
Parameterized Types for C++

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Type parameterization is the ability to define a type in terms of another, unspecified,
type. Versions of the parameterized type may then be created for several particular
parameter types. A language supporting type parameterization allows specification of
general container types such as list, vector, and associative array where the specific type
of the elements is left as a parameter. Thus, a parameterized class specifies an unbounded
set of related types; for example: list of int, list of name, list of shape, etc. Type parame-
terization is one way of making a language more extensible.

In the context of C++, the problem are
[1] Can type parameterization be easy to use?
[2] Can objects of a parameterized type be used as efficiently as objects of a

‘‘hand-coded’’ type?
[3] Can a general form of parameterized types be integrated into C++?
[4] Can parameterized types be implemented so that the compilation and linking

speed is similar to that achieved by a compilation system that does not support
type parameterization?

[5] Can such a compilation system be simple and portable?
A design is presented for which the answer to all of these questions is yes. The imple-

mentation of this scheme is a fairly simple extension of current C++ implementations.
WARNING: The scheme for providing parameterized types described here is not

implemented. It is not part of the C++ language, nor is there any guarantee that it ever
will be. This paper was written to stimulate and focus discussion about the usefulness of
a parameterized type facility for C++ and about the possible forms such a facility might
take.

1 Introduction

For many people, the largest single problem using C++ is the lack of an extensive standard library. A
major problem in producing such a library is that C++ does not provide a sufficiently general facility for
defining ‘‘container classes’’ such as lists, vectors, and associative arrays. There are two approaches for
providing such classes/types:

[1] The Smalltalk approach: rely on dynamic typing and inheritance.
[2] The Clu approach: rely on static typing and a facility for arguments of type type.

The former is very flexible, but carries a high run-time cost, and more importantly defies attempts to use
static type checking to catch interface errors. The latter approach has traditionally given rise to fairly com-
plicated language facilities and also to slow and elaborate compile/link time environments. This approach
also suffered from inflexibility because languages where it was used, notably Ada, had no inheritance
mechanism.

Ideally we would like a mechanism for C++ that is as structured as the Clu approach with ideal run-time
and space requirements, and with low compile-time overheads. It also ought to be as flexible as Smalltalk’s
mechanisms. The former is possible; the latter can be approximated for many important cases.

Note that C++ appears to have sufficient expressive power to cope with the demands of library writing
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provided there is a single basic kind of object, such as a character (for string manipulation, pattern match-
ing, character I/O, etc.), a double precision floating point number (for engineering libraries), or a bitmap
(for graphics libraries). The ‘‘container class problem’’ is particularly serious, though, since container
classes are needed to specify all but the simplest interfaces; they are the ‘‘glue’’ for larger systems.

2 Class Templates

A C++ parameterized type will be referred to as a class template. A class template specifies how indi-
vidual classes can be constructed much like the way a class specifies how individual objects can be con-
structed. A vector class template might be declared like this:

template<class T> class vector {
T* v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

The template <class T> prefix specifies that a template is being declared and that an argument T of
type type will be used in the declaration. After its introduction, T is used exactly like other type names
within the scope of the template declaration. Vectors can then be used like this:

vector<int> v1(20);
vector<complex> v2(30);

typedef vector<complex> cvec; // make cvec a synonym for vector<complex>
cvec v3(40); // v2 and v3 are of the same type

v1[3] = 7;
v2[3] = v3.elem(4) = complex(7,8);

Clearly class templates are no harder to use than classes. The complete names of instances of a class
template, such as vector<int> and vector<complex>, are quite readable. They might even be con-
sidered more readable than the notation for the built-in array type: int[] and complex[]. When the
full name is considered too long, abbreviations can be introduced using typedef.

It is only trivially more complicated to declare a class template than it is to declare a class. The key-
word class is used to indicate arguments of type type partly because it appears to be an appropriate word,
partly because it saves introducing a new keyword. In this context, class means ‘‘any type’’ and not just
‘‘some user-defined type.’’

The <...> brackets are used in preference to the parentheses (...) partly to emphasize the different
nature of template arguments (they will be evaluated at compile time) and partly because parentheses are
already hopelessly overused in C++.

The keyword template is introduced to make template declarations easy to find, for humans and for
tools, and to provide a common syntax for class templates and function templates.

