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Abstract

Future space missions, such as Mars Science Laboratory, are
built upon computing platforms providing a high degree of au-
tonomy and diverse functionality. The increased sophistication
of robotic spacecraft has skyrocketed the complexity and cost of
its software development and validation. The engineering of au-
tonomous spacecraft software relies on the availability and appli-
cation of advanced methods and tools that deliver safe concur-
rent synchronization as well as enable the validation of domain-
specific semantic invariants. The software design and certification
methodologies applied at NASA do not reach the level of detail
of providing guidelines for the development of reliable concur-
rent software. To achieve effective and safe concurrent interac-
tions as well as guarantee critical domain-specific properties in
code, we introduce the notion of a Semantically Enhanced Con-
tainer (SEC). A SEC is a data structure engineered to deliver the
flexibility and usability of the popular ISO C++ Standard Tem-
plate Library containers, while at the same time it is hand-crafted
to guarantee domain-specific policies. We demonstrate the SEC
proof-of-concept by presenting a shared nonblocking SEC vector.
To eliminate the hazards of the ABA problem (a fundamental prob-
lem in lock-free programming), we introduce an innovative library
for querying C++ semantic information. Our SEC design aims
at providing an effective model for shared data access within the
JPL’s Mission Data System. Our test results show that the SEC
vector delivers significant performance gains (a factor of 3 or
more) in contrast to the application of nonblocking synchroniza-
tion amended with the traditional ABA avoidance scheme.

1 Introduction

1 Future space exploration projects, such as Mars Sci-
ence Laboratory (MSL) [31] and Project Constellation [27],
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demand the design of some of the most complex man-rated
software systems. The high degree of autonomy and in-
creased complexity of such systems pose significant chal-
lenges in assuring their reliability and efficiency. A number
of studies led by NASA ([25] and [21]) indicate that the
current development and validation methodologies are pro-
hibitively expensive for systems of such complexity. The
challenges of developing and testing modern avionics soft-
ware motivated NASA to initiate a number of advanced
experimental software platforms, such as the Jet Propul-
sion Laboratory’s (JPL) Mission Data System (MDS) [23].
MDS provides an experimental goal- and state-based plat-
form for testing and development of autonomous real-time
flight applications.

In this work we present the definition, design, and imple-
mentation of the concept of Semantically Enhanced Con-
tainers (SECs). SECs are data structures designed to pro-
vide the flexibility and usability of the popular ISO C++
Standard Template Library (STL) containers [28], while at
the same time they are hand-crafted to guarantee domain-
specific policies, such as the validity of given user-defined
semantic invariants and conformance to a specific concur-
rency model. The objective of our work is to introduce
the notion, present an initial implementation, and demon-
strate the benefits of Semantically Enhanced Containers.
The most ubiquitous and versatile data structure in the ISO
C++ Standard Template Library is vector, offering a combi-
nation of dynamic memory management and constant-time
random access. We demonstrate the SEC proof-of-concept
by providing the design and implementation of a concur-
rent Semantically Enhanced STL vector. The SEC vector
presented in this work is engineered to ensure safe and effi-
cient concurrent synchronization as well as offer the mech-
anisms to establish the validity of certain user-defined se-
mantic guarantees in concurrent real-time systems. Our
SEC vector’s implementation is based on the following de-
sign goals:

(a) allow efficient and reliable concurrent interactions: to
achieve high performance and avoid the hazards of



deadlock, livelock, and priority inversion, the shared
vector’s operations are lock-free and linearizable [14].
In addition, our design is portable: all of the vector’s al-
gorithms are based on the word-size compare-and-swap
(CAS) instruction [10] available on a large number of
hardware platforms

(b) ensure the validity of user-defined semantic invariants:
we introduce Basic Query (BQ), an innovative library
for extracting semantic information from C++ source
code. BQ defines the programming techniques for spec-
ifying and statically checking domain-specific proper-
ties in code. We apply BQ to avoid the ABA problem
[2] (a fundamental problem for all CAS-based designs)
in the usage of our concurrent vector.

A number of pivotal concurrent applications in the Mission
Data System framework employ a shared STL vector (in
all scenarios protected by mutually exclusive locks). Such
applications are the Data Management Service containers
[32], the Goal Checker - an application for monitoring the
status of goals, and Elf - a framework for message pass-
ing and transportation. Lock-free programming techniques
have been applied in [3] to devise a methodology for auto-
matic parallelization of the MDS Temporal Constraint Net-
work (TCN) library. The TCN library is a critical compo-
nent of the MDS platform, defining the concepts of goal-
driven autonomous behavior. However, the shared contain-
ers used in [3] does not employ an ABA prevention scheme
and under certain conditions might be vulnerable to the oc-
currence of ABA.

