
1/201144

INTERVIEW

C++ is undoubtedly one of the most successful
programming languages of our era. I know
You heard this question many times but today,
looking from al most 30 years perspective,
could you say what are in your opinion the
greatest advantages and disadvanta ges of
this language? From today’s perspective what
would you change/redesign in C++?
There are two ways of approaching this question:

•	 If	 I	had	a	time	machine	and	could	go	back	to	1979	
and	start	over,	what	would	I	have	done	differently?

•	 What	would	I	like	to	change	today?

The	time	machine	question	 is	 intriguing,	but	pure	 fanta-
sy.	If	I	had	that	machine,	should	I	also	go	back	a	few	years	
further	to	give	some	advice	to	Dennis	Ritchie?	Also,	whe-
never	I	think	of	changes	in	the	past	I	come	up	with	a	pa-
radox:	I	know	what	happened,	but	1980s-vintage	Bjarne	
knew	the	local	conditions	in	which	C++	grew	up	bet	ter	
than	I	do	(I	have	forgotten	most)	and	he	was	almost	cer-
tainly	 smarter	 than	 I	–	people	 rarely	 get	 smarter	when	
they	get	older,	just	more	experienced	and	knowledgeable.
On	the	other	hand,	what	can	be	done	today	–	given	the	

constraints	of	billions	of	lines	of	C++	code,	millions	of	pro-
grammers,	 seriously	 vested	 interests	 in	 tool	 chains,	 and	
committee	processes	–	is	so	tempered	by	real-world	con-
cerns	that	the	ideas	easily	gets	lost	in	the	technical	details.
You	can	read	serious	answers	to	“what	happened	and	

why	and	what	do	I	think	about	that?”	questions	 in	my	

two	papers	from	the	ACM	History	of	Programming	Lan-
guages	conference	(HOPL).	They	are	available	from	my	
publications	page.

What about C compatibility? Is C
compatibility a good for C++?
I	decided	to	build	C++	on	the	fo	undation	of	some	exi-
sting	programming	language.	Si	mula67	set	an	example	by	
building	on	Algol	and	I	really	didn’t	want	to	re-invent	the	
wheel	and	make	the	usual	set	of	beginner’s	mistakes.	I	ne-
eded	to	build	on	a	systems	programming	language	becau-
se	my	aim	was	to	deal	with	the	increasing	complexity	of	
system	programs	arising	from	the	huge	increase	in	pro-
cessor	speeds	and	memory	capacities.	C	seemed	a	good	
cho	ice	and	at	the	time	it	was	not	as	obvious	a	choice	as	
it	seems	today.	Many	C	and	C++	programmers	don’t	see	
it	that	way,	but	I	think	that	C	and	C++	grew	up	together	
and	both	drew	strengths	from	the	large	community.	
Bjarne:	From	C,	C++	got	its	direct	and	efficient	model	

of	the	machine,	which	I	think	has	been	and	is	essential	for	
its	success	as	a	systems	programming	language.	That	is	so-
mething	I	would	not	change	in	retrospect.	From	C,	C++	
also	got	the	messy	declarator	syntax,	the	error-prone	nar-
rowing	conversions,	and	arrays	with	array-to-pointer	co-
nversions	that	seriously	complicates	range	checking.	These	
three	features	would	not	be	in	my	ideal	language.	The	idea	
of	declarators	is	sound	enough,	but	the	syntax	is	an	artifact	
of	ancient	parser	technology	and	the	Draconian	demands	
of	really	small	memories	(48K	bytes,	if	I	remember	correc-
tly).	A	good	syntax	would	not	be	one	you	could	confuse	

Bjarne Stroustrup
About C++ and... few
more things

Bjarne Stroustrup: Born December
30, 1950 in Århus, (Denmark) He is a
computer scientist, most notable for
the creation and the development of
the widely used C++ programming
language. He is currently Professor
and holder of the College of
Engineering Chair in Computer
Science at Texas A&M University

en.sdjournal.org 45

Interview with Bjarne Stroustrup

like	to	see	optional	garbage	collection.	In	particular,	C++0x	
provides	an	ABI	for	plugging	in	a	garbage	collector,	but	does	
not	require	anyone	to	actually	use	it.	Please	remember	that	
memory	isn’t	the	only	resource	that	a	programmer	can	le-
ak.	Other	examples	are	file	handles,	sockets,	and	locks.
Works	on	C++0x	are	still	in-progress	but	the	date	of	

finalizing	it,	is	not	known.	Why	does	it	take	so	much	time?	
What	slows	down	the	standards	committee	the	most?