3 Member Function Templates

The operations on a class template must also be defined. This implies that in addition to class tem-
plates, we need function templates. For example:

template<class T> T& vector<T>::operator[](int i)
{

if (i<0 || sz<=i) error("vector: range error");
return v[i];

}

A function template is a specification of a family of functions; template<class T> specifies that T is a
template argument (of type type) that must somehow be supplied to specify a particular function.
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Note that you don’t usually have to specify the template arguments to use a function template. For
example, the template argument for vector<T>::operator[] will be determined by the vector to
which the subscripting operation is applied:

vector<int> v1(20);
vector<complex> v2(30);

v1[3] = 7; // vector<int>::operator[]()
v2[3] = complex(7,8); // vector<complex>::operator[]()

Member functions of a class template are themselves function templates with the template arguments
specified in the class templates. Function templates and member function templates will be discussed in
greater detail in §9 and §12.

4 Outline of an Implementation

The basic idea for an implementation that incurs no additional costs in run-time or space compared with
‘‘hand coding’’ is to ‘‘macro-expand’’ a template for each different set of template arguments with which it
is used. Naturally, template expansion is not really/just macro expansion; it obeys proper scope and syntax
rules. Names such as vector<int> can be encoded into composite class names such as
__PTvector_int.

The example above expands into:

class __PTvector_int {
int* v;
int sz;

public:
__PTvector_int(int);
int& operator[](int);
int& elem(int i) { return v[i]; }
// ...

};

class __PTvector_complex {
complex* v;
int sz;

public:
__PTvector_complex(int);
complex& operator[](int);
complex& elem(int i) { return v[i]; }
// ...

};

__PTvector_int v1(20);
__PTvector_complex v2(30);
__PTvector_complex v3(40);

v1[3] = 7;
v2[3] = v3.elem(4) = complex(7,8);

A compiler need not have a separate template expansion pass. Since the information to do such an
expansion exists in the compiler’s tables, the appropriate actions can simply be taken at the proper places in
the analysis and code generation process.

In addition to this expansion mechanism, a facility is needed for detecting which member functions
have been used for which instances of a parameterized type. The example above used:

__PTvector_int::__PTvector_int(); // constructor
__PTvector_complex::__PTvector_complex(); // constructor
__PTvector_int::operator[](); // subscripting
__PTvector_complex::operator[](); // subscripting
__PTvector_complex::elem();
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Note that the full list of such functions for a program can be known only after examining every source file.
The linker provides a form of this list as part of its list of undefined objects and functions.

The definition of an operation on a class template might look like this:

template<class T> T& vector<T>::operator[](int i)
{

if (i<0 || sz<=i) error("vector: range error");
return v[i];

}

From this, the following two function definitions will have to be generated:

int& __PTvector_int::operator[](int i)
{

if (i<0 || sz<=i) error("vector: range error");
return v[i];

}

complex& __PTvector_complex::operator[](int i)
{

if (i<0 || sz<=i) error("vector: range error");
return v[i];

}

This approach ensures that no run-time efficiency is lost compared to ‘‘hand-coding’’. Code space
might wasted by creating separate copies of functions that could have shared implementation. For example,
vector<int> and vector<unsigned> need not have separate subscripting operations. Such waste
can, if necessary, be reduced through suitable coding practices (see § 11) and/or through a clever compile
time environment.

A programmer can provide a definition for a particular version of an operation on a class by specifying
the template argument(s) in a function definition:

int& vector<int>::operator[](int i) { return v[i]; }

The general version of such a function as defined by its template will be used to create a function for a par-
ticular argument type only when no user-provided version is specified for that type.

Replacing the default implementation of a function as defined by a template is useful where implemen-
tations with greater precision, higher efficiency, etc. can be provided given some understanding of a partic-
ular type. It may also be useful for debugging and for supplying different versions of a function to different
parts of a program (using static functions).

5 Some Design Considerations

Let us consider a few choices that were made to write the example above:
[1] Should all template arguments be of type type?
[2] Should a user be required to specify the set of operations that may be used for a template argument

of type type?
[3] Should a user be required to explicitly declare what versions of a template can be used in a program?
[4] Should it be possible for a user to declare variables of type type?

The answer to all (in the context of C++) is no. Let us examine them in turn.

