
Programming in an undergraduate CS curriculum

Bjarne Stroustrup
Texas A&M University

bs@cs.tamu.edu
www.research.att.com/~bs

Abstract

This note argues for a fairly classical undergraduate com-
puter science (CS) curriculum where “software” (program-
ming and related topics) takes a bigger role than is often the
case. The discussion is based partly on experience with an
undergraduate curriculum change at Texas A&M University
and with developing a new freshman programming course.
That freshman course is the central topic of this note. Based
on industrial experience, it is argued that the primary aim
of a university education in the area of “software” is to be a
foundation for professional work. The primary design crite-
rion for the freshman (first year) programming course is to
make it a good start at that. Caveat: the opinions expressed
about the needed improvements of and directions for soft-
ware education is based on personal experience rather than
hard data.

1 Introduction: Problems

My perspective is that of an industrial researcher and man-
ager (24 years at Bell Labs; 7 of those as a department head)
who has now spent 6 years in academia. I see a mismatch
between what universities produce and what industry needs
(not just what industry says it needs). When I say “industry”
I obviously simplify, but I base my simplification on talks
with dozens of representatives of (primarily, but not exclu-
sively, US) industry a year over the last 30 years or so.

Industry wants computer science and computer engineering
graduates to build systems consisting largely of software (at
least initially in their careers). Many graduates have essen-
tially no education or training in that outside their hobbyist
activities. In particular, most see programming as a minimal
effort to complete homework and rarely take a longer-term
view involving use of their code by others and maintenance.
Also, many students fail to connect what they learn in one
class to what they learn in another. That way, you can (and

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WCCCE ’09 May 1-2, 2009, Vancouver, British Columbia, Canada.
Copyright 2009 ACM ...$5.00

often do) see students with high grades in algorithms, data
structures, and software engineering hack solutions in an op-
erating systems course with total disregard for data struc-
tures and algorithms, resulting in a poorly performing un-
maintainable mess.

For many, “programming” has become a strange combina-
tion of unprincipled hacking and invoking other people’s
libraries (with only the vaguest idea of what’s going on).
The notions of "maintenance" and "code quality" are at best
purely academic. Consequently, many in industry despair
over the difficulty of finding graduates who understand “sys-
tems” and “can architect software.”

This is not all or even primarily the fault of the students. The
academic curriculum is crowded with topics of undisputed
importance and in the resulting competition for time, prac-
tical issues and the development of time-consuming practi-
cal skills (such as design for testing) lose out to more clas-
sical academic subjects (such as mathematical analysis of al-
gorithms) or fashionable research topics (such as subsurface
luminosity). However, to remain an applied discipline – as it
has been from its inception – computer science must empha-
size software development and CS programs must allocate
time for student skills to mature. If we don’t, we are like a
music department that does not require musicians to prac-
tice before a concert or an athletics department that “trains”
its athletes primarily through lectures.

For the good of both industry and academia, we must do bet-
ter.

2 What do we want?

A university education should lead to a well-rounded per-
sonality, provide a solid grounding in an academic field, and
be a reasonable preparation for a job (or grad school entry). I
consider a basic knowledge of history, art, math, and science
(e.g., biology and physics) essential, so I’m not going to ar-
gue for more CS at the expense of a liberal education. I just
wish the liberal arts curricula similarly went out of their way
to avoid producing scientific ignoramuses.

The majority of CS graduates do not become professors, so I
consider preparation for a career in industry crucial. I use the
term “industry” in its broadest sense, including non-profit
organizations and government. Industry does not want “sci-
entists” in large numbers (I have heard repeated reports of
recruiters denying interviews to “computer scientists” for

1

that flawed reason), engineers maybe (for some definition
of “engineer”), but they definitely want “developers.” Con-
sequently, I consider producing software professionals (for
some definition of “professional”) the primary aim. Hard-
ware is of course also essential and should be part of every
curriculum, but in this context, hardware is “someone else’s
problem” so I won’t consider it further.

