alternatives. The mechanism is flexible, comparatively safe and easy to
use, works in a mixed language execution environment, and can be implemented to run
efficiently. Two implementation strategies are described in some detail.

1 Introduction

The author of a library can detect errors, but does not in general have any idea what to do about them.
The user of a library may know how to cope with such errors, but cannot detect them– or else they would
have been handled in the user’s code and not left for the library to find.

The primary purpose of the exception handling mechanism described here is to cope with this problem
for C++ programs; other uses of what has been called exception handling in the literature are considered
secondary. See the references for discussions of exception handling techniques and mechanisms.

The mechanism described is designed to handle only synchronous exceptions, such as array range
checks. Asynchronous exceptions, such as keyboard interrupts, are not handled directly by this mechanism.

A guiding principle is that exceptions are rare compared to function calls and that exception handlers
are rare compared to function definitions. We do not wish to use exception handling as a substitute for
more conventional control structures. Further, we do not want to require the vast majority of functions to
include code specifically relating to exception handling for a program to benefit from exception handling.

The mechanism described here can be implemented in several different ways. In particular, we outline
a portable implementation based on C’ssetjmp/longjmp mechanism and an implementation that has
no run-time costs when exceptions donot occur.

C++ is designed to coexist with other languages that do not support exception handling. Consequently,
we rejected any ideas for exception handling that would have required all functions in a program to be writ-
ten in C++.

After the presentation of the exception handling scheme we discuss its use compared to ‘traditional’
error handling techniques. Many details that we felt to be important, yet not essential to appreciate the fun-
damentals of the exception handling scheme, are placed in appendices.

This paper is written to stimulate discussion of exception handling in C++. The mechanisms described
here are not part of C++ and might never become part of C++. Previous versions of these mechanisms were
presented at theC++ at Workconference in November 1989[8] and the Usenix C++ Conference in San
Francisco in April 1990[9]. The scheme described here owes much to the discussion generated by those
presentations. In particular, the present scheme provides a greater degree of protection against mistakes by
transferring more obligations from the programmer to the language implementation. A more formal
description of the scheme can be found in reference 3.
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2 An Example

Suppose that an exception calledxxii can occur in a functiong() called by a functionf() . How can
the programmer off() gain control in that case? The wish to ‘catch’ the exceptionxxii when it occurs
andg() doesn’t handle it can be expressed like this:

int f()
{

try {
return g();

}
catch (xxii) {

// we get here only if ‘xxii’ occurs
error("g() goofed: xxii");
return 22;

}
}

The text fromcatch to the next close brace is called ahandler† for the kind of exception namedxxii . A
single try-block can have handlers for several distinct exceptions; a handler marked by the ellipsis,... ,
picks up every exception not previously mentioned. For example:

int f()
{

try {
return g();

}
catch (xx) {

// we get here only if ‘xx’ occurs
error("g() goofed: xx");
return 20;

}
catch (xxii) {

// we get here only if ‘xxii’ occurs
error("g() goofed: xxii");
return 22;

}
catch (...) {

// we get here only if an exception
// that isn’t ‘xxii’ or ‘xx’ occurs
error("g() goofed");
return 0;

}
}

The series of handlers is rather like aswitch statement. The handler marked(...) is rather like a
default . Note, however, that there is no ‘fall through’ from onehandlerto another as there is from one
case to another. An alternative and more accurate analogy is that the set of handlers looks very much like
a set of overloaded functions. However, unlike a set of overloaded functions, the try clauses are checked in
the sequence in which they appear.

An exception handler is associated with a try-block and is invoked whenever its exception occurs in that
block or in any function called directly or indirectly from it. For example, say in the example above that
xxii didn’t actually occur ing() but in a functionh() called byg() :

__________________
† The grammar for the exception handling mechanism can be found in Appendix B.
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int g() { return h(); }

int h()
{

throw xxii(); // make exception ‘xxii’ occur
}

The handler inf() would still handle the exceptionxxii .
We will use the phrase ‘throwing an exception’ to denote the operation of causing an exception to

occur. The reason we don’t use the more common phrase ‘raising an exception’ is thatraise() is a C
standard library function and therefore not available for our purpose. The wordsignal is similarly
unavailable. Similarly, we chosecatch in preference tohandle becausehandle is a commonly used
C identifier.

A handler looks a lot like a function definition. Athrow-expressionlooks somewhat like both a func-
tion call and areturn statement. We will see below that neither similarity is superficial.

Becauseg() might be written in C or some other language that does not know about C++ exceptions, a
fully general implementation of the C++ exception mechanism cannot rely on decorations of the stack
frame, passing of hidden arguments to functions not in C++, or other techniques that require compiler coop-
eration for every function called.

Once a handler has caught an exception, that exception has been dealt with and other handlers that
might exist for it become irrelevant. In other words, only the active handler most recently encountered by
the thread of control will be invoked. For example, herexxii will still be caught by the handler inf() :

int e()
{

try {
return f(); // f() handles xxii

}
catch (xxii) { // so we will not get here

// ...
}

}

Another way to look at it is that if a statement or function handles a particular exception, then the fact that
the exception has been thrown and caught is invisible in the surrounding context– unless, of course, the
exception handler itself notifies something in the surrounding context that the exception occurred.

3 Naming of Exceptions

What is an exception? In other words, how does one declare an exception? What do exception names,
such asxxii above, really identify?

Perhaps the most important characteristic of exceptions is that the code that throws them is often written
independently from the code that catches them. Whatever an exception is must therefore be something that
allows separately written programs to communicate.

Moreover, it should be possible to define ‘groups’ of exceptions and provide handlers for such groups.
For example, it should be possible for a single handler to cope with all exceptions coming from a major
sub-system such as the file system, the stream I/O system, the network software, and so on. In the absence
of such a mechanism, systems relying of large numbers of exceptions (say, hundreds) become unmanage-
able.

Finally, we want to be able to pass arbitrary, user-defined information from the point where an excep-
tion is thrown to the point where it is caught.

Two suggestions have been made for C++:
[1] that an exception be a class, and
[2] that an exception be an object.

We propose a combination of both.
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3.1 Exceptions as Classes
Suppose an exception is a class. That would allow us to use inheritance to group exceptions. For

instance, one can imagine anOverflow exception that is a kind ofMatherr exception. Inheritance is a
natural way to express such a relationship and this seems to support the notion that exceptions should be
classes.

Closer inspection, however, raises a question. Throwing an exception passes information from where it
is thrown to where it is caught. That information must be stored somewhere. This implies that we need a
run-time representation of an exception, that is, an object representing the exception. In C++, a class is a
type– not an object. Classes do not carry data; objects do. Also, if an exception is a class, it seems natural
to declare objects of that class. If the classes themselves are used to express throwing and catching of
exceptions, what good are the objects?

3.2 Exceptions as Objects
If exceptions are objects, what kind of objects? The simplest possibility is to make them integers whose

values identify the kind of exception. The trouble with that is that it is difficult for people working apart to
choose such integer values without clashing. I may choose the unlikely number299793 to represent my
exception, but so may you and when some unlucky third person tries to use our programs together trouble
starts. It would seem more sensible to use theidentity (that is, the address) of the exception object, rather
than itsvalue, to denote the particular exception being thrown.

But this raises problems as well. If we use the identity of an object to ‘name’ an exception, which par-
ticular object do we want to catch? The object presumably identifies the kind of exception that interests us,
but that exception hasn’t been thrown yet, so how can the object exist? Alternatively, if what we catch is a
pre-existing object, do we throw that object as well? If so, the object probably needs to be external, but
how do we throw an external object without guaranteeing trouble in an environment where multiple pro-
cesses share a single address space? See reference 8 for a C++ exception handling scheme based on object
identities.