5.1 Template Arguments
‘‘Should all template arguments be of type type?’’ No, there appear to be useful examples of type

parameters of ‘‘normal’’ types. For example, a vector template might be parameterized with an error han-
dling function:
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typedef void (*PF)(char*);

template<class T, PF error> class vector {
T* V;
int sz;

public:
T& operator[](int i) {

if (i<= || sz<=i) error("vector: range error");
return v[i];

}
};

void my_error_fct() { ... }
vector<complex,&my_error_fct> v(10);

This example implies that default arguments might be useful:

template <class T, PF error=&standard_error_fct> class vector { ... }

Another example is a buffer type with a size argument:

template<class T, int sz=128> class buffer {
T v[sz];
// ...

};

void f()
{

buffer<char> buf1;
buffer<complex,20> buf2;
// ...

}

buffer<char*,1000> glob;

Making sz an argument of the template buffer itself rather than of its objects implies that the size of a
buffer is known at compile time so that a buffer can be allocated without use of free store. It appears
that default arguments will be at least as useful for template arguments as they are for ordinary arguments.
Default arguments of type type might even be useful:

template<class T, class TEMP = double> class store {
// ...
T sum() { TEMP sum = 0; ... return sum; }

};

store<int,long> istore;
store<float> fstore;

These examples demonstrate that the range of templates with which a type can be parameterized should
be restricted only if there are compelling arguments that the restriction will significantly ease the imple-
mentation of templates. I see no such argument.

5.2 Type Argument Attributes
‘‘Should a user be required to specify the set of operations that may be used for a template argument of

type type?’’ For example:
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// The operations =, ==, <, and <=
// must be defined for an argument type T

template <
class T {

T& operator=(const T&);
int operator==(const T&, const T&);
int operator<=(const T&, const T&);
int operator<(const T&, const T&);

};
>
class vector {
// ...
};

No. Requiring the user to provide such information decreases the flexibility of the parameterization facility
without easing the implementation or increasing the safety of the facility.

Consider vector<T>. To provide a sort operation one must require that type T has some order rela-
tion. This is not the case for all types. If the set of operations on T must be specified in the declaration of
vector one would have to have two vector types: one for objects of types with an ordering relation and
another for types without one. If the set of operations on T need not be specified in the declaration of
vector one can have a single vector type. Naturally, one still cannot sort a vector of objects of a type
glob that does not have an order relation. If that is tried, the generated sort function
vector<glob>::sort() would be rejected by the compiler.

It has been argued that it is easier to read and understand parameterized types when the full set of opera-
tions on a type parameter is specified. I see two problems with this: such lists list would often be long
enough to be de facto unreadable and a higher number of templates would needed for many applications.

Should experience show a need for specifying the operations on a parameterized type then such a facil-
ity can be easily and compatibly added later.

5.3 Source Code
There might be a more fundamental reason for requiring that the operations performed on a template

argument of type type should be listed in the template declaration. The implementation technique outlined
here achieves near optimal run-time characteristics by requiring the complete source code of a template to
be available to the compiler when processing a use of the template. In some contexts, this is considered a
deficiency and an implementation of templates that requires only the object code for functions implement-
ing the function templates would be preferable.

At first glance it would appear that requiring the full set of operations on a template argument to be
specified would make it significantly easier to produce such an implementation. In this case, a function
template would be implemented by code using calls through vectors of function pointers to perform opera-
tions on template arguments of type type. The specification of the set of operations for a type argument
would provide the definition for such vectors. Such an implementation would trade run-time for compile
and link time, but would be semantically equivalent to the implementation scheme presented here.

Could an implementation along these lines be provided without requiring the user to list the set of oper-
ations needed for each function template argument of type type? I think so. Given a function template, the
compiler can create a vector layout for the required set of operations without the help of a user. Given the
full set of function definitions for the members of a class, the compiler can again create a vector layout for
the required set of operations without the help of a user. If the compile and link environment cannot pro-
vide such a list a less optimized scheme where each member function has its own vector of operations can
be used.

It thus appears that both implementation styles can be used even in the absence of template argument
attribute lists so that we need not require them to preserve the implementers’ freedom of action. It might be
noticed that a virtual function table is in many ways similar to a vector of operations for a template so that
the benefits of the vector of operations approach can often be achieved by a coding style relying on virtual
functions rather than the expansion of function templates. Class pvector presented in §11 is an example
of this.



- 7 -

5.4 Type Instantiation
‘‘Should a user be required to explicitly declare what versions of a template can be used in a program?’’