I (emphatically) do not suggest that universities should sim-
ply produce what the majority of industry recruiters ask for:
developers trained in the latest fashionable languages, tools,
and methodologies. That would do harm to both academia
and industry. Fashions come and go so rapidly that only a
solid grasp of the fundamentals of CS and software develop-
ment have lasting value. Training developers – rather than
educating computer scientists (under whichever specific la-
bel you prefer) – would lead to a stream of employees be-
ing disposed of as fashions changed. That is neither moral
nor cost effective. The alternative is a focus on fundamentals
combined with the development of practical skills based on
them.

The days where you could learn all that you needed for a
career during four years in a university are long gone. A
university education is just one stage (although an important
stage) in a life-long education. Thus, there has to be an em-
phasis on providing and reinforcing dedication to and skills
for self-education.

3 Computer science

Programming obviously isn’t all there is to CS, however pop-
ular that misconception is among many people in the wider
community. In fact, few tasks in software can be done well
without a reasonable knowledge of algorithms, data struc-
tures, and machine architecture. For many tasks, we must
add operating systems, networking, human-computer inter-
faces, graphics, and/or security to the requirements. And
what about theory, compilers, math, etc.?

I find that CS professors often overreact to the inaccurate
popular image of the software developer as a lonely guy with
“no life” hacking code all night. To counter, they cry “Com-
puter Science is not programming!” That’s true of course, but
that reaction can lead to a serious weakening of program-
ming skills as some adopt the snobbish attitude “we don’t
teach programming; we teach computer science” and leave
practical software development skills untaught.

Programming is the primary means of making ideas into re-
ality using computers. Everything that runs on a computer is
directly or indirectly expressed in a programming language.
Most people don’t have to program; their needs are well
served by pointing, clicking, dragging, writing HTML (usu-
ally using tools), etc. However, to have a solid understand-
ing of computer systems you need a practical and theoretical
understanding of programming, programming languages,
and other tools supporting the development of trustworthy
code. Preferably, this understanding extends to several kinds
of languages (e.g., declarative, scripting, general purpose,
and close to the hardware) and several kinds of applications
(e.g., embedded systems, text manipulation, small commer-
cial application, scientific computation); language bigots do
not make good professionals.

4 Software and the software curriculum

I see software as an artifact that is interesting in its own right
(and not just for what it does) with a structure that can aid or
hinder its growth and usability. I’m not alone in that view so
parts the new Texas A&M University CS curriculum reflects
it.

The study of “software” includes

• software engineering on a small group scale. The de-
sign, implementation, and maintenance of million-line
systems are beyond our “software” curriculum and left
for people who care to specialize in that and especially
for industry to handle. A balanced 4-year undergradu-
ate program can do little on this scale; though it must
try to prepare students for scaling up.

• the use of programming languages (note the plural).
However, most language implementation, language
theory, and comparative languages studies are left for
more specialized courses. For some of us that is a great
loss, but something has to give.

• individual and group projects done at each level start-
ing in the first programming course and repeated with
increasing difficulty in every software course. These
projects are central to teaching the beginnings of the
“higher level” project management and software engi-
neering skills. This is where tools such as test frame-
works and source control systems find their natural
homes.

The fundamental notion is that programming has a theoreti-
cal basis but is also a craft, like playing the violin. We need to
teach both. We have seen too many examples of unnecessar-
ily ghastly code – expensively and laboriously produced by
bright, well-educated individuals who just never were given
guidance in how to structure a program for further devel-
opment and maintenance. Conversely, talented, mostly self-
taught, programmers struggle for lack of a theoretical foun-
dation for their work.

This leads to the question of what to teach first: the theoret-
ical basis or the craft? Since there is no way a student can
appreciate the problems of writing correct software or main-
taining large code bases without having programming expe-
rience, we have to start by writing code. Only through try-
ing to write code and debugging it do people get to appre-
ciate the magnitude of difficulty in producing correct soft-
ware. Furthermore, only by facing the problems of evolv-
ing an existing code base do people appreciate the value of
clean design, supporting tools, and testing. Long lectures on
software engineering to people with a weak software back-
ground are at best ineffective and at worst instill a dislike for
programming as a low-level activity unworthy of serious at-
tention (“a mere implementation detail”) and/or of software
engineering as “irrelevant and abstract.” So we initially ap-
proach programming as a craft with an emphasis on how to
get real-world code sufficiently good for people’s lives to de-
pend on it. That implies a constant attention to requirements
of correctness and practical techniques of how to meet them.
That way, the more abstract principles emerge naturally from
concrete needs.