3.3 Exceptions as Classes and Objects
It appears, therefore that the most natural way to describe exceptions is tothrow objects andcatch

classes. Acopyof the object thrown is passed to the handler.
Given that, it is possible to use any type in ahandler and any object as the argument in athrow-

expression. For example:

// add with overflow checking

struct Int_overflow { // a class for integer overflow exception handling
const char* op;
int operand1, operand2;
Int_overflow(const char* p, int q, int r):

op(p), operand1(q), operand2(r) { }
};

int add(int x, int y)
{

if (x > 0 && y > 0 && x > MAXINT - y
|| x < 0 && y < 0 && x < MININT + y)

throw Int_overflow("+", x, y);

// If we get here, either overflow has
// been checked and will not occur, or
// overflow is impossible because
// x and y have opposite sign

return x + y;
}

If the arguments to thisadd function are out of range, it creates anInt_overflow object to describe
what went wrong and makes (a copy of) that object available to a correspondinghandler. The exception
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thus thrown can be caught like this:

main()
{

int a, b, c;

cin >> a >> b;
try {

c = add(a,b);
}
catch (Int_overflow e) {

cout << "overflow " << e.op << ’(’
<< e.operand1 << ’,’ << e.operand2
<< ")\n";

}

// and so on
}

When thehandleris entered,e will be a copy of theInt_overflow object that was created inside the
add function to describe what went wrong.

The parallel to function calls is now almost exact: Thethrow-expressionpasses anInt_overflow
object to thehandlerdeclared to accept objects of classInt_overflow . The usual initialization seman-
tics are used to pass this argument. The type of the object thrown is used to select the handler in approxi-
mately the way the arguments of a function call is used to select an overloaded function. Again, a slightly
different way of looking at thethrow-expressionis as areturn statement where the argument is not only
passed back to the caller, but is also used to select which caller to return to.

C++ supports the definition of classes and the use of objects of classes. Using a class to describe the
kind of exception expected simplifies type checking between athrow-expressionand ahandler. Using an
object to describe the exception itself makes it easy to pass information safely and efficiently between those
two points. Relying of such fundamental and well-supported language concepts rather than inventing some
special ‘‘exception type’’ ensures that the full power of C++ is available for the definition and use of excep-
tions.

4 Grouping of Exceptions

Exceptions often fall naturally into families. For example, one could imagine aMatherr exception
that includesOverflow , Underflow , and other possible exceptions.

One way of doing this might be simply to defineMatherr as a class whose possible values include
Overflow and the others:

enum Matherr { Overflow, Underflow, Zerodivide, /* ... */ };

It is then possible to say

try {
f();

}
catch (Matherr m) {

switch (m) {
case Overflow:

// ...
case Underflow:

// ...
// ...
}
// ...

}

In other contexts, C++ uses inheritance and virtual functions to avoid this kind of switch on a type field. It
is possible to use inheritance similarly to describe collections of exceptions too. For example:
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class Matherr { };
class Overflow: public Matherr { };
class Underflow: public Matherr { };
class Zerodivide: public Matherr { };
// ...

Such classification is particularly convenient because of the desire to handle similarly any member of a col-
lection of exceptions: it is easy to imagine many reasons why one might want to recover from any kind of
Matherr without caring precisely which kind it was. Using inheritance in this way makes it possible to
say

try {
f();

}
catch (Overflow) {

// handle Overflow or anything derived from Overflow
}
catch (Matherr) {

// handle any Matherr that is not Overflow
}

Here anOverflow is handled specifically, and all otherMatherr exceptions will be handled by the
general case. Of course, a program that sayscatch(Matherr) will not know what kind ofMatherr it
has caught; whatever it was, its copy will be aMatherr by the time the handler is entered. We will see
later how a program can cater to a potentially unknown set of exceptions by catching areferenceto an
exception.

There are cases where an exception can reasonably be considered to belong to two or more groups. For
example:

class network_file_err : public network_err , public file_system_err { };

Obviously, this too is easily handled without language extensions.

4.1 Naming the Current Exception
We name the current exception analogously to naming the argument of a function:

try { /* ... */ } catch (zaq e) { /* ... */ }

This is a declaration ofe with its scope identical to the body of the exception handler. The idea is thate is
created using the copy constructor of classzaq before entering the handler.

Where there is no need to identify the particular exception, there is no need to name the exception
object:

try { /* ... */ } catch (zaq) { /* ... */ }

This again is similar to the technique of not naming unused function arguments in a function definition.
As with functions, the argument declaration(...) accepts any call, so that

catch (...) { /* any exception will get here */ }

will catch every exception. There is no way of finding out what exception caused entry into such a handler.
Were such a way provided, type safety would be compromised and the implementation of exception han-
dling complicated. When a handler is done with an exception, it may sometimes want to re-throw that
exception, whatever it was, without caring what kind of exception it was. To do this, saythrow without
specifying an exception:

catch (...) {
// do something
throw; // re-throw current exception

}

Such a re-throw operation is valid only within a handler or within a function called directly or indirectly
from a handler.
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Because of things like(...) clauses, this kind ofthrow-expressionoffers a facility that cannot be sim-
ulated by other means. While this facility is sometimes essential, we will in section 6 below demonstrate
how most problems typically solved by a re-throw operation can be solved more elegantly by careful use of
destructors.

Note that

try { /* ... */ } catch (zaq e) { throw zaq; }

is not equivalent to

try { /* ... */ } catch (zaq e) { throw; }

In the first example, the usual rules of initialization ensures that if the exception originally thrown was an
object of a class derived fromzaq , then it will be ‘‘cut down’’ to azaq when used to initializee. In the
second example, the original exception– possible of a class derived fromzaq – is re-thrown.

4.2 Order of Matching
Thehandlers of atry-blockare tried in order. For example:

try {
// ...

}
catch (ibuf) {

// handle input buffer overflow
}
catch (io) {

// handle any io error
}
catch (stdlib) {

// handle any library exception
}
catch (...) {

// handle any other exception
}

The type in a catch clause matches if either it directly refers to the exception thrown or is of a base class
of that exception, or if the exception thrown is a pointer and the exception caught is a pointer to a base class
of that exception.

Since the compiler knows the class hierarchy it can warn about sillinesses such as a(...) clause that
is not the last clause or a clause for a base class preceding a clause for a class derived from it. In both cases
the later clause(s) could never be invoked because they were masked.

4.3 No Match
Where no match is found, the search for a handler continues to the calling function. When a handler is

found and entered, the exception is no longer considered thrown. After dropping off the end of ahandler
the computation continues after the completetry-block. For example,
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void f()
{ try {

// ...
}
catch (x) {

// handle exception ‘x’
}
catch (...) {

// do nothing
}

// whatever happens (short of hardware failure
// terminate(), abort(), etc.) we’ll get here

h();
}

If the try-block raises exceptionx , the first handler will be executed. Any exception other thanx will exe-
cute the second, empty handler. If execution continues at all, it will continue with the call toh() .

4.4 Exception Types
Any pointer type or type with a public copy constructor can be used to name an exception in ahandler.

When an exception of a derived class is thrown directly, the use of the copy constructor implies that the
exception thrown is ‘cut down’ to the exception caught. For example:

class Matherr { /* .... */ };

class Int_overflow: public Matherr {
public:

char* op;
int operand1, operand2;
// ...

};

void f()
{

try {
g();

}
catch (Matherr m) {

// ...
}

}

When the Matherr handler is entered,m is a Matherr object, even if the call tog() threw
Int_overflow.

For some applications, it may be useful to use virtual functions to deal with exceptions whose type is
not statically known at the point where the exception is caught. One way to do that is to use references to
exceptions:

void g()
{

if ( /* ... */ ) throw Int_overflow( /* arguments */ );
}
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void f()
{

try {
g();

}
catch (Matherr& m) {

// ...
mp.vfun();

}
}

In order for this to work, theInt_overflow object being thrown must remain in existence until after
the corresponding handler has exited. This implies that throwing an exception to a handler that expects a
reference might require allocation of memory on the heap. It is therefore unwise to use references to excep-
tions to deal with memory exhaustion.