For example, should one require the use of an operation like Ada’s new? No. Such a requirement would
increase the size of the program text and decrease the flexibility of the template facility without yielding
any benefits to the programmer or the implementer.

5.5 Type Variables
‘‘Should it be possible for a user to declare variables of type type?’’ For example:

type t = int;

void f(type t)
{

switch (t) {
case int:

...
case char*:

...
case complex:

...
default:

...
}

}

Such a facility would be useful in many contexts, but does not appear suitable for C++. In particular, it is
not possible to assign integer values to represent constants of type type such as int, line_module*,
double(*)(complex*,int), and vector<complex> while maintaining the current style of sepa-
rate compilation. Since the C++ type system is open such assignment of values in general requires an
unbounded number of bits to represent a type. In practice, even simple cases require lots of bits (the current
cfront scheme for encoding function types in character strings regularly uses dozens of characters) or some
system of hashing involving a database of types. Furthermore, the introduction of such variables would
require an order of magnitude greater changes to the C++ language and its implementations than the scheme
(without type variables) described here.

6 Type Inquiries

It would be possible to enable a programmer to inquire about properties of a template argument of type
type. This would allow the programmer to write code that depends on specific properties of the actual types
used.

6.1 An Inquiry Operator
Consider providing a print function for a vector type that sorts the elements before printing if and only

if sorting is possible. A facility for inquiring if a certain operation, such as <, can be performed on objects
of a given type can be provided. For example:

template<class T> void vector<T>::print()
{

if (?T::operator<) sort(); // if (T has a <) sort_this_vector
for (int i=0; i<sz; i++) { ... }

}

Because the < operation is defined for ints, printing of a vector<int> gives rise to an expansion:

void __PTvector_int::print()
{

sort(); // that is, this->sort()
for (int i=0; i<sz; i++) { ... }

}

On the other hand, printing a vector<glob> where the < operation is not defined for globs gives rise
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to an expansion:

void __PTvector_glob::print()
{

for (int i=0; i<sz; i++) { ... }
}

Tests on expressions of the form ?typ::oper (‘‘does type typ have an operation oper?’’) must be evaluated
at compile time and can be part of constant expressions.

It would probably be wise not to include such a type inquiry feature in the initial experimental imple-
mentation but to wait and see what properties (if any) programmers would find useful. Potentially every
aspect of a type known to the compiler can be made available to the programmer; sizeof is a most rudi-
mentary version of this kind of facility.

The absence of a type inquiry facility will be compensated for by the ability to define a function for a
particular set of template arguments, thus overriding the generation of the ‘‘standard’’ version from the
template. Furthermore, it can sometimes be preferable to define separate templates to represent the differ-
ent concepts. For example, one might have both a vector<T> class and a sorted_vector<T> class
derived from it.

6.2 The typeof Operator
Writing code where the control flow depends of the properties of a type parameter doesn’t appear to be

necessary, but defining variables of types dependent on type parameters does. Given a template argument
of type type, T, one can express a variety of derived types using the declarator syntax; for example, T*, T&,
T[10], T(*)(T,T). One can also express types obtained by template expansion such as vector<T>.
However, this does not conveniently express all types one might like. In particular, the ways of expressing
types that depends on two or more template arguments are weak. To compensate, one might introduce a
typeof operator that yields the type of its argument. For example:

template<class X, class Y> void f(X x, Y y)
{

typeof(x*y) temp = x*y;
// ...

}

It would probably be wise not to introduce a typeof operator before gaining more experience. The
uses of typeof appears to be quite limited and the scope for misuses large. In particular, typeof
appears more suited for the writing of macros (which templates are designed to replace in many contexts)
than for templates and heavy use of typeof will reduce the compilers ability to pinpoint type errors.

7 More about Implementation

So how can we generate the proper code for definitions of operations on a template for a given set of
arguments? Assume that we know that versions of vector’s subscripting operation

template<class T> vector<T>::operator[](int) { ... }

are needed for T==int and T==complex. How can we create the proper expansions (as presented
above)?

We might have a compiler option, -X, for creating such expansions. Assuming that the definitions for
vector’s member functions resides in a file called vector.c, one might call the compiler like this:

CC -X "vector<int>" vector.c
CC -X "vector<complex>" vector.c

and have the appropriate .o files created. This would create not only the required subscript operator func-
tions but also functions for any other vector operation that has its definition stored in vector.h. The
strategy for splitting a program into separately compiled parts is in the hands of the programmer. Where a
finer granularity is required of .o files for a library, the programmer can handle it using standard C library
techniques.

