
Runtime Concepts for the C++ Standard Template Library

Peter Pirkelbauer
Texas A&M University

College Station, TX, U.S.A.

peter.pirkelbauer@tamu.edu

Sean Parent
Adobe Systems, Inc.
San Jose, CA, U.S.A.

sparent@adobe.com

Mat Marcus
Adobe Systems, Inc.
Seattle, WA, U.S.A.

mmarcus@adobe.com

Bjarne Stroustrup
Texas A&M University

College Station, TX, U.S.A.

bs@cs.tamu.edu

ABSTRACT
A key benefit of generic programming is its support for pro-
ducing modules with clean separation. In particular, generic
algorithms are written to work with a wide variety of un-
modified types. The Runtime concept idiom extends this
support by allowing unmodified concrete types to behave in
a runtime polymorphic manner. In this paper, we describe
one implementation of the runtime concept idiom, in the do-
main of the C++ standard template library (STL). We de-
scribe and measure the performance of runtime-polymorphic
analogs of several STL algorithms. We augment the runtime
concept idiom by employing a dispatch mechanism that con-
siders both type and concept information to maximize per-
formance when selecting algorithm implementations. We
use our implementation to demonstrate the effects of differ-
ent compile-time vs. run-time algorithm selection choices,
and we indicate where improved language and compiler sup-
port would be useful.

Categories and Subject Descriptors
D.1.0 [Programming Techniques]: General

General Terms
Design, Languages

Keywords
Generic Programming, Runtime Polymorphism, C++, Stan-
dard Template Library

1. INTRODUCTION
ISO C++ [12] supports various programming paradigms,

notably object-oriented programming and generic program-
ming. Object-oriented techniques are used when runtime

This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 23rd ACM symposium on applied
computing (SAC), 2008. http://doi.acm.org/10.1145/1363686.1363734
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

polymorphic behavior is desired. When runtime polymor-
phism is not required, generic programming is used, as it
offers non-intrusive, high performance compile-time poly-
morphism; examples include the C++ Standard Template
Library (STL) [5], the Boost Libraries [1], Blitz++ [17],
STAPL [4].

Recent research has explored the possibility of a program-
ming model that retains the advantages of generic program-
ming, while borrowing elements from object-oriented pro-
gramming, in order to support types to be used in a runtime-
polymorphic manner. In [15], Parent introduces the notion
of non-intrusive value-based runtime-polymorphism, which
we will refer to as the runtime concept idiom. Marcus et
al. [14], [3], and Parent [16] extend this idea, presenting a
library that encapsulates the common tasks involved in the
creation of efficient runtime concepts. Järvi et al. discuss
generic polymorphism in the context of library adaptation
[13].

A key idea in generic programming is the notion of a con-
cept. A concept [10] is a set of semantic and syntactic re-
quirements on types. Syntactic requirements stipulate the
presence of operations and associated types. In the runtime
concept idiom, a class R is used to model these syntactic
requirements as operations. The binding from R to a par-
ticular concrete type T is delayed until runtime. Any type
T that syntactically satisfies a concept’s requirements can
be used with code that is written in terms of the runtime
concept.

In this paper, we apply these principles to develop a runtime-
polymorphic version of some STL sequence containers and
their associated iterators. Runtime concepts allow the def-
inition of functions that operate on a variety of container
types.

Consider a traditional generic function expressed using
C++ templates:

// conventional template code
template <class Iterator>
Iterator
random elem(Iterator first, Iterator last)
{

typename Iterator::difference type dist = distance(first, last);
return advance(first, rand() % dist);
}
// ...
int elem = ∗random elem(v.begin(), v.end()); // v is a vector of int

Objects of any type that meet the iterator requirement

can be used as arguments to random elem. However, those re-
quirements cannot be naturally expressed in C++98, (though
they can in C++0x), and the complete function definition is
needed for type checking and code generation. The resulting
code is very efficient, but this style of generic programming
does not lend itself to certain styles of software development
(e.g. those relying on dynamic libraries).