The only conversions applied to exception objects are the derived class to base class conversions (for
objects, references, and pointers) and conversions that addconst or volatile to the subjects of pointers
or references. Other standard conversions, even ones likeint to long , are not applied.

4.5 Access to Local Variables
Since athrow-expressionis an exit from a block and typically also a return from one or more functions,

one cannot pass information stored in local variables in the block where thethrow occurs– or in auto-
matic (local) variables in functions returned from by thethrow . For example:

void f()
{

try {
g();

}
catch (int* p) {

if (*p == 0) // ...
}

}

void g()
{

int a = 0;
throw &a; // unwise

}

This is logically equivalent to returning a pointer to a local variable from a function using the normal func-
tion return mechanism.

5 Handling of Destructors

Consider what to do when an exception is thrown and we need to pass ‘up’ through a function or block
to find a handler. This is commonly called ‘stack unwinding.’ If a local object has a destructor, that
destructor must be called as part of the stack unwinding. This can be done by implicitly providing a hand-
ler that calls the destructor when an exception is thrown after construction but before destruction of the
local object. Such destructor calls are done before entry into a handler. For example, if classesA andB
have destructors,

void f()
{

A a;
B b;
g();

}

might be implemented in the following equivalent way:
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void f() // pseudo code
{

try {
A a;
try {

B b;
try {

g();
}
catch (...) {

// destroy ‘b’
// destroy ‘a’

throw;
}

}
catch (...) {

// exception occurred during
// the construction of ‘b’

// destroy ‘a’

throw;
}

}
catch (...) {

// exception occurred during
// the construction of ‘a’

throw;
}
// destroy ‘b’
// destroy ‘a’

}

This looks horrendously complicated and expensive. Fortunately, a user will never have to write it, and in
fact, there is an implementation technique that (in addition to the standard overhead of establishing a hand-
ler) involves only minimal overhead. Here is an example of C code that might be generated for the exam-
ple above:

void f() // generated code
{

int __counter = 0;
struct A a;
struct B b;

A::A(&a);
__counter++; /* one object created */

B::B(&b);
__counter++; /* two objects created */

g();

__counter = 3; /* no exception occurred */
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__catch:
switch (__counter) {
case 3:
case 2: b.B::~B(); /* fall through */
case 1: a.A::~A();
}

if (__counter == 3) return;
throw; /* or whatever the corresponding C is */

}

For this to work we assume two things: a way of getting to the label__catch in case an exception is
thrown ing() , and a way of re-throwing the exception at the end off() if an exception caused transfer of
control to__catch .

The problem becomes somewhat more complicated in the face of arrays of objects with destructors, but
we do not believe that dealing with these complications is any more than tedious.

5.1 Suppressing Destructor Calls
It has been observed that for many objects destruction is irrelevant once an exception is thrown and that

an exception may be thrown precisely under conditions where it would be dangerous to run the destructor
for certain objects. One could therefore imagine facilities for specifying that objects of certain classes
should not be destroyed during the stack unwinding caused by exception handling. Such facilities could
lead to faster and safer exception handling and more compact code.

Nevertheless, lack of experience argues that we should not immediately include specific facilities for
that. Where necessary, the user can simulate the effect of such facilities by inserting suitable checks in
destructors. Should experience show that such code proliferates, and especially if experience shows such
code to be baroque, we should revisit the question of a facility for selectively suppressing destructor calls.

5.2 Throwing Exceptions in Destructors
Naturally, a destructor can throw an exception. In fact, since destructors often call other functions that

may throw exceptions it cannot be avoided. Throwing exceptions during a ‘‘normal’’ invocation of a
destructor causes no special problems. Throwing an exception during the execution of a destructor that was
called as part of the stack unwinding caused by an exception being thrown may be another matter. This
should be allowed to avoid putting artificial constraints on the writing of destructors.

Only one restriction is needed: If a destructor invoked during stack unwinding throws an exception,
directly or indirectly, that propagates uncaught back through that destructor itself, the exception will be
turned into a call ofterminate() . The default meaning ofterminate() is abort() ; see Appendix
G. Without this restriction the implementation of exception handling would be needlessly complicated and
it would not be at all clear what exception should be considered thrown: the original exception or the one
thrown by the destructor? We see no general rule for resolving that question.

6 Handling of Constructors

An object is not considered constructed until its constructor has completed. Only then will stack
unwinding call the destructor for the object. An object composed of sub-objects is constructed to the extent
that its sub-objects have been constructed.

A well written constructor should ensure that its object is completely and correctly constructed. Failing
that, the constructor should restore the state of the system after failure to what it was before creation. It
would be ideal for naively written constructors always to achieve one of these alternatives and not leave
their objects in some ‘half-constructed’ state.

Consider a classX for which a constructor needs to acquire two resourcesx andy . This acquisition
might fail and throw an exception. Without imposing a burden of complexity on the programmer, the class
X constructor must never return having acquired resourcex but not resourcey .

We can use the technique we use to handle local objects. The trick is to use objects of two classesA
andB to represent the acquired resources (naturally a single class would be sufficient if the resourcesx and
y are of the same kind). The acquisition of a resource is represented by the initialization of the local object
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that represents the resource:

class X {
A a;
B b;
// ...
X()

: a(x), // acquire ‘x’
b(y) // acquire ‘y’

{}
// ...

};

Now, as in the local object case, the implementation can take care of all the bookkeeping. The user doesn’t
have to keep track at all.

This implies that where this simple model for acquisition of resources (a resource is acquired by initial-
ization of a local object that represents it) is adhered to, all is well and– importantly – the constructor
author need not write explicit exception handling code.

Here is a case that does not adhere to this simple model:

class X {
static int no_of_Xs;
widget* p;
// ...
X() { no_of_Xs++; p = grab(); }
~X() { no_of_Xs--; release(p); }

};

What happens ifgrab() throws some exception so that the assignment top never happens for some
object? The rule guaranteeing that an object is only destroyed automatically provided it has been com-
pletely constructed ensures that the destructor isn’t called– thus saving us from therelease() of a ran-
dom pointer value– but theno_of_Xs count will be wrong. It will be the programmer’s job to avoid
such problems. In this case the fix is easy: simply don’t increaseno_of_Xs until the possibility of an
exception has passed:

X::X() { p = grab(); no_of_Xs++; }

Alternatively, a more general and elaborate technique could be used:

X::X()
{

no_of_Xs++;
try {

p = grab();
}
catch (...) {

no_of_Xs--;
throw; // re-throw

}
}

There is no doubt that writing code for constructors and destructors so that exception handling does not
cause ‘half constructed’ objects to be destroyed is an error-prone aspect of C++ exception handling. The
‘resource acquisition is initialization’ technique can help making the task manageable. It should also be
noted that the C++ default memory allocation strategy guarantees that the code for a constructor will never
be called ifoperator new fails to provide memory for an object so that a user need not worry that con-
structor (or destructor) code might be executed for a non-existent object.
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7 Termination vs. Resumption

Should it be possible for an exception handler to decide to resume execution from the point of the
exception? Some languages, such as PL/I and Mesa, say yes and reference 11 contains a concise argument
for resumption in the context of C++. However, we feel it is a bad idea and the designers of Clu, Mod-
ula2+, Modula3, and ML agree.

First, if an exception handler can return, that means that a program that throws an exception must
assume that it will get control back. Thus, in a context like this:

if (something_wrong) throw zxc();

it would not be possible to be assured thatsomething_wrong is false in the code following the test
because thezxc handler might resume from the point of the exception. What such resumption provides is
a contorted, non-obvious, and error-prone form of co-routines. With resumption possible, throwing an
exception ceases to be a reliable way of escaping from a context.

This problem might be alleviated if the exception itself or the throw operation determined whether to
resume or not. Leaving the decision to the handler, however, seems to make programming trickier than
necessary because the handler knows nothing about the context of the throw-point. However, leaving the
resumption/termination decision to the throw-point is equivalent to providing a separate mechanism for ter-
mination and resumption– and that is exactly what we propose.