This paper presents the concept, design, and implemen-
tation of a SEC shared vector engineered to provide higher
safety and faster performance in a number of critical MDS
applications. The rest of the paper is organized like this:
Section 2: Motivation, Section 3: Nonblocking Synchro-
nization, Section 4: Semantic Enhancement, Section 5: Per-
formance Results, and Section 6: Conclusion.

2 Motivation

A detailed study on the challenges for the development
and certification of modern spacecraft software by Lowry
[21] reveals that in July 1997 The Mars Pathfinder mis-
sion experienced a number of anomalous system resets that
caused an operational delay and loss of scientific data. The
follow-up analysis identified the presence of a priority in-
version problem caused by the low-priority meteorologi-
cal process blocking the the high-priority bus management
process. The software engineers found out that it would
have been impossible to detect the problem with the black
box testing applied at the time. A more appropriate pri-
ority inversion inheritance algorithm had been ignored due
to its frequency of execution, the real-time requirements

imposed, and its high cost incurred on the slower flight-
qualified computer hardware. The subtle interactions in
the concurrent applications of the modern aerospace au-
tonomous software are of critical importance to the system’s
safety and operation. Despite the challenges in debugging
and verification of the system’s concurrent components, the
existing development and certification processes [24] do not
provide guidelines at the level of detail reaching the devel-
opment, application, and testing of concurrent programs.

3 Nonblocking Synchronization

The most common technique for controlling the interac-
tions of concurrent processes is the use of mutual exclusion
locks. A mutual exclusion lock guarantees thread-safety of
a concurrent object by blocking all contending threads try-
ing to access it except the one holding the lock. In scenarios
of high contention on the shared data, such an approach can
seriously affect the performance of the system and signifi-
cantly diminish its parallelism. For the majority of applica-
tions, the problem with locks is one of difficulty of provid-
ing correctness more than one of performance. The appli-
cation of mutually exclusive locks poses significant safety
hazards and incurs high complexity in the testing and vali-
dation of mission-critical software. Mutual exclusion locks
can be optimized in some scenarios by utilizing fine-grained
locks [18]. Often due to the resource limitations of flight-
qualified hardware, optimized lock mechanisms are not a
desirable alternative [21]. Even for efficient locks, the inter-
dependence of processes implied by the use of locks, intro-
duces the dangers of deadlock, livelock, and priority inver-
sion.The incorrect application of locks is hard to determine
with the traditional testing procedures and a program can
be deployed and used for a long period of time before the
flaws can become evident and eventually cause anomalous
behavior.

To achieve scalability, better performance, reliability,
and avoid the dangers of priority inversion, deadlock, and
livelock, we rely on the notion of lock-free synchroniza-
tion. As defined by Herlihy [14], a concurrent object is non-
blocking (lock-free) if it guarantees that some process in the
system will make progress in a finite amount of steps. Non-
blocking algorithms do not apply mutually exclusive locks
and instead rely on a set of atomic primitives supported by
the hardware architecture, such as the word-size CAS in-
struction. Lock-free systems typically utilize CAS in or-
der to implement a an optimistic speculation on the shared
data. A contending process attempts to make progress by
applying one or more writes on a local copy of the shared
data. Afterwards, the process attempts to swap (CAS) the
global data with its updated copy. Such an approach guar-
antees that from within a set of contending processes, there
is at least one that succeeds within a finite number of steps.
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The system is non-blocking at the expense of some extra
work performed by the contending processes. Linearizabil-
ity [14] is an important correctness condition for concurrent
nonblocking objects: a concurrent operation is linearizable
if it appears to execute instantaneously in a given point of
time between the time t1 of its invocation and the time t2 of
its completion. The consistency model implied by the lin-
earizability requirements is stronger than the widely applied
Lamport’s sequential consistency model [20]. According to
Lamport’s definition, sequential consistency requires that
the results of a concurrent execution are equivalent to the
results yielded by some sequential execution (given the fact
that the operations performed by each individual processor
appear in the sequential history in the order as defined by
the program). The nonblocking synchronization algorithms
in our SEC vector are derived from the first design of a lock-
free dynamically resizable array presented by Dechev at el.
in [2]. The operations of our SEC vector are lock-free and
linearizable and in addition they provide disjoin-access par-
allelism for random access reads and writes and fast execu-
tion (outperforming the STL vector protected by a mutex by
a factor of 10 or more [2]).