We can write essentially the same code using the runtime
concept idiom:

// with runtime concept idiom
wrapper forward<int>
random elem(wrapper forward<int> f, wrapper forward<int> l)
{

wrapper forward<int>::difference type dist = distance(f, l);
return advance(f, rand() % dist);
}
// ...
int elem = ∗random elem(v.begin(), v.end()); // v is a vector of int

However, here the binding between the iterator type and
the function is handled at runtime and we can compile a
use of random elem with only the declarations of random elem

available:

// with runtime concept idiom:
wrapper forward<int>
random elem(wrapper forward<int> f, wrapper forward<int> l);
// ...
int elem = ∗random elem(v.begin(), v.end()); // v is a vector of int

By using runtime concepts, function implementations (e.g.:
random elem) are isolated from client code. The parameter
type wrapper forward subsumes all types that model the con-
cept forward-iterator. The implementation can be explicitly
instantiated elsewhere for known element types, and need
not be available to callers.

This reduced code exposure in header files makes runtime
concepts suitable for (dynamically linked) libraries and when
source code cannot be shared. However, the use of run-
time concepts comes at a cost. The function random elem is
written in terms of the concept forward-iterator. The run-
time complexity of distance and advance is O(n) for forward-
iterators, while it is constant time for randomaccess-iterators.
Passing iterators of vector<int> as arguments would incur
unnecessary runtime overhead.

This paper makes the following contributions:

• We apply the runtime concept idiom to part of a core
C++ library (STL) and analyze the runtime overhead.

• We enhances the runtime concept idiom with a proto-
type of an open, extensible, and loosely coupled al-
gorithm library– a runtime counterpart of the STL
algorithms. Its dispatch mechanism selects the best
matching algorithm instance according to runtime con-
cept and type information of the actual atguments.
This eliminates the need for dynamic dispatch when
a matching algorithm instance is present. Runtime
analogs of four STL algorithms are presented and their
performance is analyzed.

• We explore the problem of writing single algorithms
that can simultaneously accommodate runtime-
polymorphic variations in both container and element
type. Performance measurements indicate that cur-
rent language level support is not sufficient to support
this idiom, but we point out where language enhance-
ments might make it viable in the future.

The structure of this paper is: sections 2 and 3 revisit
fundamental ideas of generic programming and illustrate the
runtime concept idiom in the STL domain. Section 4 dis-
cusses our concrete application to the STL’s sequences and
algorithms. Section 5 evaluates our prototype implemen-
tation and its runtime performance; section 6 compares our
model to alternatives; section 7 points to possible extensions
and summarizes our contribution.

2. GENERIC PROGRAMMING
The ideal for generic programming is to represent code at

the highest level of abstraction without loss of efficiency in
both actual execution speed and resource usage compared to
the best code written through any other means. The general
process to achieve this is known as lifting, a process of ab-
straction where the types used within a concrete algorithm
are replaced by the semantic requirements of those types
necessary for the algorithm to perform.

Semantic Requirement: Types must satisfy these re-
quirements in order to work properly with a generic algo-
rithm. Semantic requirements are stated in tables, in doc-
umentation, and may at times be asserted within the code.
Checking types against arbitrary semantic requirements is
in general undecidable. Instead, compilers for current C++

check for the presence of syntactic constructs, which are as-
sumed to meet the semantic requirements.

Concept: Dealing with individual semantic require-
ments would be unmanageable for real code. However, sets
of requirements can often be clustered into natural groups,
known as concepts. Although any collection of requirements
may define a concept, only concepts which enable new classes
of algorithms are interesting.

Model: Any type that satisfies all specified requirements
of a concept is said to be a model of that concept.

Generic Algorithm: A generic algorithm is a deriva-
tive of an efficient algorithm, whose implementation is in-
dependent from concrete underlying data structures. The
requirements that an algorithm imposes on a data structure
can be grouped into concepts. An example that is part of the
STL is find and the requirement on the template argument
is to model forward-iterator.

Concept Refinement: A concept Cr that adds re-
quirements to another concept C0 is a concept refinement.
When compared to C0, the number of types that satisfy
the requirements of Cr decreases, while the number of al-
gorithms that can be directly expressed increases. For ex-
ample, constant time random access, a requirement added
by the concept randomaccess-iterator, enables the algorithm
sort.

Algorithm Refinement: Parallel to concept refine-
ments, an algorithm can be refined to exploit the stronger
concept requirements and achieve better space- and/or
runtime-efficiency. For example, the complexity of reverse

for bidirectional-iterator is O(n), while it is O(n lg n) for
forward-iterator (assuming less than O(n) memory usage).