Our “software curriculum” is a sequence of courses:

2

• Introductory programming (using C++[2])

• Data structures and algorithms

• Programming languages (at least two that are not C++)

• Design studio (using at least two languages out of the
three taught)

The “design studio” is primarily project based and aimed at
pulling together what is taught in the other courses. Most
topics are taught repeatedly in increasing levels of detail and
rigor. These four courses are ideally fitted into the first two
years of study and are designed to provide a student the basic
knowledge and expertise to qualify for and benefit from an
industrial internship.

This is of course just part of a broader curriculum offering
machine architecture, discrete mathematics, human-machine
interfaces, compilers, and more advanced and specialized
courses. The software program is often completed through
a project-based “capstone design course” taken in the final
year.

5 The first programming language

The choice of a first language is always controversial. TAMU
used Java for a few years and the experiences were mixed
and the comments from industry interviewing and/or hir-
ing students discouraging. This fitted a pattern I had seen in
many places in industry: a desire for greater knowledge of
“systems” and “machines” combined with an emphasis on
performance that didn’t match what the students had been
led to expect. A further constraint was that the Electrical En-
gineering department and the Computer Engineering faculty
insisted on “not a teaching language, but something close to
the hardware, preferably C/C++.”

It is often pointed out that the choice of programming lan-
guage is less important that the choices of programming
philosophy, design methodology, and teaching approach.
Changing programming languages is at best part of a solu-
tion. However, a programming language carries with it a
whole host of assumptions, attitudes, and an emphasis on
select application areas. Part of the task of teaching pro-
gramming is to make such cultural factors explicit and to
use the initial language to its best effect in areas where it is
suitable. Teachers must try to take the focus away from pro-
gramming language technicalities and focus on more general
issues, such as software development. However, a first lan-
guage must be chosen and used well.

Given my background, our choice of C++ is unsurprising, but
we try to avoid language bigotry by insisting that all CS grad-
uates learn at least three languages. C++ has the strengths
of being very widely used, having an ISO standard[1], be-
ing well supported on all platforms (including the embedded
systems platforms), and supporting the major programming
styles (paradigms). Its obvious weaknesses are complexity,
archaic features, and the dangers of accidentally violating the
type system. We decided to compensate for the weaknesses
by an emphasis on type safety, encapsulation of “dangerous
features,” and use of libraries. Every line of code presented
(except examples of what never to do, but including GUI)
runs on all major platforms. Every time we have given the
freshman course the students have used a mix of Windows,

Macs, and Linux systems.

A language, its compiler, and basic development platform is
only the first and most basic tools for a software developer.
The first programming course does not progress beyond this
(unless you count downloading, installing, and using a soft-
ware library that is not part of the standard). My view is
that using a general-purpose programming language (rather
than a simpler “teaching language”) and common industrial
programming environments (rather than specialized educa-
tional environments) give students as much initial exposure
to tools as they can handle. Add more tools, and many will
get distracted from the code itself and develop an unhealthy
dependency on ill-understood, non-standard, and often pro-
prietary facilities.

6 The introductory programming class

My basic idea for the design of the freshman programming
class was to work backwards from what is required to start
a first project aimed for use by others. That list of require-
ments defines the ideal set of topics to be covered. Naturally,
we can’t completely cover all that (even assuming suitable
supervision for that hypothetical next project). You couldn’t
train a plumber in three months let alone an acceptable high-
school violinist. To compare, learning the basics of a natural
language takes upwards of three years. Yet, we succeed in as-
sembling a toolset of concepts and techniques. Students have
reported that they have put what they learned to good use on
their first real projects.