3.1 An Alternative to CAS-based de-
signs: Software Transactional Mem-
ory (STM)

A variety of recent STM approaches [6] claim safe and
easy to use concurrent interfaces. The most advanced STM
implementations allow the definition of efficient ”large-
scale” transactions, i.e. dynamic and unbounded transac-
tions. Dynamic transactions are able to access memory
locations that are not statically known. Unbounded trans-
actions pose no limits on the number of locations being
accessed. The basic techniques applied are the utilization
of public records of concurrent operations and a number
of conflict detection and validation algorithms that prevent
side-effects and race conditions. To guarantee progress
transactions help those ahead of them by examining the
public log record. The availability of nonblocking, un-
bounded, and dynamic transactions provides an alternative
to CAS-based designs for the implementation of nonblock-
ing data structures (including our SEC vector). The com-
plex designs of such advanced STMs often come with an
associated cost:

(1) Two Levels of Indirection: A large number of the nonblocking
designs require two levels of indirection in accessing data

(2) Linearizability: The linearizability requirements are hard to
meet for an unbounded and dynamic STM. To achieve effi-
ciency and reduce the complexity, many STMs offer the less
demanding obstruction-free synchronization [17]

(3) STM-oriented Programming Model: the use of STM requires
the developer to be aware of the STM implementation and ap-

ply an STM-oriented Programming Model. The effectiveness
of such programming models is a topic of current discussions
in the research community

(4) Closed Memory Usage: Both nonblocking and lock-based
STMs require a closed memory system

(5) Vulnerability of Large Transactions: In a nonblocking im-
plementation large transactions are a subject to interference
from contending threads and thus are more likely to encounter
conflicts. Large blocking transactions can be subject to time-
outs, requests to abort or simply introduce a bottleneck for the
computation

(6) Validation: A validation scheme is an algorithm that ensures
that none of the transactional code produces side-effects.
Code containing I/O and exceptions needs to be reworked as
well as some class methods might require special attention.
Consider a class hierarchy with a base class A and two derived
classes B and C. Assume B and C inherit a virtual method f
and B’s implementation is side-effect free while C’s is not. A
validation scheme needs to disallow a call to C’s method f

With respect to our SEC vector implementation, the main
problems associated with the application of STM are meet-
ing the stricter requirements posed by the linearizability
model and the overhead introduced by the application of the
costly conflict detection and validation schemes. Because of
these trade-offs present in the state of the art STM libraries,
our current SEC vector design is based on the utilization of
nonblocking and portable CAS-based algorithms to deliver
the targeted safe and reliable concurrent synchronization.

3.2 Practical Lock-Free Programming
Techniques

The practical implementation of a hand-crafted lock-free
container is notoriously difficult. A nonblocking container’s
design suggests the update (in a linearizable fashion) of
several memory locations. The use of a double-compare-
and-swap primitive (DCAS) has been suggest by Detlefs
et al. in [5], however such complex atomic operations
are rarely supported by the hardware architecture. Har-
ris et al. propose in [13] a software implementation of a
multiple-compare-and-swap (MCAS) algorithm based on
CAS. This software-based MCAS algorithm has been ap-
plied by Fraser in the implementation of a number of lock-
free containers such as binary search trees and skip lists
[9]. The cost of the MCAS operation is expensive requiring
2M + 1 CAS instructions. Consequently, the direct appli-
cation of the MCAS scheme is not an optimal approach for
the design of lock-free algorithms. The vector’s random ac-
cess, data locality, and dynamic memory management pose
serious challenges for its non-blocking implementation. To
illustrate the complexity of a CAS-based design of a dy-
namically resizable array, Table 1 provides an analysis of
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the number of memory locations that need to be updated
upon the execution of some of the vector’s basic operations.