Regularity: Dehnert and Stepanov [9] define regular-
ity based on the semantics of built-in types, their operators,
the complexity requirements on the operators, and consis-
tency conditions that a sequence of operations has to meet.
Regularity is based on value-semantics and requires oper-
ations to construct, destruct, assign, swap, and equality-
compare two instances of the same type. This is sufficient
for a number of STL data structures and algorithms includ-

ing vector, queue, reverse, find. A stronger definition adds op-
erations to determine a total order, which enables the use
of STL’s map, set, sort. Code written with built-in types in
mind will work equally well for regular user defined types.
Programmers’ likely familiarity with built-in types makes
the notion of regularity important.

3. RUNTIME CONCEPTS
In order to make our exposition as self-contained as pos-

sible, and to allow us to experiment with potential improve-
ments, we have implemented and will illustrate the runtime
concept idiom with hand constructed classes. For a deeper
treatment of the runtime concept idiom, along with its li-
brary support and optimizations see Marcus et al. [14] and
[3].

The runtime concept idiom employs a three-layer archi-
tecture, the concept layer, the model layer, and the wrap-
per layer. The following example explains the interaction
of these three layers based on a runtime concept Copyable,
that supports copy construction. The operational require-
ments of runtime concepts are expressed with an abstract
base class. Here, the runtime concept for Copyable requires
the single operation clone.

struct concept copyable {
virtual concept copyable& clone() const = 0;
};

Concrete types T and runtime concepts are loosely cou-
pled by means of the runtime model layer. By a runtime
model, we mean a class template M parametrized on T and
inheriting from the runtime concept. A model holds the
data and implements the pure virtual functions declared in
the runtime concept by forwarding the calls to T :

template <class T>
struct model copyable : concept copyable {

model copyable(const T& val) : t(val) {}
model copyable& clone() { return ∗new model copyable(t); }
T t;
};

The wrapper layer wraps concept copyable objects and man-
ages their lifetime. It contains operations that guarantee
regular semantics (constructor, destructor, etc.) and makes
other operations accessible through the dot operator. Here,
the implementations of the copy constructor and the assign-
ment operator makes use of the function clone.

struct wrapper copyable {
template<typename T>
wrapper copyable(const T& t) : c(new model copyable<T>(t)) {}
// exemplary regular operations
˜wrapper copyable() { delete c; }
wrapper copyable& operator=(const wrapper copyable&);

// use of the concept interface
wrapper copyable(const wrapper copyable& rhs)
: c(&rhs.c−>clone()) {}
concept copyable∗ c;
};

That is, wrapper copyable is what a user can use to create
objects that can be copied. for example:

wrapper copyable val(1); // stores 1 in val
wrapper copyable copy(val); // creates a copy of val

The wrapper copyable constructor deduces the type of the
model copyable instance needed to access the data through
concept copyable. It also creates the model copyable object
needed to hold the value.

4. RUNTIME POLYMORPHIC STL
This section presents our implementation of the runtime

concept idiom for iterators and several loosely coupled al-
gorithms. The same techniques can be applied to provide
runtime polymorphic STL containers.

4.1 Runtime Concepts of Iterators
To allow for the modeling of iterator concepts, we must ex-

tend the idiom from §3 to support concept-layer and model-
layer refinements. Following Marcus et al. [14], we employ
inheritance in order to support concept and model refine-
ments while minimizing source code duplication.

We illustrate the implementation of runtime concepts and
models using the concept forward-iterator and its refinement
bidirectional-iterator. For the wrapper class layer imple-
mentation we also refer the reader to [14].

4.1.1 Concept Interface Refinements
Runtime concept interfaces are essentially abstract base

classes that define a set of function signatures but do not
have data members. The code that follows omits the tem-
plate parameters that corresponds to iterator::reference.

template <class ValueType>
struct concept forward {

virtual void operator++() = 0;
virtual concept forward& clone() const = 0;
// ...
};

template <class ValueType>
struct concept bidirectional : concept forward<ValueType> {

virtual void operator−−() = 0;
virtual concept bidirectional& clone() const = 0;
// ...
};

Refinement of runtime concepts are accomplished via inher-
itance from a base concept class and add new signatures
or refine inherited signatures with a covariant return type.
Prefix and postfix operators share the same member func-
tion declarations and return void. The semantically correct
implementation of the return value is left to the wrapper
classes. Types related to the elements stored inside the con-
tainer are passed as template arguments (e.g.: value type).