The freshman programming class is based on a book that I
developed concurrently with the course and refined based
on experience with the course. The book is entitled Program-
ming – Principles and Practice using C++[3]. Its preface, table of
contents, lecture slides, and other supporting materials can
be found here: http://www.stroustrup.com/Programming.
html.

Our approach is “depth first” in the sense that it quickly
moves through a series of basic techniques, concepts, and
language supports before broadening out for a more com-
plete understanding. The first 11 chapters/lectures (about
6 weeks) cover objects, types and values, computation, de-
bugging, error handling, the development of a “significant
program” (a desk calculator) and its completion through re-
design, extension of functionality, and testing. Language-
technical aspects include the design of functions and classes.
Finally, interactive and file I/O are explained in some de-
tail. The data types used are bool, char, int, double (a
double-precision floating point number type), string (a vari-
able length sequence of characters), and vector (an extensible
container of elements). That’s “the basics.” At this point,
the students can (in principle) do simple computations on
streams of numbers and/or strings – they are by now dazed
and need a break.

There is a constant emphasis on the structure of code (in-
variants, interface design, error handling, the need to rea-
son about code to ensure correctness, etc.). This is hard on
the students, but seems to bear fruit and stop them from ob-
sessing over language details. Concepts and techniques are
presented through concrete examples followed by the articu-
lation of an underlying general principle. Typically, the stu-

3

dents have a hard time grasping the importance of the prin-
ciples, which are seen as “abstract,” so repeated application
to concrete examples is essential. The style of the concrete ex-
amples reflects the principles and can – when imitated by the
students – lead to later understanding.

At the end of this part of the course, the students should have
no problems with simple exercises like this:

// produce the sum of the integers in "data.txt"
ifstream is("data.txt");
if (!is) error("data file missing");
int sum = 0;
int count = 0;
int x;
while(is>>x) { // read into x

sum+=x;
++count;

}
cout << "the sum of " << count

<< " elements is " << sum <<"\n";

They should also (often somewhat hesitantly) begin to de-
fine simple types (classes and enumerations) to simplify their
code.

That “break” after “the basics” takes the form of 5 chap-
ters/lectures (about 3 weeks) on graphics and GUI. This actu-
ally does refresh the students, increases their level of interest,
and makes them work harder. It’s mostly graphics (as op-
posed to GUI) and the students do not perceive it as difficult.
Class hierarchies and virtual functions are introduced. That
is, the fundamentals of object-oriented programming are pre-
sented as a simple response to an obvious need. This is a tech-
nique we use repeatedly. After all, much of a first program-
ming course is simply to supply a strange formal notation for
what the students learned in primary school, or even before
that (“if the light is green, cross the road; otherwise, wait” is
not rocket science). By relying on such student knowledge
where we can, we gain time needed to deal with concepts
and techniques that are genuinely novel to the students. For
example, we don’t spend much time on simple control struc-
ture, arithmetic, or (really) basic geometry. The student do
know that. The time we gain can be spent on, say, input val-
idation, error handling, and the value of user-defined types
(classes and enumerations).

A typical simple exercise would be to define and use a simple
graphical class:

// define a shape class "Arrow":
class Arrow : public Shape {
public:

Arrow(Point p1, Point p2)
// construct an arrow from p1 to p2
// with default head and tail

{
check(p1,p2); // long enough?
add(p1); // store tail point
add(p2); // store head point

}

int check(int len)
{

if (length(p1,p2) < min_lgt)
error("arrow length too small");

return len;
}

void draw_lines() const;

int length() const;
Point point() const; // head point
void set_point(Point x);

// ...
private:

const int min_lgt = 10; // minimal length
Head hd, tl; // head and tail

};

// make a few shapes:
Point center(0,0);
Arrow a0(center,Point(20,50));
Vector_ref<Shape> vs; // container of Shapes

vs.push_back(a0);
vs.push_back(new Arrow(Point(20,50),Point(50,50)));
vs.push_back(new Rectangle(oo,Point(50,50)));

Larger examples includes the animation of consecutive ap-
proximations of an exponential function and graphing data
sets from a file.