Note that an expansion using the template expansion option, -X, may give rise to a program that uses an
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instance of a template that has not already been used in the program. This implies that another stage of
‘‘missing template implementation detection’’ is required after each expansion. Expansion is really a
recursive activity. The depth of this recursion will typically be 1, though. It will be necessary to have a
mechanism protecting against recursive expansion. For example:

template<class T> void f(T a) { T* p; ... f(p); }

Naturally, one would try to ensure that CC -X is used to generate .o files only for definitions of tem-
plates when

[1] a new template was used, or
[2] a new set of template arguments was used, or
[3] the declaration of a template was changed.

I imagine that after a short startup period all the necessary .o files for templates for a program/project will
reside in a library and not interfere with the compilation process. When a program/project reaches this state
the compilation overhead incurred by using templates becomes negligible.

7.1 Tools for Ensuring Consistent Linking
Consider having the tools described above:
[1] a C++ compiler handling the expansion of class templates into class declarations, and
[2] a -X option on this compiler to handle the expansion of function templates into function definitions.

One could then compile a C++ program using templates. A little manual intervention would be needed to
get a complete program to link and load.

What additional tools would be needed to
[1] guarantee consistent and complete expansion and linking?
[2] make programming reasonably convenient?
I conjecture that [1] is perfectly feasible, but non-trivial, where portability across operating systems,

compile and link time efficiency, and flexibility are all required. I also conjecture that very little is needed
to achieve [2]. Experience using such a system is clearly needed, but it might well be sufficient to modify a
tool with access to the complete compiled program, such as munch or the linker itself, to produce

[1] a list of function definitions required, or
[2] a list of files for which CC -X needs to be run (assuming some correspondence between type names

and file names), or
[3] a make script for running CC -X for an appropriate set of files.
It would also be important to ensure that CC produces readable error messages when an operation is

applied to a particular template argument of type type for which it is not defined. For example:

"foo.c", line 144: error: operator<= applied to glob in vector<glob>::sort()

This discussion of how one might provide a minimal and portable mechanism supporting templates in
C++ should not be taken as an indication that such a mechanism provides the ideal programming environ-
ment. On the contrary, it is exactly a minimal facility. Much better facilities can be built (think of a smart
make, an incremental compiler, a Smalltalk-like browser, etc.), However, a minimal facility must exist to
ensure portability of C++ programs between all implementations since there is no hope that a single maxi-
mal programming environment will ever be agreed on and implemented on every system supporting C++.

8 Function Templates

In addition to providing class templates, it is necessary to provide function templates. Consider provid-
ing a general sort function:

template<class T> void sort(vector<T>);

Given a vector v, one might call such a function like this:

sort(v);

The compiler can deduce the type of the sort function from the type of the vector. For example, had v
been declared



- 10 -

vector<int> v(10);

the sort function sort<int> would have been required. On the other hand had the declaration of v been

vector<double> v(2000);

the sort function sort<double> would have been used.

8.1 Overloading
Declaring a function template is simply a way of declaring a whole bundle of overloaded functions at

one time. This implies that we can use functions with arguments that can be distinguished by the over-
loaded function resolution mechanism only. The following function cannot be used because it takes no
argument:

template<class T> T* create() { return (T*) malloc(sizeof(T)); }

The C++ syntax could be extended to cope with this by allowing the full generality of the name<type> nota-
tion so that template arguments could be supplied explicitly in a call:

int* pi = create<int>(); // create_int()
char* pc = create<char>(); // create_char()

Unless programmers define templates sensibly this form of resolution can become quite cryptic:

template<class X, class Y> f(Y,X); // template argument order differs
// from function argument order

...
f<char*,int>(1,"asdf");

I think it would be wise not to include any explicit resolution method in an initial implementation. I sus-
pect that the implicit resolution provided by the overloaded function resolution rules are sufficient – and
more elegant – in almost all cases and it is not obvious that a mechanism for explicit overloading is worth
the added complexity.