How about May 16, 2011? That’s the most
likely date for the final technical vote on
C++0x.
ISO	standardization	takes	so	long	because	it	requires	con-
sensus	 among	many	 stakeholders,	 because	 the	 require-
ments	for	the	specification	is	tougher	than	for	a	language	
with	a	single	implementer,	and	because	the	committee	has	
no	resources	beyond	the	time	of	its	volunteer	members.
The	lack	of	resources	is	the	primary	reason.	Had	we	

had	a	 full	 time	“design	and	experimentation”	group	 to	
work	on	the	specification,	try	out	 ideas,	and	coordina-
te	community	efforts,	we	might	have	finished	five	years	
ago.	However,	we	don’t	–	even	I	don’t	work	full	time	on	
C++	design.	The	committee	doesn’t	have	a	single	penny	
to	spend.	Given	these	constraints	all	ISO	standards	takes	
many	years	to	complete.
It	is	also	worth	remembering	that	the	standard	itself	is	

something	like	1,300	pages	of	dense	technical	text.	It	is	a	
massive	piece	of	work	–	and	before	you	start	to	compla-
in	about	language	complexity,	please	note	that	other	ISO	
language	standards	are	of	the	same	order	of	magnitude	
and	we	cannot	achieve	simplicity	by	throwing	away	facili-
ties;	that	would	break	user	code.

What is your estimation for finalizing the
C++0x standard? And, maybe even more
important: when in your opinion C++0x can
become a standard in a practical sense
(which means that it will be fully implemented
by a compiler vendors and widely used by a
C++ community)?
I	think	we’ll	even	get	C++0x	ratified	in	2011.	The	implemen-
ters	are	already	working	hard	on	the	new	language	features	
and	essentially	all	of	the	standard	libraries	are	shipping.	You	
can	start	experimenting	with	C++0x	now	and	you	should	
because	you	really	need	to	familiarize	yourself	with	new	fe-
atures	before	trying	to	ship	products	with	them.
The	GCC	progress	seems	to	promise	a	large	degree	of	

completeness	around	the	end	of	2011.	Microsoft	is	also	mo-
ving	ahead	(e.g.	you	can	download	a	free	beta	with	lambdas,	
auto,	and	concurrency	support),	but	I	can’t	guess	when	any	
team	of	implementers	will	complete.	If	you	ship	with	one	
compiler,	there	will	be	opportunities	next	year,	but	if	you	–	
like	me	–	prefer	portability	across	several	compilers	for	im-
portant	code,	then	you’ll	probably	have	to	wait	for	another	
year.	In	all	cases,	I	think	it	will	be	wise	to	try	to	adopt	featu-

with	expressions	and	would	be	 linear	so	that	you	don’t	
have	to	use	parentheses.	For	example	

function f : (int, const string&)->(int)->char*;

That	 is	a	 function	called	 f	 taking	a	 (int,	const	string&)	
pair	of	arguments	and	returning	a	function	taking	an	int	
and	returning	a	char.	The	suffix	return	type	notation	in	
C++0x	takes	a	baby	step	in	this	direction.
Similarly,	 the	 narrowing	 conversions	 (e.g.	 double	 to	

char)	are	a	historical	accident	and	C++0x	takes	a	baby	
step	 to	 help	 the	 programmer	 avoid	 the	 resulting	 pro-
blems.	For	example:

int x1 = 7.9; // OK: x1 becomes 7

int x2 ={7.9}; // error: narrowing not allowed

The	new	uniform	initializer	syntax	based	on	{}-lists	do-
es	not	allow	narrowing.	It	also	generalizes	the	arbitra-
ry	length	initializer	lists	from	C’s	array	initializers	to	a	
general	facility	that	can	be	used	for	user-defined	types.	
For	example:	

vector<string> lang = {„BCPL”, „C”, „Algol”,

 „Simula”, „C++”” };