Operations Memory Locations
push back V ector × Elem→ void 2: element and size
pop back V ector → Elem 1: size
reserve V ector × size t→ V ector n: all elements
read V ector × size t→ Elem none
write V ector × size t× Elem→ V ector 1: element
size V ector → size t none

Table 1. Vector - Operations

3.3 Overview of the Lock-free Operations

In this section we present a brief overview of the most
critical lock-free algorithms employed by our SEC vector
(see [2] for the full set of the operations of the first lock-
free dynamically resizable array). To help tail operations
update the size and the tail of the vector (in a linearizable
manner), the design presented in [2] suggests the applica-
tion of of a helper object, named ”Write Descriptor
(WD)” that announces a pending tail modifications and al-
lows interrupting threads help the interrupted thread com-
plete its operations. A pointer to the WD object is stored in
the ”Descriptor” together with the container’s size and
a reference counter required by the applied memory man-
agement scheme. The approach requires that data types big-
ger than word size are indirectly stored through pointers and
avoids storage relocation and its synchronization hazards by
utilizing a two-level array. Whenever push back exceeds
the current capacity, a new memory block twice the size of
the previous one is added. The remaining part of this section
presents the pseudo-code of the tail operations (push back
and pop back) and the random access operations (read and
write at a given location within the vector’s bounds). We
use the symbols ˆ, &, and . to indicate pointer dereferenc-
ing, obtaining an object’s address, and integrated pointer
dereferencing and field access respectively.

Algorithm 1 pushback vector, elem
1: repeat
2: desccurrent ← vector.desc
3: CompleteWrite(vector, desccurrent.pending)
4: if vector.memory[bucket] = NULL then
5: AllocBucket(vector, bucket)
6: end if
7: wop←

new WriteDesc(At(desccurrent.size)ˆ, elem, desccurrent.size)
8: descnext ← new Descriptor(desccurrent.size + 1, wop)
9: until CAS(&vector.desc, desccurrent, descnext)

10: CompleteWrite(vector, descnext.pending)

Push back (add one element to end) The first step
is to complete a pending operation that the current de-
scriptor might hold. In case that the storage capacity

Algorithm 2 Read vector, i
1: return At(vector, i)ˆ

Algorithm 3 Write vector, i, elem
1: At(vector, i)ˆ← elem

Algorithm 4 popback vector
1: repeat
2: desccurrent ← vector.desc
3: CompleteWrite(vector, desccurrent.pending)
4: elem← At(vector, desccurrent.size− 1)ˆ
5: descnext ← new Descriptor(desccurrent.size− 1, NULL)
6: until CAS(&vector.desc, desccurrent, descnext)
7: return elem

Algorithm 5 CompleteWrite vector, wop
1: if wop.pending then
2: CAS(At(vector, wop.pos), wop.valueold, wop.valuenew)
3: wop.pending ← false
4: end if

has reached its limit, new memory is allocated for the
next memory bucket. Then, push back defines a new
”Descriptor” object and announces the current write
operation. Finally, push back uses CAS to swap the pre-
vious ”Descriptor” object with the new one. Should
CAS fail, the routine is re-executed. After succeeding,
push back finishes by writing the element.

Pop back (remove one element from end) Unlike
push back, pop back does not utilize a ”Write
Descriptor”. It completes any pending operation of the
current descriptor, reads the last element, defines a new de-
scriptor, and attempts a CAS on the descriptor object.

Non-bound checking Read and Write at position i
The random access read and write do not utilize the de-
scriptor and their success is independent of the descriptor’s
value.

3.4 The ABA Problem

The ABA problem [22] is fundamental to all CAS-based
systems. There are two particular instances that create ABA
hazards:

(1) the user intends to store a memory address value A mul-
tiple times

(2) the memory allocator reuses the address of an already
freed object

The ABA problem can occur in the CAS-based design
of a nonblocking dynamic array (Section 3.3) in a num-
ber of possible ways. One possible hazardous execution
can happen like this: assume a thread T0 attempts to
perform a push back; in the vector’s ”Descriptor”,
push back stores an announcement declaring that the
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value of the object at position i should be changed from A
to B. Then a thread T1 interrupts and reads the Descriptor
Object. Later, after T0 resumes and successfully completes
the operation, a third thread T2 can modify the value at po-
sition i from B back to A. When T1 resumes its CAS is
going to succeed and erroneously execute the update from
A to B.