Allowing explicit resolution would imply that a C++ compiler should treat function template names dif-
ferently from other names and similarly to the way keywords and class names are treated. For example,
without special rules for template names the last expression above would be parsed as two comparisons and
a parenthesized comma expression:

(g<123)>(vv,10);

8.2 A Problem
Consider writing a function apply() that applies another function to all the elements of a vector. A

traditional first cut would look something like this:

template<class T> void apply(vector<T>& v, T& (*g)(T&))
{

for (int i = 0; i<v.size(); i++) v[i] = (*g)(v[i]);
}

This follows the C style of using a pointer to function. Potential problems with this are
[1] efficiency, because there can be no inline expansion of the applied function, and
[2] generality, because standard operations of built-in types such as - and ~ for ints cannot be applied.

Naturally, these are not problems to all people. However, an ideal template mechanism will provide solu-
tions.

8.3 A Solution
One might consider the function to be applied by apply() a template argument rather than a function

argument:
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template<class T, T& (*g)(T&)> void apply(vector<T>& v)
{

for (int i = 0; i<v.size(); i++) v[i] = (*g)(v[i]);
}

To call apply() one must specify the function to be applied. Since this version of apply() takes only a
single vector argument the syntax for disambiguating an overloaded function call using <...> must be
used:

class X { ... };

vector<X> v2(200);

inline void hh(X&) { ... };
void gg(X&); // not inline

apply<X,hh>(v2);
apply<X,gg>(v2);

Clearly, the X is redundant and not elegant. Since in principle each such call of apply() results in writ-
ing a new function apply() inlining can be applied where sufficient information is available. Conse-
quently, one would expect a C++ compiler to inline hh() in the first call in the example above and gener-
ate a standard function call of gg(). The fact that function pointers and not functions are passed in C++ is
at most a minor annoyance for the compiler writer.

Operators for built-in types can be considered inline functions in this context:

vector<int> v(100);
apply< int, &int::operator-- >(v);

However, as for the explicit resolution scheme itself, it remains to be seen if this degree of sophistication
and complexity is actually needed.

9 Syntax Issues

Consider the declarations:

template<class T> class vector { ... };
template<class T> T* index<class T>(vector<T>,int);

[1] Why use the template keyword?
[2] Why use <...> brackets and not parentheses?
[3] Why use the class keyword?
[4] What is the scope of a template argument?

9.1 The template keyword
If a keyword is to be used template seems to be a reasonable choice, but it is actually not necessary

to introduce a new keyword at all. For class templates, the alternative syntax seems more elegant at first
glance:

class vector<class T> { // possible alternative class syntax
...

};

Here the template arguments are placed after the template name in exactly the way they are in the use of a
class template:

vector<int> vi(200);
vector<char*> vpc(400);

The function syntax at first glance also looks nicer without the extra keyword:

T& index<class T>(vector<T> v, int i) { ... }

There is typically no parallel in the usage, though, since function template arguments are not usually
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specified explicitly:

int i = index(vi,10);
char* p = index(vpc,29);

However, there appears to be nagging problems with this ‘‘simpler’’ syntax. It is too clever. It is relatively
hard to spot a template declaration in a program because the template arguments are deeply embedded in
the syntax of functions and classes and the parsing of some function templates is a minor nightmare. It is
possible to write a C++ parser that handles function template declarations where a template argument is
used before it is defined, as in index() above. I know, because I wrote one, but it is not easy nor does
the problem appear amenable to traditional parsing techniques. In retrospect, I think that not using a key-
word and not requiring a template argument to be declared before it is used would result in a set of prob-
lems similar to those arising from the clever and convoluted C and C++ declarator syntax.

9.2 <...> vs (...)
But why use brackets instead of parentheses? As mentioned before, parentheses already have many

uses in C++. A syntactic clue (the <...> brackets) can be useful for reminding the user about the different
nature of the type parameters (they are evaluated at compile time). Furthermore, the use of parentheses
could lead to pretty obscure code:

template(int sz = 20) class buffer {
buffer(int i = 10);
// ...

};

buffer b1(100)(200);
buffer b2(100); // b2(100)(10) or b2(20)(100)?
buffer b3; // legal?

These problems would become a serious practical concern if the notation for explicit disambiguation of
overloaded function calls were adopted. The chosen alternative seems much cleaner:

template<int sz = 20> class buffer {
buffer(sz)(int i = 10);
// ...