4.1.2 Model Refinements
Models implement the abstract operations of the run-

time concept for concrete types. At the root of the model-
hierarchy is the model base that stores a copy of the concrete
iterator.

template <class Iterator, class IterConcept>
struct model base : IterConcept {

Iterator it;
};

The first template argument determines the concrete it-
erator type. The second template argument corresponds to
the concept interface that this model will implement. For
an iterator of list<int>, these would be list<int>::iterator and
concept bidirectional<int>, respectively.

template <class Iterator, class IterConcept>
struct model forward : model base<Iterator,IterConcept> {

IterConcept& clone();

bool operator==(const concept forward& rhs) const
{

assert(typeid(∗this) == typeid(rhs));
// ...
}
// ...
};

template <class Iterator, class IterConcept>
struct model bidirectional : model forward<Iterator,IterConcept> {

void operator−−();
// ...
};

Each model refinement implements the operations defined
in the corresponding concept interface. The meaning of the
two template arguments Iterator and IterConcept is the same
as for model base. Binary operations (e.g.: operator==) re-
quire the second argument to have the same dynamic type
as the receiver. Conversions could be encoded with double
dispatch [7] but are currently not supported.

4.1.3 Model Selection
The function select model selects the model refinement based

on the iterator type tag of T .

template<class Iterator>
typename map iteratortag to concept interface<Iterator>::type∗
select model(const Iterator& it);

The template meta function map iteratortag to concept interface

maps the iterator tag to a runtime model. For example,
bidirectional iterator tag is mapped on model bidirectional.
select model instantiates this model with the iterator type
and the correct concept interface. For list<int> this would be
model bidirectional<list<int>::iterator, concept bidirectional<int>>.
Finally, select model constructs the model on the heap, and
returns a pointer to it.

4.2 The Algorithms Library
The algorithms library prototypes a runtime counterpart

of several STL algorithms. Each function in the library orig-
inates from an algorithm instantiation with one of our iter-
ator wrappers or a concrete iterator. By default, the library
contains an instance for the weakest concept an algorithm
supports. For example, the default entry for lower bound

would be instantiated with wrapper forward. These minimal
instantiations are meant to serve as fallback-implementations.
To improve performance, the system integrator or even a
(dynamically loaded) library can add more specialized func-
tions.

The algorithms are defined in terms of existing STL al-
gorithms and iterator-value types (e.g.: algolib::advance<int>).
Consider a library defined on advance and int that by default
contains an instance for forward iterator. The sample code
adds one generic implementation for wrapper randomaccess

and a specific for list<int>::iterator.

// add generic implementation suitable for all randomaccess iterators.
algolib::add generic<

algolib::advance<int>, // library name
wrapper randomaccess<int> // iterator−type

>();

// add specific implementation for std::list<int>.

algolib::add specific<
algolib::advance<int>, // library name
std::list<int>::iterator // iterator−type

>();

In addition, we provide library access functions with names
that match their STL counterparts. The access functions
are defined in the same namespace as the wrapper classes.
Together with argument dependent look-up (ADL), this en-
ables seamless integration of runtime concepts into user code.
The code snippet shows a function that takes two iterator
wrapers as arguments and calls the library access functions
(i.e.: distance, advance).

wrapper forward<int>
random elem(wrapper forward<int> f, wrapper forward<int> l)
{

wrapper forward<int>::difference type dist = distance(f, l);
return advance(f, rand() % dist);
}

At runtime, a library call selects the best applicable func-
tion present based on the dynamic type of the model. Start-
ing with the typeid of the actual iterator model, it walks the
typeids of the inheritance chain until it finds a suitable algo-
rithm instance or the fallback implementation.

If in our example first and last wrap the concrete type
std::list<int>::iterator, the dispatch mechanism will peel off all
runtime concept layers and call std::advance with a
std::list<int> iterator. In case the iterators in first and last be-
long to a std::vector, the runtime model is
re-wrapped by a wrapper randomaccess iterator and
std::advance<wrapper randomaccess> is invoked.

Although the dispatch mechanism is semantically equal to
virtual function calls, we rejected alternative library designs,
which would model algorithms as pure virtual functions that
are declared in concept interfaces. This would break the sep-
aration between concept requirements and algorithms. Pro-
viding a new algorithm would require adding a new func-
tion signature to the concept interface, thereby breaking bi-
nary compatibility with existing applications. In addition,
such a design would create a number of unused instanti-
ated functions. For example, the class concept forward would
need virtual function declarations for all STL algorithms
that are defined for forward iterators (e.g.: adjecent find,
destroy, equal range, etc.). Consequently, the model classes
would need to implement those functions regardless whether
a specific program uses them or not.