The	other	key	 to	C++’s	 success	 is	 its	 general	 and	effi-
cient	abstraction	mechanism.	Classes	basically	works	by	
simple	aggregation	of	features	and	constructors	and	de-
structors	is	the	key	to	many	of	the	most	effective	C++	
programming	techniques,	such	as	“Resource	Acquisition	
Is	 Initialization”	 for	 structured	 resource	 management	
and	effective	use	of	exceptions.	In	particular,	I	do	not	re-
gret	avoiding	a	“richer	set	of	abstraction	mechanisms	ba-
sed	on	massive	 run-time	 support.”	 I	 still	 consider	 that	
unsuita	ble	for	serious	systems	programming.
Template	is	an	essential	part	of	C++’s	abstraction	me-

chanisms,	but	here	I	do	have	an	idea	that	–	if	it	had	been	
understood	at	the	time	–	might	have	simplified	both	the	
language	and	its	use.	I	think	that	a	template	design	cen-
tered	around	“concepts”	(sets	of	requirements	for	tem-
plate	arguments)	would	have	been	feasible,	but	 I	didn’t	
know	how	at	the	time.	I	knew	the	problem	and	devoted	
the	first	three	pages	of	the	template	chapter	of	“The	De-
sign	and	Evolution	of	C++”	to	it,	but	couldn’t	solve	it	un-
der	my	demanding	requirement	for	the	template	design.	
Maybe	C++1x	will	finally	get	“concepts.”
Would	I	have	provided	garbage	collection?	My	ideal	is	to	

avoid	garbage	collection	because	it	complicates	local	reaso-
ning	and	can	easily	impose	unsuspected	overheads.	Therefo-
re	I	would	not	let	any	basic	part	of	the	language	depend	on	
garbage	collection.	However,	as	long	as	it	is	possible	to	leak	
resources	in	a	language	someone	will	do	so.	Therefore,	even	
though	 I	 prefer	 the	more	 general	 resource	management	
techniques	based	on	constructors	and	destructors,	I	would	

1/201146

INTERVIEW

res	in	stages	and	try	not	to	go	wild	trying	to	use	as	many	fe-
atures	as	possible	right	away.	As	ever,	the	aim	must	be	“good	
code”	not	“maximal	use	of	cool	features.”
Please	note	that	even	in	this	longish	interview,	I	cannot	

explain	more	than	a	few	C++0x	features	and	I	cannot	go	
into	details.	If	I	refer	to	a	facility	without	explanation,	ple-
ase	consult	my	C++	FAQ	for	a	more	complete	explana-
tion.	There,	you	can	also	find	some	overview,	some	discus-
sion	of	design	aims,	and	links	to	papers	about	C++0x.

C++0x introduces several new features to
the language and its standard library. Could
you describe five features which are in your
opinion the most important ones?
That’s	hard.	I	usually	classify	the	improvements:

•	 Concurrency	support
•	 Improved	support	for	generic	programming
•	 More	and	better	libraries
•	 Better	support	for	teaching	and	learning
•	 Etc.	Features

The	 idea	 is	 to	 indicate	 that	 individual	 features	 take	 the-
ir	place	in	a	more	general	approach	to	improve	the	sup-
port	for	programming	styles.	Picking	a	feature	out	of	such	
a	context	can	be	quite	misleading.	Some	of	 the	smallest	
features	are	essential	for	the	realistic	use	of	features	that	
appear	much	more	significant	to	programmers.
I	guess	I	could	pick	an	example	(the	shortest	example	I	

can	think	of)	from	each	of	those	general	categories:

•	 Concurrency	support:	async()	and	future
•	 Improved	support	for	generic	programming:	auto
•	 More	and	better	libraries:	regex	(regular	expression	

matching)
•	 Better	support	for	teaching	and	learning:	>>
•	 Etc.	features:	move	semantics

We	no	longer	have	to	remember	to	add	a	space	at	the	
end	of	a	container	of	a	container.	For	example:	

vector<map<string,double>> v;

We	don’t	have	 to	 specify	 the	 type	of	 a	 variable	 if	we	
initia	lize	it.	For	example:	

auto x = 7; // x is of type int

auto y = v[i][„foo”]; // y is of type double

We	can	use	a	regular	expression	to	find	patterns	in	a	
file:

int main()

{

 ifstream in(„file.txt”); // input file

 boost::regex pat („\\w{2}\\s*\\d{5}(-\\d{4})?”);

// ZIP code pattern

 int lineno = 0;

string line; // input buffer

 while (getline(in,line)) {

 ++lineno;

 smatch matches; // matched strings go here

 if (regex_search(line, matches, pat))

cout << lineno << „: „ << matches[0] << ‘\n’;

 }

}

This	 is	 stripped	 of	 error	 handling	 code,	 but	 basical-
ly	it	looks	for	postal	codes,	such	as	TX77845	and	NY	
10027-7003.	 The	 key	 function	 is	 regex_search():	 re-
gex_search(line,	 matches,	 pat))	 looks	 for	 the	 regular	
expression	pat	in	the	string	line	and	deposit	matches	in	
the	structure	matches.
We	can	request	tasks	to	be	executed	concurrently:

double accum(double* b, double* e, double init);

 // some work function

double comp(vector<double>& v) // spawn up to 4

 concurrent tasks

{

 auto f0 = async(accum, &v[0], &v[v.size()/4],

0.0);

 auto f1 = async(accum, &v[v.size()/4], &v[v.

size()/2], 0.0);

 auto f2 = async(accum, &v[v.size()/2], &v[v.

size()*3/4], 0.0);

 auto f3 = async(accum, &v[v.size()*3/4],

&v[0]+v.size(), 0.0);

 return f0.get()+f1.get()+f2.get()+f3.get();

}

Here,	async()	launches	four	tasks	which	may	be	run	con-
currently	 if	 the	 machine	 has	 suitable	 resources.	 Each	
async()	returns	an	object	(of	type	future)	from	which	the	
result	may	be	obtained	using	get().	The	most	important	
point	here	 is	 that	 the	programmer	need	not	utter	 the	
words	“thread”	or	“lock”	to	get	the	work	done.
We	no	longer	have	to	play	around	with	references,	po-

inters,	clever	tricks,	or	garbage	collectors	to	return	large	
objects	from	a	function:

vector<int> make_test_sequence(int n)

{

 vector<int> res;

 for (int i=0; i<n; ++i) res.push_back(rand_

int());

 return res; // move, not copy

en.sdjournal.org 47

Interview with Bjarne Stroustrup

}

vector<int> seq = make_test_sequence(1000000); // no

copies

Note	that	the	(large)	vector	is	returned	by	value.	This	is	as	
efficient	as	it	is	simple	because	std::vector	has	a	“move	con-
structor”	in	addition	to	the	usual	copy	constructor.	A	mo-
ve	constructor	does	not	copy	elements;	it	simply	swaps	re-
presentations	 leaving	 an	 empty	 object	 behind.	 Preferring	
the	move	constructor	over	the	copy	constructor	for	a	re-
turn	value	that	can	never	again	be	used	is	obviously	a	go-
od	idea.	No	special	compiler	magic	is	required;	you	can	add	
move	constructors	to	your	own	large	data	structures	using	
a	language	feature	called	“rvalue	references.”
To	give	you	an	idea	of	the	magnitude	of	work	that	has	

gone	into	C++0x,	here	is	an	incomplete	list	of	useful	new	
features	and	libraries:

•	 atomic	operations
•	 auto	(type	deduction	from	initializer)	
•	 enum	class	(scoped	and	strongly	typed	enums)	
•	 copying	and	rethrowing	exceptions	
•	 constant	 expressions	 (generalized	 and	 guaranteed;	

constexpr)
•	 decltype	
•	 defaulted	and	deleted	functions	(control	of	defaults)	
•	 delegating	constructors	
•	 extern	templates	
•	 suffix	 return	 type	 syntax	 (extended	 function	

declara	tion	syntax)	
•	 in-class	member	initializers	
•	 inherited	constructors	
•	 initializer	lists	(uniform	and	general	initialization)	
•	 lambdas	
•	 long	long	integers	(at	least	64	bits)	
•	 inline	namespace	
•	 null	pointer	(nullptr)	
•	 range	for	statement	
•	 raw	string	literals	
•	 rvalue	references	
•	 Compile-time	assertions	(static_assert)	
•	 template	alias	(using)
•	 unicode	characters	
•	 user-defined	literals	
•	 variadic	templates	
•	 std::array	
•	 std::async()	
•	 std::function	and	std::bind	
•	 std::forward_list	a	singly-liked	list	
•	 std::future	and	std::promise	
•	 garbage	collection	ABI	
•	 hash_tables	(e.g.	std::	unordered_map)
•	 metaprogramming	and	type	traits	
•	 random	number	generators	
•	 regex:	a	regular	expression	library	

•	 scoped	allocators	
•	 smart	 pointers:	 std::shared_ptr,	 std::weak_ptr,	 and	

std::unique_ptr	
•	 threads	(std::thread)
•	 Time	utilities	
•	 tuple	
•	 system	error	

You	can	look	up	these	features	in	my	C++0x	FAQ	and	
el	sewhere.

Could you provide some comment about re
moving Concepts feature from C++0x? Is there
any chance that Concepts will be added
to C++0x in the future? Many of its elements
assumed implementation of Concepts.
It	was	most	disappointing	to	have	to	remove	“concepts”	
from	the	set	of	features	provided	by	C++0x.	Concepts	
were	to	have	been	the	central	improvement	of	the	sup-
port	for	generic	programming,	providing	a	type	system	
for	types	and	through	that	better	specification	of	a	tem-
plate’s	requirements	on	its	arguments,	better	error	mes-
sages	for	template	code,	and	better	overload	resolution	
for	 templates.	For	example,	we	could	specify	 the	stan-
dard	library	algorithm	find	like	this:

template<InputIterator Iter, class Val>

 requires Comparable<Iter::value_type,Val>

Iter find(Iter b, Iter e, Val x);

In	other	words,	find	takes	a	pair	of	input	iterators	and	
a	value	of	a	type	that	we	can	compare	to	an	element	of	
the input sequence.
That	project	failed	partly	because	of	its	technical	difficulty	

(I	have	POPL	and	OOPSLA	research	papers	describing	the	
design	of	concepts)	and	partly	because	there	were	some	di-
sagreement	in	the	committee	over	the	ideals	for	the	de	sign.	
The	result	was	that	the	committee	decided	that	“con	cepts”	
were	not	mature	enough	for	standardization.	I	reluctantly	
agree.	I	think	we	will	see	a	new	and	better	concept	design	
in	a	future	C++	standard,	but	that	will	require	fundamental	
work	–	we	can’t	just	“polish	up”	the	C++0x	design.	Doing	
that	research	and	development	work	will	take	years,	but	we	
should	get	a	facility	that	is	simpler,	easier	to	use,	and	cheaper	
to	compile	than	what	the	C++0x	design	offered.

Do you take under consideration adding
experimental libraries (ex. Boost) to the C++
standard? I’m not talking about adding single
libraries but a way of easily extending the
standard library (ex. Python has such set of
libraries), If yes, how duplicates will be re
moved? (std::tr1::bind in boost::bind)
Boost	was	 conceived	 as	 a	 testing	 ground	 for	 li	braries.	
However,	boost	libraries	have	no	official	standing	so	the-

1/201148

INTERVIEW

re	is	no	problem	“removing	them.”	TR	libraries,	however,	
do	have	official	standing	so	we	are	very	careful	to

•	 	include	 only	 libraries	 that	 we	 are	 pretty	 sure	 are	
sufficiently	 widely	 useable	 to	 be	 part	 of	 the	 stan-
dard

•	 point	out	that	they	are	not	completely	part	of	 the	
standard,	so	they	may	change	if/when	they	are	inc-
luded

•	 try	 to	make	 transition	 to	 the	 standard	 as	 easy	 as	
possible.