Exception handling implies termination; resumption can be achieved through ordinary function calls.
For example:

void problem_X_handler(arguments) // pseudo code
{

// ...
if (we_cannot_recover) throw X("Oops!");

}

Here, a function simulates an exception that may or may not resume. We have our doubts about the wis-
dom of usingany strategy that relies on conditional resumption, but it is achievable through ordinary lan-
guage mechanisms provided there is cooperation between the program that throws the exception and the
program that handles it. Such cooperation seems to be a prerequisite for resumption. Pointers to such
‘‘error handling’’ functions provide yet another degree of freedom in the design of error handling schemes
based of the termination-oriented exception handling scheme presented here.

Resumption is of only limited use without some means of correcting the situation that led to the excep-
tion. However, correcting error conditions after they occur is generally much harder than detecting them
beforehand. Consider, for example, an exception handler trying to correct an error condition by changing
some state variable. Code executed in the function call chain that led from the block with the handler to the
function that threw the exception might have made decisions that depended on that state variable. This
would leave the program in a state that was impossible without exception handling; that is, we would have
introduced a brand new kind of bug that is very nasty and hard to find. In general, it is much safer to re-try
the operation that failed from the exception handler than to resume the operation at the point where the
exception was thrown.

If it were possible to resume execution from an exception handler, that would force the unwinding of
the stack to be deferred until the exception handler exits. If the handler had access to the local variables of
its surrounding scope without unwinding the stack first we would have introduced an equivalent to nested
functions. This would complicate either the implementation/semantics or the writing of handlers.

It was also observed that many of the ‘‘potential exceptions’’ that people wanted to handle using a
resumption-style exception handling mechanism where asynchronous exceptions, such as a user hitting a
break key. However, handling those would imply the complications of the exception handling mechanism
as discussed in section 9.

Use of a debugger can be seen as constituting a special form of resumption: Where a debugger is acti-
vated because an exception has been thrown but not caught, the user expects to find the program in a state
where the local variables at the throw-point are accessible. After inspecting and possibly modifying the
state of the program, the programmer might want to resume. This special case of resumption can be sup-
ported with minor overhead in the case where a debugger is active (only). Modifications of the program’s
behavior in this case are of the same kind as any other modifications of a program’s state using a debugger;
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they are extra-linguistic and defined as part of a programming environment rather than as part of the lan-
guage.

8 Safety and Interfaces

Throwing or catching an exception affects the way a function relates to other functions. It is therefore
worth considering if such things should affect the type of a function. One could require the set of excep-
tions that might be thrown to be declared as part of the type of a function. For example:

void f(int a) throw (x2, x3, x4);

This would improve static analysis of a program and reduce the number of programmer errors[5,6]. In par-
ticular, one could ensure that no exception could be thrown unless there were a matching handler for it.

8.1 Static Checking
Compile and link time enforcement of such rules is ideal in the sense that important classes of nasty

run-time errors are completely eliminated (turned into compile time errors). Such enforcement does not
carry any run-time costs– one would expect a program using such techniques to be smaller and run faster
than the less safe traditional alternative of relying on run-time checking. Unfortunately, such enforcement
also has nasty consequences.

Suppose a functionf() can throw an exceptione:

void f() throw (e)
{

// ...
}

For static checking to work, it must be an error for a functiong() to call f() unless eitherg() is also
declared to throwe or g() protects itself againstf() throwinge:

void g() throw (h)
{

f(); // error: f() might throw e

try {
f(); // OK: if f() throws e, g() will throw h

}
catch (e) {

throw h;
}

}

To allow such checkingevery function must be decorated with the exceptions it might throw. This
would be too much of a nuisance for most people. For example:

#include <stream.h>

main()
{

cout << "Hello world\n"; // error: might throw an exception!
}

Preventing such compile-time errors would be a great bother to the programmer and the checking would
consequently be subverted. Such subversion could take may forms. For example, calls through C functions
could be used to render the static checking meaningless, programmers could declare functions to throw all
exceptions by default, and tools could be written to automatically create lists of thrown exceptions. The
effect in all cases would be to eliminate both the bother and the safety checks that were the purpose of the
mechanism.

Consequently, we think the only way to make static checking practical would be to say that undecorated
functions can potentially throw any exception at all. Unfortunately, that again puts an intolerable burden on
the programmer who wishes to write a function that is restricted to a particular set of exceptions. That pro-
grammer would have to guardevery call to every unrestricted function– and since functions are
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unrestricted by default, that would make restricted functions too painful to write in practice. For instance,
every function that did not expect to throw I/O exceptions would have to enumerate every possible I/O
exception.

8.2 Dynamic checking
A more attractive and practical possibility is to allow the programmer to specify what exceptions a func-

tion can potentially throw, but to enforce this restriction at run time only. When a function says something
about its exceptions, it is effectively making a guarantee to its caller; if during execution that function does
something that tries to abrogate the guarantee, the attempt will be transformed into a call of
unexpected() . The default meaning ofunexpected() is terminate() , which in turn normally
callsabort() ; see Appendix G for details.

In effect, writing this:

void f() throw (e1, e2)
{

// stuff
}

is equivalent to writing this:

void f()
{

try {
// stuff

}
catch (e1) {

throw; // re-throw
}
catch (e2) {

throw; // re-throw
}
catch (...) {

unexpected();
}

}

The advantage of the explicit declaration of exceptions that a function can throw over the equivalent
checking in the code is not just that it saves typing. The most important advantage is that the function
declarationbelongs to an interface that is visible to its callers. Functiondefinitions, on the other hand, are
not universally available and even if we do have access to the source code of all our libraries we strongly
prefer not to have to look at it very often.

Another advantage is that it may still be practical to detect many uncaught exceptions during compila-
tion. For example, if the firstf() above called a function that could throw something other thane1 or e2 ,
the compiler could warn about it. Of course the compiler has to be careful about such warnings. For exam-
ple, if every integer addition can potentially throwInt_overflow , it is important to suppress warnings
about such common operations. Programmers do not appreciate being showered by spurious warnings.

Detecting likely uncaught exceptions may be a prime job for the mythicallint++ that people have
been looking for an excuse to design. Here is a task that requires massive static analysis of a complete pro-
gram and does not fit well with the traditional C and C++ separate compilation model.

8.3 Type Checking of Exceptions
If a list of exceptions is specified for a function, it behaves as part of the function’s type in the sense that

the lists must match in the declaration and definition. Like the return type, the exception specification does
not take part in function matching for overloaded functions.

A function declared without an exception specification is assumed to throw every exception.

int f(); // can throw any exception

A function that will throw no exceptions can be declared with an explicitly empty list:
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int g() throw (); // no exception thrown

The list of exceptions could be part of the function’s signature so that type-safe linkage could be achieved.
This, however, would require sophisticated linker support so the exception specification is better left
unchecked on systems with traditional linker (just as the return type is left unchecked). Simply forcing a
re-write and recompilation whenever an exception specification changed would cause the users to suffer the
worst implications of strict static checking.

For example, a function must potentially be changed and recompiled if a function it calls (directly or
indirectly) changes the set of exceptions it catches or throws. This could lead to major delays in the pro-
duction of software produced (partly) by composition of libraries from different sources. Such libraries
would de factohave to agree on a set of exceptions to be used. For example, if sub-system X handles
exceptions from sub-system Y and the supplier of Y introduces a new kind of exception, then X’s code will
have to be modified to cope. A user of X and Y will not be able to upgrade to a new version of Y until X
has been modified. Where many sub-systems are used this can cause cascading delays. Even where the
‘multiple supplier problem’ does not exist this can lead to cascading modifications of code and to large
amounts of re-compilation.

Such problems would cause people to avoid using the exception specification mechanism or else sub-
vert it. To avoid such problems, either the exceptions must not be part of a function’s signature or else the
linker must be smart enough to allow calls to functions with signatures that differ from the expected in their
exception specification only.