};

buffer b1<100>(200);
buffer b2<100>; // b2<100>(10)
buffer b3; // b3<20>(10)
buffer b4(100); // b4<20>(100)

9.3 The class keyword
Unfortunately, the ideal word for introducing the name of a parameter of type type, that is, type cannot

be used; type appears as an identifier in too many programs. Why use the class keyword then? Why
not? Classes are already types to the extent that the built-in types can be considered second class citizens in
some contexts (you cannot derive a class from a built in type, you cannot take the address of an operation
on a built-in type, etc.). What is done here is simply to use class in a slightly more general form than is
done elsewhere.

9.4 Scope of Template Argument Names
The scope of a template argument name is the template declaration and the template name obeys the

usual scope rules:
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const int T;

template<class T> // hides the const int T
class vector {

int sz;
T* v;

public:
// ...

};

int T2 = T; // here const int T is visible again

Template declarations may not be declaration lists:

template<class T> f(T*), g(T); // error: two declarations

This restriction is made to avoid users making unwarranted assumptions about relations between the tem-
plate arguments in the different templates.

10 Templates and Typedef

The template concept is easily extended to cover all types†. For example:

template<class T, int i> typedef T array[i];
...

array<int,10> v; // array of 10 ints

This allows great freedom in defining type names. The typedef keyword is necessary because

template<class T, int i> T array[i];

Would define a family of arrays (all called array) and not a family of array type.
Consequently, only class, function, and typedef templates will be implemented.

11 Type Equivalence

Consider:

template<class T, int i> class X {
T vec[i];
// ...

};

array<int,10> x;
array<int,10> y;
array<int,11> z;

Here, x and y is of the same type, but z is of the different type. Since the template arguments used in the
declarations of x and y are identical they refer to the same class. Naturally, only a single class declaration
is generated by a C generating C++ compiler. On the other hand, the template arguments used in the decla-
ration of z differs and gives rise to a different class.

Different template arguments give rise to different classes even if the argument is used in a way that
does not affect the type of the generated class:

__________________
† This section has been changed since the USENIX C++++ conference proceedings version of this paper based on comments by
George Gonthier.
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template<class T, int i> class Y {
public:

foo() { int buf[i]; ... }
};

Y<int,10> xx;
Y<int,10> yy;
Y<int,11> zz;

Template arguments must be types, constants, or integer expression that can be evaluated at compile
time.

12 Derivation and Templates

Among other things, derivation (inheritance) ensures code sharing among different types (the code for a
non-virtual base class function is shared among its derived classes). Different instances of a template do
not share code unless some clever compilation strategy has been employed. I see no hope for having such
cleverness available soon. So, can derivation be used to reduce the problem† of code replicated because
templates are used? This would involve deriving a template from an ordinary class. For example:

template<class T> class vector { // general vector type
T* v;
int sz;

public:
vector(int);
T& elem(int i) { return v[i]; }
T& operator[](int i);
// ...

};

template<class T>
class pvector : vector<void*> { // build all vector of pointers

// based on vector<void*>
public:

pvector(int i) : (i) {}
T*& elem(int i) { return (T*&) vector<void*>::elem(i); }
T*& operator[](int i) { return (T*&) vector<void*>::operator[](i); }
// ...

};

pvector<int*> pivec(100);
pvector<complex*> icmpvec(200);
pvector<char*> pcvec(300);

The implementations of the three vector of pointer classes will be completely shared. They are all imple-
mented exclusively through derivation and inline expansion relying on the implementation of
vector<void*>. The vector<void*> implementation is a good candidate for a standard library.

I conjecture that many class templates will in fact be derived from another template. For example:

template<class T> class D : B<T> {
...

};

This also ensures a degree of code sharing.

__________________
† If that really is a problem: memory is cheap, etc. I think it is a problem and will remain so for the foreseeable future. People’s ex-
pectations of computers have consistently outstripped even the astounding growth in hardware performance.
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13 Members and Friends

Here are some more details:

13.1 Member Functions
A member function of a class template is implicitly a template with the template arguments of its class.