4.3 Retroactive Runtime Concepts
The goal of retroactive concept modeling is to place re-

quirements on the element type of containers after the con-
tainer has been declared (and elements have been inserted).
This would allow us to write code that operates on a variety
of containers and element types. Instead of the introductory
example (§1) we would like random elem to simultaneously
handle list<int>, vector<double>, etc.:

retrowrapper forward<>
random elem(retrowrapper forward<> f, retrowrapper forward<> l)
{

retrowrapper forward<>::difference type dist = distance(f, l);
return advance(f, rand() % dist);
}

For reads and writes through such iterators the well stud-
ied variance problems [11] apply. However, sequence-modifying
operations (e.g.: sort, rotate, etc.) which only permute the

elements and element modifications through a runtime con-
cept interface are type safe.

Since the concrete element type of the containers are not
known, functions that access elements cannot be implemented
in terms of any concrete type. Instead, we manipulate the el-
ements through proxy reference<C> objects. A proxy reference<C>

object maps the element-access operations of the runtime
concept C onto the elements. While this is sufficient for
manipulating the values through interfaces, this technique
fails when argument type deduction is involved.

The original design of the STL tried to allow for arbitrary
proxy types by including reference as one of the traits for an
iterator but this was found to be insufficient in general. To
see this problem, we look at the implementation of swap:

template <typename T>
void swap(T& x, T& y)
{

T tmp(x);
x = y;
y = tmp;
}

If T is a proxy reference, then this code will swap the two
proxy references, not the underlying values. What we would
like is that the syntax T& would match any type which is a
reference to T not generate a reference to the proxy type.

The best that we are able to easily achieve is a proxy reference

which behaves as a reference when the referenced value is
not mutable. To test the ideas presented in this paper with
the standard algorithms we used the following single shared
reference scheme:

• proxies maintain a count of the number of proxies re-
ferring to a single value.

• when assigning through a proxy if the reference count
is greater than one, then a copy of the value is made
and all other proxies referring to the value are set to
refer to the copy.

This relies on the fact that it would be inefficient to make
a copy of a value and then assign over it. This is a very
fragile and costly solution but it was sufficient to test the
ideas in this paper. Solving the proxy dilemma properly in
C++ is an open problem.

5. TESTS
To assess the performance cost of runtime concepts we

tested the approaches described in sections §3 and §4. The
numbers presented in this section were obtained on an Intel
Pentium-D (2.8GHz clock speed; 512MB of main memory
at 533 MHz) running CentOS Linux 2.6.9-42. We compiled
with gcc 4.1.1 using −O3 and −march=prescott. Initially, the
vector contained 8 million numbers in ascending order start-
ing from zero. Then we invoke four algorithms: reverse, find

of zero, sort, and lower bound of zero.
vector<T>: As reference point for our performance tests

we use the vector instantiated with a concrete type. The
table shows the number of cycles each operation needs to
complete for a container of int and double respectively. The
column to the right of the number of cycles shows the slow-
down factor compared to vector<int>. The algorithms with
O(n) runtime complexity (i.e.: reverse and find) run approx-
imately twice as long when used with type double. This

discrepancy can be explained by the size of the stored data-
type; double is twice as big as int.

int double

reverse 50135428 1 101270708 2.0
find 24970288 1 52763884 2.1
sort 569752400 1 1170042300 2.1
lower bound 5628 1 14784 2.6

vector<Scalar>: For this scenario, we defined a concept
Scalar that extends the concept Copyable §3 with a function
that allows conversions to type double. This conversion func-
tion is used to implement the concept LessThanComparable re-
quired by sort and lower bound. The test uses an overloaded
swap operation to efficiently swap the pointers (same size
as int) of the polymorphic object-parts. Thus, the runtime
of reverse is comparable to the optimal case; and beats the
runtime for double by a factor of 2. The slowdown of find

can be traced back to the equals-operator, which uses one
virtual function call and one type-test per iteration. The
sort algorithm requires two virtual function calls for each
less-than comparison. Compared to the overhead of virtual
function calls and type tests, the size of the element type is
insignificant.