An equivalent problem occurs when dynamic checking is used. In that case, however, the problem can
be handled using the exception grouping mechanism presented in section 4. A naive use of the exception
handling mechanism would leave a new exception added to sub-system Y uncaught or converted into a call
to unexpected() by some explicitly called interface. However, a well defined sub-system Y would
have all its exceptions derived from a classYexception . For example

class newYexception : public Yexception { /* ... */ };

This implies that a function declared

void f() throw (Xexception, Yexception, IOexception);

would handle anewYexception by passing it to callers off() .
Exception handling mechanisms descending from the Clu mechanism tend to provide a distinguished

failure exception that is raised (that is, thrown) when an unexpected exception occurs. In that case, the
scheme presented here callsunexpected() . This is a more serious response to an unexpected exception
since a call ofunexpected() cannot be caught the way an exception can and is intended to trigger a
program’s response to a catastrophic failure. This choice partly reflects the observation that in a mixed lan-
guage environment it is not possible to intercept all exceptional circumstances so it would be dangerous to
encourage programmers to believe they can. For example, a C function may call the standard C library
function abort() and thus bypass attempts to intercept all returns from a call to a subsystem. Having a
distinguished failure exception also allows easy subversion of interfaces by providing a single catch-all for
(almost) every kind of unexpected event. Stating that a function raises only a specific set of exceptions
becomes less meaningful because one must always remember ‘‘and failure’’– and failure can be caught
elsewhere leaving a program running ‘‘correctly’’ after the explicit assumption of an interface specification
has been violated. In other words, the motivation for not having a failure exception is that in our model,
raising it would always indicate a design error and such design errors should cause immediate termination
whenever possible.

The grouping mechanism provided for C++ allows programmers to use separate exception classes for
major sub-systems, such as basic I/O systems, window managers, networks, data base systems, etc. By
deriving the individual exceptions thrown by such a sub-system from the sub-system’s ‘‘main exception,’’
that main exception becomes the equivalent to a failure exception for that sub-system. This technique pro-
motes more precise and explicit specification of exceptions compared with the unique distinguished failure
exception technique. Having a universal base class for exceptions, which one might callfailure , would
simulate the Clu technique and is consequently not recommended.

Occasionally, the policy of terminating a program upon encountering an unexpected exception is too
Draconian. For example, consider calling a functiong() written for a non-networked environment in a
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distributed system. Naturally,g() will not know about network exceptions and will callunexpected()
when it encounters one. To useg() in a distributed environment we must provide code that handles net-
work exceptions– or rewriteg() . Assuming a re-write is infeasible or undesirable we can handle the
problem by redefining the meaning ofunexpected() . The functionset_unexpected() can be
used to achieve that. For example:

void rethrow() { throw; }

void networked_g()
{

PFV old = set_unexpected(&rethrow);
// now unexpected() calls rethrow()

try {
void g();

}
catch (network_exception) {

set_unexpected(old);
// recover

}
catch (...) {

set_unexpected(old);
unexpected();

}
}

See Appendix G for details and for a more elegant way of setting and restoringunexpected() .

9 Asynchronous Events

Can exceptions be used to handle things like signals? Almost certainly not in most C environments.
The trouble is that C uses functions likemalloc that are not re-entrant. If an interrupt occurs in the mid-
dle of malloc and causes an exception, there is no way to prevent the exception handler from executing
malloc again.

A C++ implementation where calling sequences and the entire run-time library are designed around the
requirement for reentrancy would make it possible for signals to throw exceptions. Until such implementa-
tions are commonplace, if ever, we must recommend that exceptions and signals be kept strictly separate
from a language point of view. In many cases, it will be reasonable to have signals and exceptions interact
by having signals store away information that is regularly examined (polled) by some function that in turn
may throw appropriate exceptions in response to the information stored by the signals.

10 Concurrency

One common use of C++ is to emulate concurrency, typically for simulation or similar applications.
The AT&T task library is one example of such concurrency simulation[16]. The question naturally arises:
how do exceptions interact with such concurrency?

The most sensible answer seems to be that unwinding the stack must stop at the point where the stack
forks. That is, an exception must be caught in the process in which it was thrown. If it is not, an exception
needs to be thrown in the parent process. An exception handled in the function that is used to create new
processes can arrange that by providing a suitable exception handler.

The exception handling scheme presented here is easily implemented to pass information from the
throw-point to handlers in a way that works correctly in a concurrent system; see Appendix A for details.
The ‘resource acquisition is initialization’ technique mentioned in section 6 can be used to manage locks.



- 18 -

11 C Compatibility

Since ANSI C does not provide an exception handling mechanism, there is no issue of C compatibility
in the traditional sense. However, a convenient interface to the C++ exception handling mechanism from C
can be provided. This would allow C programmers to share at least some of the benefits of a C++ exception
handling implementation and would improve mixed C/C++ systems. In ‘plain’ ANSI C this would require
tricky programming using the functions implementing the C++ exception handling mechanism directly.
This would, however, still be simpler and better than most current C error handling strategies. Alterna-
tively, C could be extended with atry statement for convenience, but if one were going that far there
would be little reason not to switch completely to C++.

12 Standard Exceptions

A set of exceptions will eventually be standard for all implementations. In particular, one would expect
to have standard exceptions for arithmetic operations, out-of-range memory access, memory exhaustion,
etc. Libraries will also provide exceptions. At this point we do not have a suggested list of standard excep-
tions such as one would expect to find in a reference manual.

This paper describes a set of language mechanisms for implementing error handling strategies– not a
complete strategy.

13 So How Can We Use Exceptions?

The purpose of the exception handling mechanism is to provide a means for one part of a program to
inform another part of a program that an ‘exceptional circumstance’ has been detected. The assumption is
that the two parts of the program are typically written independently and that the part of the program that
handles the exception often can do something sensible about it.

What kind of code could one reasonably expect to find in an exception handler? Here are some exam-
ples:

int f(int arg)
{

try {
g(arg);

}
catch (x1) {

// fix something and retry:
g(arg);

}

catch (x2) {
// calculate and return a result:
return 2;

}

catch (x3) {
// pass the bug
throw;

}

catch (x4) {
// turn x4 into some other exception
throw xxii;

}

catch (x5) {
// fix up and carry on with next statement

}
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catch (...) {
// give up:
terminate();

}
// ...

}

Does this actually make error handling easier than ‘traditional techniques?’ It is hard toknow what
works without first trying this exact scheme, so we can only conjecture. The exception handling scheme
presented here is synthesized from schemes found in other languages and from experiences with C++, but
learning from other people’s mistakes (and successes) is not easy and what works in one language and for a
given set of applications may not work in another language for different range of applications.

Consider what to do when an error is detected deep in a library. Examples could be an array index
range error, an attempt to open a non-existent file for reading, falling off the stack of a process class, or try-
ing to allocate a block of memory when there is no more memory to allocate. In a language like C or C++
without exceptions there are only few basic approaches (with apparently infinite variations). The library
can

[1] Terminate the program.
[2] Return a value representing ‘error.’
[3] Return a legal value and leave the program in an illegal state.
[4] Call a function supplied to be called in case of ‘error.’

What can one do with exceptions that cannot be achieved with these techniques? Or rather– since any-
thing can be fudged given sufficient time and effort– what desirable error handling techniques become eas-
ier to write and less error-prone when exceptions are used?

One can consider throwing an exception as logically equivalent to case [1]: ‘terminate the program’
with the proviso that if some caller of the program thinks it knows better it can intercept the ‘terminate
order’ and try to recover. Thedefault result of throwing an exception is exactly that of termination (or
entering the debugger on systems where that is the default response to encountering a run-time error).