Consider:

template<class T> class C {
T p;
T m1() { T a = p; p++; return a; }

};

C<int> c1;
C<char*> c2;

int i = c1.m1(); // int C<int>::m1() { int a = p; p++; return a; }

char* s = c2.m1(); // char* C<char*>::m1() { char* a = p; p++; return a; }

These two calls of m1() gives rise to two expansions of the definition of m1().
Naturally a member template may also be declared:

template<class T> class C {
template<class TT> void m(TT*,T*);

};

This case will be discussed below. However, explicit use of class template arguments in member function
names is unnecessary and illegal:

template<class T> class C {
T m<T>(); // error

};

template<class T> C<T>::m<T>() { ... } // error

template<class T> C<T>::m() { ... } // correct

This also applies to constructors:

template<class T> class C {
C(); // correct, a constructor
C<T>(int); // error constructor

};

template<class T> C<T>::C() { ... } // correct

To avoid confusion it is not legal to define a template as a member with the same template argument name
as was used for the class template:

template<class T> class C {
template<class T> T m(T*); // error

};

13.2 Friend Functions
A friend function differs from other functions only in its access to class members. In particular, a friend

of a class template is not implicitly a template. Consider:

template<class T> class C {
friend f1(T a);
template<class TT> friend f2(TT a);

};

The definitions of f1() and f2() are legal, but clearly not equivalent.
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The friend declaration of f1(T) specifies that for all types T, f1<T> is a friend of C<T>. For
example, f1<int> is a friend of C<int>. However, f1<int> is not a friend of C<double>. The def-
inition of f1() would probably look something like this:

template<class TT> f1(TT a) { ... };

The friend f1() need not be a template, but if it isn’t the programmer might have a tedious time construct-
ing the necessary set of overloaded functions ‘‘by hand.’’

The declaration of f2() specifies that for all types T and TT, f2<TT> is a friend of C<T>. For exam-
ple f2<int> is a friend of C<double>.

Note that a friend function of a parameterized class need not itself be parameterized:

template<class T> class C {
static int i;
friend f() { i++; }

};

13.3 Static Members
Each version of a class template has its own copy of the static members of the class:

template<class T> class C { static T a; static int b; ... };

C<int> xx;
C<double> yy;

This implies allocation of the static variables:

static int C<int>::a;
static int C<int>::b;

static double C<double>::a;
static int C<double>::b;

Similarly, each version of a parameterized function has its own copy of static local variables:

template<class T> f() { static T a; static int b; ... };

13.4 Friend Classes
Friend classes can (as usual) be declared as a shorthand for declaring all functions friends:

template<class T> class C {
friend template<class TT> class X; // all X<TT>s
friend class Y<T>; // only Y<T>
friend class Z<int>; // only Z<int>

};

14 Examples of Templates

Here are some more examples of potentially useful templates. Versions of many of the templates used
as examples in this paper have been created using macros and actually used in real programs. ‘‘Faking’’
templates using macros have been a major design technique for the template facilities. In this way the lan-
guage facilities could be designed in parallel with the key examples and techniques they were to support.

An associative array:

template<class E, class I> class Map {
// arrays of Es indexed by Is
// ...
E& operator[](I);

};

A ‘‘record’’ stream; the usual stream of characters is a special case:
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template<class R> class ostream {
// ...
ostream<R>& operator<<(R&); // output an R

};

An array for mapping information from files into primary memory:

template<class T, int bsz> class huge {
T in_core_buf[bsz];
// ...
T& operator[](int i);
seek(long);
// ...

A linked list class:

template<class T> class List { ... };

A queue tail template for sending messages of various types:

template<class T> class mtail : public qtail {
// ...
void send(T arg)
{

// bundle ‘‘arg’’ into a new message buffer
// and put than on the queue

}
};

A counted pointer template (for user-defined automatic memory management):

template<class T> class CP {
// ...

public:
CP();
CP(T);
CP(CP<T>&);
// ...

};

15 Conclusions

A general form of parameterized types can be cleanly integrated into C++. It will be easy to use and
easy to document. The implementation can be efficient in both run-time and space. It can be implemented
portably and efficiently (in terms of compiler and link time) provided some responsibility for generating the
complete set of definitions of function templates is placed on the programmer. This implementation can be
refined, but probably not without loss of either portability or efficiency. The required compiler modifica-
tions are manageable. In particular, cfront can be modified to cope with templates. Compatibility with C is
maintained.

16 Caveat

The key thing to get right for a C++ template facility is assuring that basic parameterized classes are
implemented in an easy to use and efficient way for the relatively simple key examples. The compilation
system must be efficient and portable at least for these examples. The most reasonable approach to building
a template system for C++ would be to achieve this first, make the inevitable changes in concepts based on
that experience, and proceed with more advanced features only as far as they makes sense then.
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