int double

reverse 50260070 1.0 50112846 1.0
find 243300778 9.74 279807066 11.21
sort 10719950962 18.82 11098532844 19.48
lower bound 20482 3.64 17626 3.13

Sequence<T>: The following table shows the results,
when the algorithm library contains instantiations for con-
crete iterators. The time needed to select the best match is
the only overhead that occurs.

int double

reverse 50017254 1.0 101235652 2.0
find 24093454 1.0 51413502 2.1
sort 543942098 1.0 1163111236 2.0
lower bound 17206 3.1 20286 3.6

Only when instances for the concrete iterators are missing,
our system resorts to fallback implementations.

int double

reverse 4736673970 94.5 4763215828 95.0
find 467545414 18.7 525890540 21.1
sort 16684763676 29.3 16980691560 29.8
lower bound 19040 3.38 20552 3.7

The 94x slower performance for reverse is unacceptable,
even for a fallback implementation. A closer analysis of the
fallback test on reverse reveals that three factors contribute
to its slowness: the fallback algorithm is bidirectional iter-
ator based, virtual iterator functions, and model allocation
on the heap.

To pinpoint and quantify the contribution of each of these
factors we performed additional experiments: we started by
adding a reverse function operating on randomaccess−iterator

concepts, which improved the performance marginally to
the factors 91.5x and 94.8x for int and doubles respectively.
Each iteration of reverse has one call to std::iter swap. The

gcc implementation of std::iter swap calls another function
that swaps the two elements to which the iterators point.
Each function invocation creates copies of the iterators, which
results in 16 million unnecessary heap allocations (and deal-
locations). By providing our own reverse implementation, we
eliminated those copies. Then, reverse is only 7.4x slower for
int (7.6x for double). The measured slowdown is less on other
architectures (3x on a Pentium-M). Instead of rewriting the
STL algorithm, we could adopt Adobe’s small object opti-
mization [14] where the wrapper classes reserve a buffer to
embed small objects (Adobe’s open source library [3]).

vector<RetroactiveScalar>: The following table shows the
performance results for retroactively imposing runtime con-
cepts on container elements (§4.3).

int double

reverse 14580637680 290 14702289350 293
find 5525953258 221 5691982996 228
sort 145095555976 254 147783100836 259
lower bound 30100 5.3 31010 5.5

Since the overhead of operating on Sequences has been de-
termined by the previous test, we tested the performance of
our proxyref-implementation by dispensing with runtime con-
cepts for iterators. Instead, we use an iterator-class that has
non-virtual access functions and wraps a vector::iterator. As
described in §4.3 the iterator abstracts the concrete element
type and operates on proxy references. We used boost::shared ptr

to implement the single shared reference semantics. In the
case of reverse, the poor performance is caused by the fact
that each iteration requires the construction and destruc-
tion of five proxy reference objects: two when the iterators
are dereferenced, two when swap is invoked, and one when
a temporary element inside swap is constructed (in total 20
million). Each of these operations performs an update of the
shared ptr. In addition, each temporary element is allocated
on the heap (4 million).

6. RELATED WORK
The ASL [3] introduced the runtime concept idiom, em-

ploying type erasure [2] to provide the any regular library
(similar to the boost any library), and its generalization, the
poly library. The poly library generalizes the idiom to sup-
port refinement and polymorphic downcasting, encapsulates
the common tasks required to create non-intrusive runtime-
polymorphic value-based wrappers. The poly library design
goals and implementation are elaborated in [14].

ASL also provides the any iterator library offering runtime-
polymorphic iterators for specific types as a proof of concept.
Becker [6] presents a similar library. In this paper we focus
more on performance.

Bourdev and Järvi [8] discuss a mechanism for falling back
to static-dispatch when type erasure is present.

Our work extends the above results to a library of al-
gorithms operating on runtime-polymorphic containers of
runtime-polymorphic elements, achieving realistic performance
levels by using static dispatch where possible.

7. FUTURE WORK AND CONCLUSION
In the described system, an algorithm library handles

the dispatch to the most appropriate algorithm present in

the system. Comparable to function overload resolution,
the template instantiation mechanism in C++0x considers
the concept of all arguments to determine a unique best
match. The current implementation of our algorithms, how-
ever, finds the best match based on the type of only one ar-
gument. Other arguments (i.e.: the second iterator in calls
to reverse, sort, etc.) are obliged to conform to a type that
the first argument determines. The presented algorithms
are extensible with new iterators and sequences, unknown
at the compile time, as long as they conform to the STL-
defined concepts. Subsequent work is expected to support
multiple dispatch and provide for modular runtime concept
refinements. Iterator types for which repeated algorithm
invocations frequently resolve to the fallback implementa-
tions would benefit from a runtime system that is capable
of dynamic algorithm instantiation.