Exception handling is not really meant to deal with ‘errors’ that can be handled by [4] ‘call an error
function.’ Here, a relation between the caller and the library function is already established to the point
where resumption of the program is possible at the point where the error was detected. It follows that
exception handling is not even as powerful as the function call approach. However, should the ‘error func-
tion’ find itself unable to do anything to allow resumption then we are back to cases [1], [2], or [3] where
exceptions may be of use.

Case [2], ‘returning an error value,’ such as0 instead of a valid pointer,NaN(not a number, as in IEEE
floating point) from a mathematical function, or an object representing an error state, implies that the caller
will test for that value and take appropriate action when it is returned. Experience shows that

[1] There are often several levels of function calls between the point of error and a caller that knows
enough to handle the error, and

[2] it is typically necessary to test for the error value at most intermediate levels to avoid consequential
errors and to avoid the ‘error value’ simply being ignored and not passed further up the call chain.
Even if error values such asNaNcan be propagated smoothly, it can be hard to find out what went
wrong when a complicated computation producesNaNas its ultimate result.

Where this is the case one of two things happens:
[1] Sufficient checking is done and the code becomes an unreadable maze of tests for error values, or
[2] insufficient checking is done and the program is left in an inconsistent state for some other function

to detect.
Clearly, there are many cases where the complexity of checking error values is manageable. In those cases,
returning error values is the ideal technique; in the rest, exception handling can be used to ensure that [2],
‘insufficient checking,’ will not occur and that the complexity induced by the need for error handling is
minimized through the use of a standard syntax for identifying the error handling code and through a con-
trol structure that directly supports the notion of error handling. Using exception handling instead of ‘ran-
dom logic’ is an improvement similar to using explicit loop-statements rather than gotos; in both cases ben-
efits only occur when the ‘higher level’ construct is used in a sensible and systematic manner. However, in
both cases that is easier to achieve than a sensible and systematic use of the ‘lower level’ construct.

Case [3], ‘return a legal value leaving the program in an illegal state,’ such setting the global variable



- 20 -

errno in a C program to signal that one of the standard math library functions could not compute a valid
result relies on two assumptions

[1] that the legal value returned will allow the program to proceed without subsequent errors or extra
coding, and

[2] someone will eventually test for the illegal state and take appropriate action.
This approach avoids adding complex error handling tests and code to every function, but suffers from at
least four problems:

[1] Programmers often forget to test for the error state.
[2] Subsequent errors sometimes happen before the execution gets back to the test for the error condi-

tion.
[3] Independent errors modify the error state (e.g. overwriteerrno ) so that the nature of the problem

encountered becomes confused before getting back to the error test. This is particularly nasty where
several threads of control are used.

[4] Separate libraries assign the same values (error states) to designate different errors, thus totally con-
fusing testing and handling of errors.

Another way of describing the exception handling scheme is as a formalization of this way of handling
errors. There is a standard way of signaling an error that ensures that two different errors cannot be given
the same ‘error value,’ ensures that if someone forgets to handle an error the program terminates (in which-
ever way is deemed the appropriate default way), and (since the ordinary execution path is abandoned after
an exception is thrown) all subsequent errors and confusion will occur in exception handling code– most
of which will be written specifically to avoid such messes.

So, does the exception handling mechanism solve our error handling problems? No, it is only a mecha-
nism. Does the exception handling mechanism provide a radically new way of dealing with errors? No, it
simply provides a formal and explicit way of applying the standard techniques. The exception handling
mechanism

[1] Makes it easier to adhere to the best practices.
[2] Gives error handling a more regular style.
[3] Makes error handling code more readable.
[4] Makes error handling code more amenable to tools.

The net effect is to make error handling less error-prone in software written by combining relatively inde-
pendent parts.

One aspect of the exception handling scheme that will appear novel to C programmers is that the default
response to an error (especially to an error in a library) is to terminate the program. The traditional
response has been to muddle on and hope for the best. Thus exception handling makes programs more
‘brittle’ in the sense that more care and effort will have to be taken to get a program to run acceptably. This
seems far preferable, though, to getting wrong results later in the development process (or after the develop-
ment process was considered complete and the program handed over to innocent users).

The exception handling mechanism can be seen as a run-time analog to the C++ type checking and
ambiguity control mechanisms. It makes the design process more important and the work involved in get-
ting a program to compile harder than for C while providing a much better chance that the resulting pro-
gram will run as expected, will be able to run as an acceptable part of a larger program, will be comprehen-
sible to other programmers, and amenable to manipulation by tools. Similarly, exception handling provides
specific language features to support ‘good style’ in the same way other C++ features support ‘good style’
that could only be practiced informally and incompletely in languages such as C.

It should be recognized that error handling will remain a difficult task and that the exception handling
mechanism while far more formalized than the techniques it replaces, still is relatively unstructured com-
pared with language features involving only local control flow.

For example, exceptions can be used as a way of exiting from loops:
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void f()
{

class loop_exit { };

// ...

try {
while (g()) {

// ...
if (I_want_to_get_out) throw loop_exit();
// ...

}
}
catch (loop_exit) {

// come here on ‘exceptional’ exit from loop
}

// ...
}

We don’t recommend this technique because it violates the principle that exceptions should be exceptional:
there is nothing exceptional about exiting a loop. The example above simply shows an obscure way of
spellinggoto .

14 Conclusions

The exception handling scheme described here is flexible enough to cope with most synchronous excep-
tional circumstances. Its semantics are independent of machine details and can be implemented in several
ways optimized for different aspects. In particular, portable and run-time efficient implementations are
both possible. The exception handling scheme presented here should make error handling easier and less
error-prone.
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16.1 Appendix A: Implementations
We have described the design of an exception handling mechanism. Several different implementations

are possible. In particular, it is possible to write an implementation that is fully portable in the sense that it
produces ANSI C (only) and also to write an implementation that is close to ideal in its use of run-time.

16.2 Run-time representation of Types
All implementations must provide a way of representing the type of the exception thrown for matching

with the types specified in the handlers. At the point where an exception is thrown, the compiler might give
to the library functions that search for a handler a pointer to a string that names the exception class and all
its base classes, along with a pointer to the copy constructor for each. A variant of the encoding of types
used to achieve type-safe linkage on systems with traditional linkers could be used. For example:

class X { /* ... */ };

class Y : public X { /* ... */ };

class A { /* ... */ };

class Z : public Y : public A { /* ... */ };

could be represented as:
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center; cfBcfB lfCWlfCW. = type run-time representation _ X "_1X" Y "_1Y:_1X"
Z "_1Z:(_1Y:_1X,_1A)" Y& "R _1Y:_1X" Z* "P_1Z:(_1Y:_1X,_1A)" const char* "PCc"_

The reason that strings are a reasonable representation and that the complete inheritance hierarchy is needed
is that separate compilation of thethrow-expressionand thehandlerwill be the norm and that the resolu-
tion must be done at run time.

Schemes based on other kinds of objects representing the classes are of course also feasible and will be
more appropriate than strings in some environments. Whatever representation is chosen should be suitably
encapsulated in a class. It will also be necessary to define a set of C functions for creating and using such
run-time representations. We present the string encoding scheme simply as an existence proof.

16.3 Exception Temporaries
Another issue that every implementation must face is the need to introduce a ‘‘temporary object’’ to

hold the current exception during stack unwinding and during the execution of a handler (in case a re-throw
operation occurs in the handler or in a function called by the handler). The use of such a temporary object
is completely under control of the exception handling mechanism. One strategy would be to allocate such
objects using the general purpose free store mechanisms. However, that could make the exception handling
mechanism vulnerable to free store corruption and exhaustion. A better strategy would be to allocate such
objects out of a pre-allocated pool of storage used only by the exception handling mechanism and maybe
also optimize away the ‘‘temporary object’’ for exceptions passed by value and not re-thrown.