I	expect	work	on	selecting	a	new	set	of	candidate	libra-
ries	in	the	form	of	a	second	libraries	TR	will	start	very	
so	on	after	we	ship	the	standard.
Once	a	TR	has	been	absorbed	in	the	standard,	incom-

patibilities	with	the	TR	become	the	domain	of	backwards	
compatibility	compiler	options	and	the	like.	As	far	as	the	
standard	is	concerned,	the	TR	no	longer	exist.

What constructions can be use in C++ to
support MMP platforms? Will the lack of
constructions supporting multithreading be
an obstacle in the future?
What	“lack	of	constructions	supporting	multithreading”?	
C++0x	offers

•	 A	memory	model	devised	 for	modern	(multi-core)	
hardware

•	 A	set	of	types	and	operations	supporting	 lock-free	
programming	(e.g.	atomics)

•	 A	thread	class
•	 A	set	of	mutexes,	 locks,	and	condition	variable	su-

itable	for	traditional	work	with	threads
•	 An	async()	launcher	and	a	future	type	for	slightly	hi-

gher	level	concurrent	programming

This	 provides	 a	 typesafe	 set	 of	 facilities	 for	 conven-
tional	 threads-and-locks	 programming.	 That	 style	 of	
program	ming	may	be	the	worst	way	to	exploit	concur-
rency,	but	 it	 is	universal	on	conventional	 systems	and	
to	be	usable	as	a	systems	programming	 language	C++	
must	support	it	well	–	so	C++0x	does.	By	“type	safe”,	I	
mean	no	more	void**s,	casts,	macros,	etc.	
In	addition	C++0x	provides	async()	and	future	as	exam-

ples	of	what	kind	of	higher-level	model	can	be	built	from	the	
C++0x	foundation	and	the	lock-free	programming	facilities	
for	people	who	want	to	provide	something	radically	different.

Usually C++ was considered as language
for operational system programming and
was widely used on mobile platforms (ex.
Symbian OS). Do the Android system and the
virtual machine Dalvik are sign of C++’s dawn
as a standard system language?

My	standard	description	of	C++	has	been	“a	general-pur-
pose	programming	language	with	a	bias	towards	systems	
programming.”	Using	C++	as	the	implementation	langu-
age	for	infrastructure	has	been	one	of	its	major	strengths	
forever	and	may	indeed	even	be	on	the	upswing.
C++	has	unique	strengths	when	it	comes	to	building	

infrastructure	 and	 resource-constrained	 applications.	
Those	 strengths	come	directly	 from	C++’s	 simple	and	
direct	mapping	to	the	machine	and	its	facilities	for	provi-
ding	flexible	and	cheap	(in	terms	of	code	size	and	execu-
tion	time)	abstraction	facilities.

What should be the characteristic of
programming languages in the future?
I	expect	to	see	many	programming	languages	in	the	futu-
re,	just	as	we	have	many	today.	I	do	not	think	there	will	
be	characteristics	that	will	be	common	to	them	all.	Diffe-
rent	languages	will	still	have	different	design	aims	and	dif-
ferent	user	communities.	For	the	systems	program	ming	
area,	I	hope	to	see	greater	type	safety	(perfect	type	sa-
fety	may	be	possible,	except	for	specific	direct	manipula-
tion	of	memory,	and	would	be	very	nice)	and	higher	level	
concurrency	models	(note	the	plural;	I	don’t	think	that	
a	single	model	suitable	for	all	uses	is	achievable).	I	think	
we’ll	see	increased	support	for	local	reasoning	and	a	de-
crease	in	the	use	of	non-local	information.