In this paper, we have discussed a runtime polymorphic
version of several STL algorithms. Our implementation en-
ables us to use STL’s sequences where the binding to a con-
crete data structure is deferred until runtime. To improve
runtime performance, if the data structures in use are known
to the system integrator, our algorithms can leverage static
dispatch. As a result, the runtime overhead becomes negli-
gible for large data sets. We discussed retroactive runtime
concept imposition on container elements and pointed out
where better language support would be needed to further
the runtime generic programming model.

8. ACKNOWLEDGMENTS
We thank Jaakko Järvi, Damian Dechev, Yuriy Solodkyy,

Luke Wagner and the anonymous referees for their helpful
suggestions.

9. REFERENCES
[1] The Boost C++ libraries, 2002.

http://www.boost.org/.

[2] D. Abrahams and A. Gurtovoy. C++ Template
Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond (C++ in Depth Series).
Addison-Wesley Professional, 2004.

[3] Adobe System Inc. Adobe Source Library.
http://opensource.adobe.com, 2005.

[4] P. An, A. Jula, S. Rus, S. Saunders, T. Smith,
G. Tanase, N. Thomas, N. Amato, and
L. Rauchwerger. STAPL: A Standard Template
Adaptive Parallel C++ Library. In LCPC ’01, pages
193–208, Cumberland Falls, Kentucky, Aug 2001.

[5] M. H. Austern. Generic programming and the STL:
using and extending the C++ Standard Template
Library. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1998.

[6] T. Becker. Type erasure in C++: The glue between
object oriented and generic programming. In K. Davis
and J. Striegnitz, editors, Multiparadigm Programming
2007: Proceedings of the MPOOL Workshop at
ECOOP’07, July 2007.

[7] L. Bettini, S. Capecchi, and B. Venneri. Double
dispatch in C++. Software - Practice and Experience,
36(6):581 – 613, 2006.

[8] L. Bourdev and J. Järvi. Efficient run-time
dispatching in generic programming with minimal

code bloat. In Workshop of Library-Centric Software
Design at OOPSLA’06, Portland Oregon, Oct. 2006.

[9] J. C. Dehnert and A. A. Stepanov. Fundamentals of
Generic Programming. In Selected Papers from the
International Seminar on Generic Programming,
pages 1–11, London, UK, 2000. Springer-Verlag.

[10] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos
Reis, and A. Lumsdaine. Concepts: linguistic support
for generic programming in C++. In OOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications, pages 291–310, New York,
NY, USA, 2006. ACM Press.

[11] A. Igarashi and M. Viroli. On variance-based
subtyping for parametric types. In ECOOP ’02:
Proceedings of the 16th European Conf. on
Object-Oriented Programming, pages 441–469,
London, UK, 2002. Springer-Verlag.

[12] ISO/IEC 14882 International Standard. Programming
languages: C++. American National Standards
Institute, September 1998.

[13] J. Järvi, M. A. Marcus, and J. N. Smith. Library
composition and adaptation using C++ concepts. In
GPCE ’07: Proceedings of the 6th international
conference on Generative programming and component
engineering, pages 73–82, New York, NY, USA, 2007.
ACM Press.

[14] M. Marcus, J. Järvi, and S. Parent. Runtime
polymorphic generic programming—mixing objects
and concepts in ConceptC++. In K. Davis and
J. Striegnitz, editors, Multiparadigm Programming
2007: Proceedings of the MPOOL Workshop at
ECOOP’07, July 2007.

[15] S. Parent. Beyond objects: Understanding the
software we write. Presentation at C++ connections,
November 2005.

[16] S. Parent. Concept-Based Runtime Polymorphism.
Presentation at BoostCon, May 2007.

[17] T. L. Veldhuizen. Arrays in Blitz++. In ISCOPE ’98:
Proceedings of the Second International Symposium on
Computing in Object-Oriented Parallel Environments,
pages 223–230, London, UK, 1998. Springer-Verlag.