16.4 Outline of a Portable Implementation
Here we describe an implementation that is fully portable in the sense that it makes it possible to gener-

ate ANSI C (only) from a C++ program. The importance of such an implementation is that it allows pro-
grammers to experiment with C++ exception handling without waiting for implementations to be specifi-
cally tuned for their particular system and guarantees portability of programs using exception handling
across a greater range of machines than would be economically feasible had each machine required a ‘hand
crafted’ implementation. The price of such an implementation is run-time cost. We have no really good
estimates of that cost but it is primarily a function of the cost ofsetjmp() and longjmp() on a given
system.

To simplify the discussion, we need to define a few terms. Adestructible objectis an object that has a
non-empty destructor or contains one or more destructible objects. Thedestructor countof a class is the
number of destructors that must be executed before freeing an object of that class, including the destructor
for the class itself. The destructor count of an array is the number of elements in the array times the
destructor count of an element.

The general strategy is to lay down a destructor for every destructible object, even if the user did not
specify one (for example, consider an object without an explicit destructor that contains two objects with
destructors). Every destructible object on the stack acquires aheadercontaining a pointer to the destructor
for that object, a pointer to the next most recently created automatic destructible object, and askip count
that indicates how much of that object has been constructed:

struct _header {
void* destructor;
void* backchain;
unsigned skipcount;

};

Thus, for example, a C++ class that looks like this:

class T {
public:

T();
~T();

};

will be augmented internally to look like this:



- 24 -

class T {
_header _h;

public:
T();
~T();

}

Every_header object is part of some other object. All destructible objects on the stack therefore form
a chain, with the most recent first. The head of that chain is a (single) global variable created for the pur-
pose, initially null.

Therefore, to construct an automatic object, the implementation must make the object header point to
the destructor for that object, set the skip count to indicate that construction has not yet started, and link the
header into the global chain. If the variable that heads the chain is called_DO_head (DO stands for
‘destructible objects’), the following code would be inserted intoT::T() to maintain the chain:

_h.backchain = _DO_head;
_h.skipcount = 1; // destructor count of T
_h.destructor = (void*) &T::~T();
_DO_head = &h;

We will use this chainonly to destroy objects while unwinding the stack; we do not need it when a
destructor is called during normal exit from a block. However, an exception could occur in a destructor
during normal block exit, so it is necessary to keep the global chain header up to date while destroying
objects. The safest way to do this is probably for the compiler to avoid following the actual chain. Instead,
the compiler should point the chain header directly at each object it is about to destroy.

In other words, rather than generating code insideT::~T() to update_DO_head, the compiler should
reset_DO_head explicitly and then call the relevant destructor where possible:

_DO_head = previous value;
t->T::~T();

The skip count indicates how many destructors have to be skipped when destroying an object. When
we are about to begin constructing an object, we set its skip count to its destructor count. Each constructor
decrements the skip count, so that a completely constructed object has a skip count of zero.

The elements of an object are destroyed in reverse order. Each destructoreither decrements the skip
countor destroys its associated object if the skip count is already zero.

To do all this, we give every constructor and destructor the address of the skip count as an ‘extra’ argu-
ment. If the object is not on the stack, we pass the address of a dummy word.

For example, code generated for the destructorT::~T() might look like this:

T_dtor(/* other arguments */, unsigned* skipcount) /* generated code */
{

if (*skipcount)
--*skipcount;

else {
/* destroy ‘*this’ */

}
}

If destructors leave a zero skip count untouched, we can safely give a destructor for an off-stack object
the address of a static zero word somewhere. Having a destructor do this costs little, as destructors must
test for zero anyway.

The test is presumably unnecessary for constructors, and it would be a shame to have to include it any-
way just to avoid having a constructor for an off-stack object scribble a global value. However, we can use
a different global value for constructors. We don’t care what the value is, so all constructors can safely
scribble it. By making all skip countsunsigned , we can avoid the possibility of overflow or underflow.

The actual stack unwinding must be done bylongjmp and takes place in two stages. First we track
back through the stack object chain, calling destructors along the way. After that, we execute the C
longjmp function to pop the stack.

What is the overhead of this scheme? Every constructor gets an extra argument (which takes one
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instruction to push it) and has to decrement the skip count (one or two instructions, two memory refer-
ences). Every destructor gets an extra argument (one instruction to push it) and has to decrement and test
the skip count (three or four instructions). In addition, each destructible object gets three extra words
(which takes three instructions to fill them) and the list head must be updated when the object is created
(one instruction). There is no extra overhead for classes, such asComplex , that do not have destructors.

Thus the overhead per destructible object is somewhere near 10-12 instructions. This overhead
decreases if constructors or destructors are inline: the skip counts can be set directly instead of indirectly
and the inline destructors don’t even have to test them. It is still necessary to lay down an out-of-line
destructor with full generality.

16.5 Outline of an Efficient Implementation
Here we outline an implementation technique (derived from Clu and Modula2+ techniques) that has

close to ideal run-time performance. This means that (except possibly for some table building at startup
time), the implementation carries absolutely no run time overhead until an exception is thrown; every cycle
spent is spent when exceptions are thrown. This could make throwing an exception relatively expensive,
but that we consider a potential advantage because it discourages the use of exception handling where alter-
native control structures will do.

Since this implementation requires detailed knowledge of the function calling mechanism and of the
stack layout on a particular system, it is portable only though a moderate amount of effort.

The compiler must construct, for each block, a map from program counter values to a ‘construction
state.’ This state is the information necessary to determine which objects need to be destroyed if execution
is interrupted at the given point.

Such a table can be organized as a list of address triples, the first two elements representing a region in
which a particular destruction strategy is appropriate, and the third element representing a location to which
to jump if execution is interrupted in that region. The number of entries in such tables could be greatly
reduced (typically to one) at a modest execution cost by adding a fourth element to entries and using the
__counter trick presented in section 5.

This table is searched only if an exception is thrown. In that case, the exception dispatcher unwinds the
stack as necessary, using the appropriate table for each stack frame to decide how to destroy objects for that
stack frame. The dispatcher can regain control after each level of unwinding by ‘hijacking’ the return
address from each frame before jumping to the destruction point.

It is possible to merge all pre-frame exception tables into a single table either at run time or compile
time. Where dynamic linking is used such table merging must be done at run time.

As before, the decision about whether to enter an exception handler can be made by code generated for
the purpose, the address of which can be placed in the table in place of the destruction point for those
blocks with exception handlers.

The only overhead of this scheme if exceptions are not used is that these tables will take up some space
during execution. Moreover, the stack frame layout must be uniform enough that the exception dispatcher
can locate return addresses and so on.

In addition, we need some way of identifying these tables to the exception dispatcher. A likely way to
do that while still living with existing linkers is to give the tables names that can be recognized by a suit-
able extension to themunch or patch programs.

16.6 Appendix B: Grammar
In the C++ grammar, the exception handling mechanism looks like this:
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try-block:
try compound-statement handler-list

handler-list:
handler handler-listopt

handler:
catch ( exception-declaration) compound-statement

exception-declaration:
type-specifier-list declarator
type-specifier-list abstract-declarator
type-specifier-list
...

A try-block is astatement.

throw-expression:
throw expressionopt

A throw-expressionis aunary-expressionof typevoid .
A exception-specificationcan be used as a suffix in a function declaration:

exception-specification:
throw ( type-listopt )

type-list:
type-name
type-list , type-name

16.7 Appendix C: Local Scope Issues
Allowing the exception handling code in ahandler to access variables in thetry block to which it is

attached would violate the notion that a block establishes a scope. For example:

void f(int arg)
{

int loc1;

try { int loc2; /* ... */ g(); } catch (x1) { /* ... */ }
try { int loc3; /* ... */ g(); } catch (x2) { /* ... */ }

}

Here, both exception handlers can access the local variableloc1 and the argumentarg , but neither of
them can get atloc2 or loc3 .