As a common technique for overcoming the ABA prob-
lem it has been suggested to use a version tag attached to
each value. Such an approach demands the application of
an atomic instruction such as a CAS2 (compare-and-swap
two co-located words), a hardware primitive that is avail-
able on some common Intel architectures. Alternative hard-
ware primitives that help us eliminate ABA are the DCAS
(compare and swap two non-colacated words, implemented
on some Motorola 68000 processors) or the load-link/store-
conditional (LL/SC) semantics, provided by Alpha, Pow-
erPC, MIPS, and ARM architectures. For our nonblock-
ing implementation we cannot assume the availability of
such atomic primitives since they are specific to a limited
number of hardware platforms. A proposed hardware im-
plementation (entirely built into a present cache coherency
protocol) of an innovative Alert-on-Update (AOU) instruc-
tion [26] has been suggested by Spear et al. to eliminate the
CAS deficiency of allowing ABA. It is unlikely that CAS2,
DCAS, LL/SC or AOU would be supported by an embed-
ded real-time hardware, such as the hardware platform on
the Mars Science Laboratory.

ABA avoidance on CAS-based architectures has been
typically limited to two possible approaches:

(a) split a 32-bit memory word into a value and a counter
portions (thus significantly limiting the usable address
space or the range of values that can be stored) [8]

(b) apply value semantics (by utilizing an extra level of in-
direction, i.e. create a unique pointer to each value to be
stored) in combination with a memory management ap-
proach that disallows the reuse of potentially hazardous
memory locations [16], [22] (thus impose a significant
performance overhead)

To eliminate the ABA problem of (2), the authors in [2]
suggest the application of a memory management scheme
such as Herlihy et al.’s Pass The Buck algorithm [15] that
utilizes a separate thread to periodically reclaim unguarded
objects. The vector’s vulnerability to (1) (in the absence of
CAS2 or LL/SC), can be eliminated by requiring the data
structure to copy all elements and store pointers to them.
This approach is undesirable because it introduces an ex-
tra level of indirection and its overhead might reduce the
vector’s performance gains. In this work we suggest the
avoidance of the ABA problem by enforcing (through the
application of static analysis) of a number of semantic us-
age patterns of the SEC vector (Section 4.1).

4 Semantic Enhancement

As emphasized by Stroustrup in [28], the concept of
higher-level systems programming is of significant impor-
tance to systems of high complexity and size. Higher-
level systems programming implies that while low-level ef-
ficiency is important, the emphasis is placed towards the de-
sign, maintenance, and validation of the larger system. With
respect to the system implementation, it is the programming
language facilities for data abstraction and representation
of domain-specific concerns that directly address this issue.
Stroustrup explains [28]:

”A programming language serves two related
purposes: it provides a vehicle for the program-
mer to specify actions to be executed and a set of
concepts for the programmer to use when think-
ing about what can be done. The first aspect ide-
ally requires a language that is ’close to the ma-
chine’, so that all important aspects of a machine
are handled simply and efficiently in a way that
is reasonably obvious to the programmer. The
C language was primarily designed with this in
mind. The second aspect ideally requires a lan-
guage that is ’close to the problem to be solved’,
so that the concept of a solution can be expressed
directly and concisely. The facilities added to C
to create C++ were primarily designed with this
in mind.”

The application of C++ in a framework for autonomous em-
bedded flight software, such as the Mission Data System,
further illustrates the significance of the ability of C++ to
excel in providing both, instructions ’close to the machine’
and facilities that are ’close to the problem to be solved’.
Language facilities allowing the definition of high-level de-
sign concepts and domain-specific concern are often pro-
vided by language libraries. Such libraries enhance the lan-
guage semantic model by defining notions and guarantees
that belong to the problem domain. Modeling and formal
verification tools such as SPIN [11] and Alloy Analyzer
[19] aim at expressing and validating high-level domain-
specific and design concerns. The challenges associated
with the application of modeling and formal verification
tools in the development process are:

(1) Bridging the implementation source and the software
models

(a) from implementation to models: as an abstraction
and simplification of the software implementation,
a model represents an aspect of the software solu-
tion based on a number of assumptions and rules.
Defining these assumptions as well as the verifica-
tion invariants, and establishing whether the model
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is trustworthy with respect to the source are some
of the most challenging tasks

(b) from models to implementation: the application of
program synthesis techniques such as AutoFilter
[4] have been applied successfully in a number or
flight applications. However, the certification of the
produced software is challenged by the strict FAA
requirement of having the program synthesis meet
the same certification requirements as the produced
flight software