How in your opinion the future of the C++ will
look? Do you think C++ has its place? Is there
any road map for C++ beyond the C++0x?
C++	will	hold	its	own	as	the	premier	language	for	de-
velopment	of	 infrastructure	and	the	implementation	of	
resource-constrained	applications.	I	suspect	that	this	for-
mulation	actually	describe	an	area	of	increasing	size	and	
important	in	the	computing	world.
The	standards	committee	does	not	have	a	road	map	

for	the	future.	It	is	extremely	difficult	to	make	long	term	
plans	and	set	longer	term	goals	for	a	language	controlled	
by	a	self-selected	committee	of	volunteers.	That	will,	of	
course,	not	stop	me	and	others	 from	trying,	but	there	
is	nothing	significant	to	report	at	this	point.	Whatever	is	
done,	stability	of	the	definition	of	the	language	is	a	pre-
mium.	ISO	committees	cannot	proceed	to	break	lots	of	
existing	 code.	There	 are	 billions	 of	 lines	 of	C++	 code	
“out	there.”

In high level programming languages (C#,
Java, Python) you can see the influence
of functional languages. Do you think this
pattern will also apply to C++ in the future?
I	guess	that	it	is	worth	pointing	out	that	in	areas	C++	is	
a	higher-level	language	than	those	you	mention.	In	parti-
cular,	its	abstraction	facilities	(as	represented	by	the	C++	
static	type	system)	are	more	powerful.	More	specifically,	
the	 STL	brought	many	 functional-programming	 techni-

en.sdjournal.org 49

Interview with Bjarne Stroustrup

ques	into	the	mainstream	and	C++’s	templates	is	a	Tu-
ring-complete	functional	programming	language.	The	im-
provements	to	C++’s	support	of	generic	programming	
(such	as	auto,	decltype,	variadic	templates,	uniform	initia-
lization,	and	lambdas)	implies	better	support	for	functio-
nal	programming	techniques.
That	said,	we	must	be	careful	to	learn	from	the	streng-

ths	of	functional	programming	without	getting	caught	up	
in	its	problems.	Functional	programming	in	various	forms	
has	ruled	academia	and	large	sectors	of	the	educational	
establishment	 for	 decades,	 yet	 its	 impact	 on	 delivered	
systems	has	been	very	close	to	zero.

There are a lot of high quality resources
(books, articles, etc.) for learning C++98.
C++0x misses these. Where C++ programmers
can look for such resources? What in your
opinion is the best way to learn C++0x?
It’s	a	bit	early	to	expect	good	educational	support	for	
C++0x;	 even	C++98	 is	 not	over-endowed	with	 great	
teaching	materials.	First,	we’ll	see	descriptions	of	indivi-
dual	C++0x	features.	My	C++0x	FAQ	is	a	good	exam-
ple.
What	 will	 take	 longer	 are	 coherent	 descriptions	 of	

how	to	write	programs	using	a	balanced	set	of	language	
features	and	standard	library	facilities	to	write	compre-
hensible,	well-performing,	and	maintainable	code.	We	ne-
ed	to	reach	a	level	of	understanding	where	we	don’t	con-
sider	language	features	in	isolation	and	don’t	see	C++0x	
as	a	layer	of	features	on	top	of	C++98,	but	as	a	new	lan-
guage	with	a	coherent	and	integrated	set	of	features	and	
standard	libraries.
That	will	be	a	tall	order,	because	many	still	insist	seeing	

C++	as	a	layer	on	top	of	C.	That	is	an	approach	that	leads	
to	sub-optimal	and	unmaintainable	code.
As	an	example	of	an	modern,	integrated	approach	to	

le	arning	C++	(just	C++98,	unfortunately),	I	can	recom-
mend	my	new	textbook	for	beginning	to	medium	pro-
grammers:	“Programming:	 Principles	 and	 Practice	 using	
C++.”	There,	 libraries	 are	 used	 early	 and	 low-level	C-
-style	 features	 are	not	discussed	until	Chapter	17.	On	
the	other	hand,	it	is	not	a	“OO	from	day	one	approach”:	
classes	and	class	hierar	chies	are	not	introduced	before	
they	are	needed	for	realistic	problems.	