Disallowing access to variables in the block to which the handler is attached is also important to allow
good code to be generated. For example:
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void f(int arg)
{

int loc1;

// ...

try {
int loc2 = 1;
g1();
loc2++;
g2();

}
catch (x1) {

if (loc2 == 1) // ...
}

}

Were this allowed, the compiler and run-time systems would have to ensure that the value ofloc2 is well
defined upon entry to the handler. On many architectures, this implies that its value must be allocated in
memory before the calls ofg1() andg2() . However, this involves an increase of the size of the gener-
ated code and poor use of registers. One could easily lose a factor of two in run-time performance while at
the same time enlarging the code significantly.

Access to local variables in the surrounding scope (including the function arguments) is allowed and is
important in the cases where recovery is possible. For example:

void f(int arg)
{

// ...

try {
// ...

}
catch (x1) {

// fix things
return f(arg); // try again

}
}

When re-trying this way, one should beware of the infinite recursion that can occur in case of repeated fail-
ure.

Naturally, the value of local variables accessible from a handler, such asarg , must be correct upon
entry of the handler. This implies compilers must take a certain amount of care about the use of registers
for such variables.

16.8 Appendix D: Syntax Details
It might be possible to simplify the

try { ... } catch (abc) { ... }

syntax by removing the apparently redundanttry keyword, removing the redundant parentheses, and by
allowing a handler to be attached to any statement and not just to a block. For example, one might allow:

void f()
{

g(); catch (x1) { /* ... */ }
}

as an alternative to
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void f()
{

try { g(); } catch (x1) { /* ... */ }
}

The added notational convenience seems insignificant and may not even be convenient. People seem to
prefer syntactic constructs that start with a prefix that alerts them to what is going on, and it may be easier
to generate good code when thetry keyword is required. For example,

void f(int arg)
{

int i;
// ...
try { /* ... */ } catch (x) { /* ... */ }
// ...

}

Here, thetry prefix enables a single-pass compiler to ensure, at the beginning of the block with a
handler, that local variables in the surrounding block are not stored in registers. Without the prefix, register
allocation would have to be postponed until the end of the function. Naturally, optimal register allocation
based on flow analysis does not requiretry as a hint, but it is often important for a language design to
enable simple code generation strategies to be applied without incurring devastating run-time penalties.

Allowing exception handlers to be attached to blocks only and not to simple statements simplifies syn-
tax analysis (both for humans and computers) where several exceptions are caught and where nested excep-
tion handlers are considered (see Appendix E). For example, assuming that we allowedhandlers to be
attached to any statement we could write:

try try f(); catch (x) { ... } catch (y) { ... } catch (z) { ... }

The could be interpreted be in at least three ways:

try { try f(); catch (x) { ... } } catch (y) { ... } catch (z) { ... }

try { try f(); catch (x) { ... } catch (y) { ... } } catch (z) { ... }

try { try f(); catch (x) { ... } catch (y) { ... } catch (z) { ... } }

There seems to be no reason to allow these ambiguities even if there is a trivial and systematic way for a
parser to chose one interpretation over another. Consequently, a{ is required after atry and a matching}
before the first of the associated sequence ofcatch clauses.

16.9 Appendix E: Nested Exceptions
What happens if an exception is thrown while an exception handler is executing? This question is more

subtle than it appears at first glance. Consider first the obvious case:

try { f(); } catch (e1 e) { throw e; }

This is the simplest case of throwing an exception inside an exception handler and appears to be one of the
more common ones: a handler that does something and then passes the same exception on to the surround-
ing context. This example argues strongly that re-throwinge1 should not merely cause an infinite loop,
but rather that the exception should be passed up to the next level.

What about throwing a different exception?

try { f(); } catch (e2) { throw e3; }

Here, if exceptione2 occurs inf() , it seems to make sense to passe3 on to the surrounding context, just
as if f() had throwne3 directly. Now, let’s wrap a block around this statement:
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try {
try {

f();
}
catch (e2) {

throw e3;
}
catch (e3) {

// inner
}

}
catch (e3) {

// outer
}

If f() throwse2 , this will result in the handler fore3 marked ‘outer’ being entered.
From the language’s perspective an exception is considered caught at the point where control is passed

to a user-provided handler. From that point on all exceptions are caught by (lexically or dynamically)
enclosing handlers.

The handling of destructors naturally gives raise to a form of nested handlers– and thesemustbe dealt
with. Nested handlers may naturally occur in machine generated code and could conceivably be used to
improve locality of error handling.

16.10 Appendix F: Arguments to Throw Operations
We expect that it will be commonplace to pass information from the point where an exception is thrown

to the point where it is caught. For example, in the case of a vector range exception one might like to pass
back the address of the vector and the offending index. Some exception handling mechanisms provide
arguments for the throw operation to allow that[13,14,15]. However, since (in the scheme presented here)
exceptions are simply objects of user-defined types, a user can simply define a class capable of holding the
desired information. For example:

class Vector {

int* p;
int sz;

public:
class Range {

Vector* id;
int index;

public:
Range(Vector* p, int i): id(p), index(i) { }

};

int& operator[](int i)
{

if (0<=i && i<sz) return p[i];
throw Range(this, i);

}
};
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void f(Vector& v)
{

try {
do_something(v);

}
catch (Vector::Range r) {

// r.id points to the vector
// r.index is the index
// ...

}
}

This solution works nicely even under a system with concurrency. Throwing an exception involves cre-
ating a new object on the stack; catching it involves unwinding the stack to the catch point after copying the
exception object into the handler. Neither of these operations is a problem for a system that can handle
concurrency at all.

16.11 Appendix G:terminate() and unexpected()
Occasionally, exception handling must be abandoned for less subtle error handling techniques. Exam-

ples of this are when the exception handling mechanism cannot find a handler for a thrown exception, when
the exception handling mechanism finds the stack corrupted, and when a destructor called during stack
unwinding cause by an exception tries to exit using an exception. In such cases

void terminate();

is called.
One other kind of error is treated specially: when a function tries to raise an exception that it promised

in thethrow-clausein its declaration not to raise. In that case

void unexpected();

is called. This case does not necessarily callterminate() because although the failure is severe in some
sense, its semantics are well defined and it may therefore be possible to recover in a reliable way.

The terminate() function executes the last function given as an argument to the function
set_terminate() :

typedef void(*PFV)();
PFV set_terminate(PFV);

The previous function given toset_terminate() will be the return value.
Similarly, theunexpected() function executes the last function given as an argument to the function

set_unexpected() .
This enables users to implement a stack strategy for usingterminate() or unexpected() :

class STC { // store and reset class
PFV old;

public:
STC(PFV f) { old = set_terminate(f); }
~STC() { set_terminate(old); }

};

void my_function()
{

STC xx(&my_terminate_handler);

// my_terminate_handler will be called in case of disasters here

// the destructor for xx will reset the terminate handler
}

This is an example of using a local object to represent the acquisition and relinquishing of a resource as
mentioned in section 6. Without it, it guaranteeing the reset of the function to be called byterminate()
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to its old value would have been tricky. With it,terminate() will be reset even when
my_function() is terminated by an exception.

We avoided makingSTCa local class because with a suitable name it would be a good candidate for a
standard library.

By defaultunexpected() will call terminate() andterminate() will call abort(). These
default are expected to be the correct choice for most users.

A call of terminate() is assumed not to return to its caller.
Note that the functionsabort() and terminate() indicate abnormal exit from the program. The

functionexit() can be used to exit a program with a return value that indicates to the surrounding system
whether the exit is normal or abnormal.

A call of abort() invokes no destructors. A call ofexit() invokes destructors for constructed
static objects only. One could imagine a third way of exiting a program where first constructed automatic
objects were invoked in (reverse) order and then then destructors for constructed static objects. Such an
operation would naturally be an exception. For example:

throw Exit(99);

whereExit must be defined something like this:

class Exit {
public:

int val;
Exit(int i) { val=i; }

};

One might further define the invocation of a C++ program like this:

void system() // pseudo code
{

try {
return main(argv,argc);

}
catch (Exit e) {

return (e.val);
}
catch (...) {

return UNCAUGHT_EXCEPTION;
}

}