(2) Limited state space and heavy computational complex-
ity: despite the advanced state space reduction tech-
niques in many modern formal verification tools, the
main limitations for their applicability arise from the
heavy computational complexity imposed and the state
space explosion problem. Program simplification and
abstract interpretation techniques are often necessary
to reduce the explored state space. According to the
FAA certification standards, it is required to establish
the preservation of the program semantics upon the ap-
plication of any program transformation and abstract in-
terpretation techniques

(3) Project Scheduling: the application of formal logic can
often be as demanding to the software developers as the
engineering of the system implementation itself

4.1 Using Static Analysis to Express and
Validate Domain-Specific Guarantees

In this section we present Basic Query (BQ), a static
analysis library for extracting semantic information from
C++ source code. BQ user-defined actions are executed by
traversing a compact high-level abstract syntax tree (AST)
called Internal Program Representation (IPR). IPR is at the
center of a C++ static analysis framework named The Pivot
[29]. We demonstrate BQ’s efficiency by defining the se-
mantic rule Exclude push back that disallows the use of a
push back operation in certain scenarios and helps us avoid
the ABA problem (Section 3.4).

The Pivot is a compiler-independent platform for static
analysis and semantics-based transformation of the com-
plete ISO C++ programming language and some advanced
language features proposed for the next generation C++,
C++0x [1]. The Pivot represents C++ programs in two dis-
tinct formats (Figure 1):

1. Internal Program Representation (IPR). IPR is a high
level, compact, fully typed abstract syntax tree that can
represent complete ISO C++ programs as well as in-
complete program fragments and individual translation
units

2. eXternal Program Representation (XPR). XPR is a
persistent and human readable format for program rep-
resentation. XPR uses a prefix notation and is quick to
parse (a single token look ahead and no symbol table
needed)

IPR

Figure 1. An XPR and IPR representations of a C++ template
class definition

Fundamental to our BQ library is the design of a fast and
flexible methodology for traversing the IPR, The Pivot’s
AST. We define a depth-first search (DFS) visitor class [7],
called the IPR Xplorer Visitor Class, that performs the AST
search following the order of the ISO C++ grammar defini-
tion. The Xplorer allows the programmer to statically define
a set of actions to be executed during the DFS traversal in-
cluding a terminating condition as well as actions upon the
encounter of specific IPR nodes (C++ expressions, decla-
rations, and statements) and AST edges (interfaces of the
IPR nodes). In such a way, the cost of a user-defined action
could be less than a single traversal of the abstract syntax
tree. When an action is specified, the programmer instanti-
ates each of these classes with two compile-time arguments,
a TP (trigger point), identifying the exact point in the AST
of triggering the action, and a TN (target nodes), specify-
ing the type of IPR nodes which are the traversal’s target.
The following examples illustrate the usage of the Xplorer
visitor:

(a) xplore expr node < discover, ipr :: Call >, we
specify an action at the point of discovery of each
ipr::Call node

(b) xplore stmt node < body, ipr :: Switch >, a user-
defined action is executed prior to exploring the edge
body of an IPR node of type ipr::Switch
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In some scenarios it is preferred to have linear access to
the nodes of a program unit and at the same time manipu-
late the AST through an intuitive and familiar user interface.
Our Xplorer Visitor defines the classes: IPR V isitor and
IPR Iterator. Their design closely follows the function-
ality and philosophy of the visitor design pattern [12] and
the C++ STL Iterator [28] classes, providing a convenient
way to search, manipulate, or modify a set of IPR objects.
The convenience of this method comes at a certain price:
the DFS traversal needs to collect and store in advance all
of the nodes from a program unit, thus the cost of the user-
specified actions is at least a single traversal of the AST.

BQ user-defined actions are constructed at compile time
by using the mechanism of expression templates [30] (thus
the query implementation avoids the usage of costly point-
ers to class member functions). Expression templates are
not used in the construction of the entire pattern tree be-
cause of the heavy syntax that such an approach would im-
pose. Instead, the ’glue’ among all statically computed BQ
elements is encoded in the BQ operations (Table 2). The
clean and flexible syntax of the BQ user-defined actions
is achieved through the exploitation of the C++ compiler’s
ability to perform complex template argument inference. A
BQ action (also a BQ pattern) consists of three components:
a Recursive Query Object (RQO) containing the root of the
traversal as well as the result from an applied pattern or a
sequence of patterns, a set of BQ elements, and a set of BQ
operations. At each step of the AST traversal, the RQO de-
cides whether the target is reachable from the current point
and carry on with the execution of the pattern or terminate
the search. A BQ pattern is expressed through a combina-
tion of a number of BQ elements and BQ operations applied
to the recursive query object. There are a number of possi-
ble applications of the BQ operations on the BQ elements
(Table 3 and Table 4). A BQ element specifies one or sev-
eral edges in the pattern tree. A BQ element could be one
of three possible types:

1. Exe member < x, e >. (EM) generates a straightfor-
ward edge e from an IPR node x. For example, if the
vertex x is an IPR node of type ipr :: Type decl and
the edge e is ipr :: initializer, the result of the oper-
ation is the IPR node yielded by the execution of the
IPR interface x− > initializer (that is the initializer
of a C++ type declaration)

2. Exe condition < x, e, c >. (EC) generates an edge e
from an IPR node x, only if a specified boolean condi-
tion c is met

3. Exe iprseq < x, en >. (ES) produces a sequence of
edges en resulting in a set of IPR nodes. An example
of such an edge in the pattern tree is the call to retrieve
all bases of a class declaration (x− > bases()).

Operation Operand Description
Apply < applies action specified by a BQ element
Apply & Evaluate ∧ executes a BQ element and returns
Evaluate − > applies a BQ pattern and returns

Table 2. BQ Operations

Operation Operation Description
RCO < ES applies an ES
RCO < EM executes an EM, stores the result in RQO
RCO < EC executes an EC, stores the result in RQO
RCO ∧ EC executes an EC, stores the result in RQO
(Set of IPR Nodes) ∧ EC searches for a match for EC’s condition

Table 3. Application of the BQ operations

We use Basic Query to enforce domain-specific semantic
rules and avoid certain hazardous concurrent interleaving of
the vector’s tail operations that might lead to the occurrence
of the ABA problem (Section 3.4). In a number of MDS
concurrent applications, there are multiple reader threads
but only a single writer. Such a scenario is ABA − free
since it is not possible to have an interrupting writer thread
placing the old value back to its location. In such a case,
it is necessary to implement a BQ routine applied to all
reader threads that checks for the exclusion of write oper-
ations. In a scenario of multiple writer threads, the ABA-
free semantics are achieved by statically enforcing two dis-
tinct semantic phases for all writer threads in the system: a
growth phase and an operational phase. Table 5 enu-
merates all possible interleavings of two concurrent opera-
tions of the SEC vector and indicates those prone to ABA
and those that are ABA-free. Thus our semantic ABA-free
phases are:

1. growth phase: allows only push back and random access
read by all threads.

2. operational phase: allows all operations (pop back and the
random access read and write) except push back

The static enforcement of the semantic phases is achieved
by defining BQ rules that exclude the usage of certain op-
erations during a given phase (such as the exclusion of
push back in the operational phase). In Algorithms 6
and 7 we show the pseudo-code and the actual source code
of the semantic rule Exclude push back defined using the

Operation Result Description
RCO < ES sequence of IPR nodes
RCO < EM a pointer to RQO
RCO < EC a pointer to RQO
RCO ∧ EC the evaluation of EC’s condition
(Set of IPR Nodes) ∧ EC true if at least one node satisfies the predicate

Table 4. Result description of the BQ operations
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BQ elements and BQ operations. We use the Xplorer Vis-
itor to collect all IPR Expression nodes. Afterwards, we
apply the IPR Iterator to search the collection of IPR Ex-
pressions for Function call nodes (expressed by the EM1
element in Algorithm 6) and then test whether a function
call’s name is ”push back” (expressed by the EC1 element
in Algorithm 6).

operation push pop read write

push ABA free ABA ABA free ABA
pop ABA free ABA ABA free ABA free
read ABA free ABA free ABA free ABA free
write ABA ABA free ABA free ABA

Table 5. ABA-free and ABA-prone interleaving of
two concurrent operations

Algorithm 6 Exclude push back: find an illegal push back

1: RCO : ipr :: Expr
2: EM1 : ipr :: Function call− > name
3: EC1 : ipr :: String− > name cmp

4: Exclude push back : RCO < EM1 < EC1− > bool

Algorithm 7 Exclude push back: find an illegal push back, source code

1: Input: an IPR Expression node e
2: Recursive query RCO(e);
3: Exe member < ipr :: Function call, name > Get name;
4: Exe condition < ipr :: String, name, constipr ::

Name&, std :: string >
Is Name(&name cmp, parent name);

5: return RCO < Get Name < Is Name;