Are you working on The C++ Programming
Language, Fourth Edition?
Yes,	but	it	is	a	lot	of	work	so	it	is	still	more	than	a	year	
in	the	future	–	maybe	even	much	more.	The	problem	is	
that	 I	must	explain	how	to	use	 the	 language	and	 thin-
king	that	through	takes	time.	I	have	no	desire	just	to	do-
cument	the	features	or	even	to	explain	each	feature	in	
isolation.	That’s	what	(online)	documentation	is	for	and	
you	already	have	my	C++0x	FAQ	providing	a	lot	of	that.	
I	need	to	explain	the	rationale	for	the	various	facilities	

and	show	their	use	 in	combination	 in	 support	of	pro-
gramming	styles.	
Also,	I	find	it	hard	to	find	the	many	days	of	uninterrup-

ted	time	that	is	required	for	that	kind	of	thinking,	expe-
rimentation,	and	writing.	My	day	 job	requires	attention	
and	C++’s	continuing	success	results	in	many	demands	
on	my	time.	

How have the skills required for programmers
changed since you designed C++?
There	is	a	greater	need	to	understand	the	type	system	
and	the	benefits	of	using	the	type	system	well	has	steadi-
ly	increased.	C++0x	is	a	further	development	in	that	di-
rection	and	the	richness	of	the	static	(compile-time)	type	
system	is	one	area	where	C++	differs	from	most	other	
popular	languages.	
Looking	beyond	the	programming	language,	the	chan-

ges	 in	 software	 development	 have	 been	 dramatic.	 In	
1980s	terms,	modern	PC-application	programs	are	“in-
credibly	 huge,”	“unbelievable	 complex,”	 and	“unbelie-
vable	 wasteful	 of	 resources.”	 Many	 programmers	 do	
nothing	except	finding	the	appropriate	corner	of	a	fra-
mework	 to	exercise.	That’s	 not	 the	kind	of	 program-
ming	 that	 I’m	 most	 interested	 in	 or	 for	 which	 C++	
shines.	I	focus	more	on	so	ftware	infrastructure	and	re-
source-constraint	applications	where	C++	has	most	to	
contribute.	A	lot	of	 interesting	embedded	systems	fall	
into	these	categories.	For	examples	of	C++	use,	see	my	
applications	page.	

And I have to ask this question :) What do
you think about modern programmers, are
they better or worse?
Some	are	better	and	some	are	worse.	A	relatively	small	
“elite”	still	rely	on	extended	academic	educa	tion,	mas-
sive	technical	experience,	and	a	certain	amount	of	ide-
alism	 to	 actually	 understand	 the	 systems	 they	 work	
with	and	try	to	further	the	state	of	the	art.	There	may	
indeed	be	more	such	programmers	working	today	than	
ever	before.	Unfortunately,	 they	are	often	overlooked	
and	drowned	out	by	a	larger	number	of	people	willing	
to	just	patch	a	corner	of	an	incompletely	understood	
system	just	to	ship	something	–	anything	–	on	time.	Of	
course	I’m	ca	ricaturing	a	bit,	but	I	really	would	like	to	
see	more	idealism	and	professionalism	in	the	software	
field	–	and	both	starts	with	a	thorough	grounding	in	the	
fundamentals	of	com	puting.	Please	note	that	this	is	(em-
phatically)	not	a	statement	that	all	software	should	only	
be	written	by	PhDs	from	top	universities	using	mostly	
Greek	letters.	It	is	meant	as	an	encouragement	to	try	
to	understand	the	underlying	principles	of	every	system	
you	work	on	and	 to	aim	 for	demonstratively	correct	
code,	 rather	 than	 just	memorizing	which	 switches	 to	
set	to	get	a	desired	output	and	hoping	that	bugs	turn	
up in the testing.