5 Performance Results

To gain insight of the possible performance gains of the
SEC approach we ran performance tests on an Intel IA-32
SMP machine with two 1.83GHz processor cores with 512
MB shared memory and 2 MB L2 shared cache running the
MAC 10.5.1 operating system. In our performance analysis
we compare:

(a) the SEC vector approach (with the enforcement of se-
mantic phases and integrated lock-free memory man-
agement and allocation)

(b) the application of the nonblocking operations of the dy-
namically resizable array from [2]. To prevent ABA
we employed the traditional ABA avoidance technique
used in CAS-based designs (see Section 3.4), namely
introducing an extra level of indirection (to guarantee
the uniqueness of each new element) and protecting the
deallocated memory (from being re-allocated and caus-
ing ABA) by a lock-free memory management scheme.

In our performance tests we used Herlihy et al.’s Pass
The Buck (PTB) algorithm [15].

Similarly to the evaluation of other lock-free concurrent
containers [9], we have designed our experiments by gen-
erating a workload of various operations (push back,
pop back, random access write, and read). We fol-
lowed the semantic rules of the operational and growth
phase when executing the operations. We varied the number
of threads, starting from 1 and exponentially increased their
number to 64. Each thread executed 500,000 lock-free oper-
ations on the shared container. We measured the execution
time (in seconds) that all threads needed to complete. Each
iteration of every thread executed an operation with a cer-
tain probability; push back (+), pop back (-), random
access write (w), random access read (r). We use per-
thread linear congruential random number generators where
the seeds preserve the exact sequence of operations within a
thread across all containers. We executed a number of tests
with a variety of distributions and found that the differences
in the containers’ performances are generally preserved.

As discussed by Fraser [9], it has been observed that in
real-world concurrent application, the read operations dom-
inate (and account to more than 50% of all operations). For
this reason we illustrate the performance of the concurrent
vectors with a distribution of +:16%, -:16%, w:18%, r:50%
on Figure 2B. Figure 2A demonstrates the performance re-
sults with a distribution containing predominantly writes,
+:25%, -:25%, w:12%, r:38%. In these diagrams, the num-
ber of threads is plotted along the x-axis, while the time
needed to complete all operations is shown along the y-axis.

According to the performance results, the SEC approach
delivers consistent performance gains in all possible opera-
tion mixes by a large factor. The SEC vector has also proved
to be scalable as demonstrated by the performance analysis.
These observations come as a confirmation to our expecta-
tions that introducing an extra level of indirection and the
necessity to memory manage each individual element with
PTB (or an alternative memory management scheme) to
avoid ABA comes with a pricy performance overhead. The
SEC approach offers an alternative by introducing the no-
tion of semantic phases in order to reduce the performance
overhead of the ABA avoidance mechanism.

6 Conclusion

This paper introduced the concept and initial implemen-
tation of the notion of Semantically Enhanced Containers
(SECs). SECs are data structures that are engineered to
provide the flexibility of the popular ISO C++ Standard
Template Library (STL) containers, while at the same time
they are hand-crafted to guarantee domain-specific poli-
cies (such as conformance to a given concurrency model).
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Figure 2. Performance Results

We demonstrated the SEC proof-of-concept by presenting
the design and implementation of a concurrent nonblocking
SEC vector. The main design goals are to achieve efficient
and reliable concurrent synchronization and allow the spec-
ification and validation of user-defined semantic guarantees.
In the presented design, the SEC vector’s operations are safe
(no hazards of deadlock, livelock, priority inversion), lock-
free, linearizable, fast, highly parallel, and at the same time
providing the functionality of the popular STL C++ vector,
with complexity of O(1). To deliver a mechanism for the
specification and checking of user-defined semantic invari-
ants, we introduced Basic Query, an innovative library for
extracting semantic information from C++ source code. We
applied Basic Query to help us avoid a fundamental prob-
lem in all CAS-based systems, namely the occurrence of
the ABA problem. Providing domain-specific guarantees
together with a scheme for reliable concurrent synchroniza-

tion is of critical importance for the design and development
of the modern complex and highly autonomous space sys-
tems. The integration of the SEC vector’s lock-free algo-
rithms can help achieve better performance, scalability, and
higher safety in a number of pivotal Mission Data System
applications. Our preliminary tests indicate that our SEC
approach provides significant performance gains in contrast
to the application of nonblocking synchronization amended
with the traditional ABA avoidance scheme.
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