The third part of the course (about another 3 weeks) has two
sections:

• The first is a detailed explanation of how the C++
standard-library vector is implemented and the second
an introduction to containers and algorithms using the
STL (including that vector). The STL is the ISO stan-
dard library facilities providing containers and support-
ing computations (algorithms) on sequences of data.
The sequences of data can be either conventional in-
put/output or containers of elements (such as the ele-
ments of a vector). Explaining vector involves the in-
troduction of pointers, arrays, and C-style manipulation
of memory. We did not consider it responsible to leave
that out. This section has been expanded and refined
over time based on requests from “consumers” of our
students.

• The second section introduces the basics of generic pro-
gramming. The STL provides a contrast to the low-
level pointer and array manipulation from the first sec-
tion with a much higher level approach to algorithms
on data structures. We use vectors, lists, sets, and
maps with algorithms such as find, sort, and accumu-
late. Most modern programming languages support
roughly equivalent facilities, even if they are typically
either built-in (rather than provided in a library) or less
general. I consider a working understanding of such
basic data structures and algorithms in their colloquial
form for a chosen language essential. There have been
requests for expansion of this section also, but I don’t
see how that could be done without cutting something
else.

A typical simple exercise at this stage would involve the use
of STL containers and algorithms:

// print unique words from iname to oname in order
istream is(iname); // input from iname
ostream os(ofname); // output to oname
if (!is || !os) error("couldn’t open file");

istream_iterator ii(is); // start of input
istream_iterator eos; // end of input

4

ostream_iterator oo(os,"\n"); // start of output
// (newline separated)

set<string> b(ii,eos); // read words from input
// into a set

copy(b.begin(),b.end(),oo); // copy words to output
// ordered by the set

The combination of the STL for storage and algorithms with
graphics is a good base for exercises and projects. However,
the students have also tried conventional C-style techniques:

char* cat(const char* p, char c, const char* q)
// concatenate p and q separated by c

{
int lp = strlen(p);
int lq = strlen(q);
char* r = new char[lp+lq+2];
strcpy(r,p);
r[lp] = c;
strcpy(r+lp+1,q);
r[lp+lq+1] = 0;
return r;

}

char* p = cat("someone",’@’,"somewhere");
cout << p; // "someone@somewhere"
delete[] p;

The variety of programming styles can be confusing, but it
is minor compared to what is found in real-world code. To
help the students cope, we frequently refer back to funda-
mental principles, to commonly useful styles of code (reflect-
ing those principles), and try to offer guidance about prefer-
ences. Style matters.

Usually, there is time for just one more lecture: a presentation
of ideals for software followed by a quick trip through the
history of programming languages giving examples of how
languages have increasingly supported those ideals. This lec-
ture complements an introductory lecture on applications of
software and the importance of software and its developers
to society. This kind of motivational material is essential as
the students are pretty clueless about the role of software
in the world. We try to complement it with a sprinkling of
“news flashes” in the individual lectures.

This material is very extensive for a first course and the pace
quite high, but most students succeed. In addition to the
final 3-person 3-week project (running in parallel with lec-
tures) which all students do, we have noticed many students
experimenting with private (not homework) projects such as
a “catalog” of friends with contact information, comments,
and photos. It is not uncommon to find elements in the final
projects that were not taught, thus demonstrating student in-
terest in and ability to go further. It would have been nice to
give the students sufficient tools for a web interface for such
projects, but that’s beyond us for now.

There is a fourth part to the book aimed partly as support
for projects, partly to support people learning on their own,
and partly for extended versions of the course: text manip-
ulation (including standard-library regular expressions), nu-
merics (mostly an N-dimensional matrix class to save people
from the horrors of C-style multidimensional arrays), embed-
ded systems programming (mostly low-level memory ma-
nipulation and bitfiddling), testing, and a survey of C (there

is a lot of C code “out there”). Sometimes, we manage an ex-
tra lecture or two based on these chapters. That depends on
how a class progressed, how many review sessions had to be
included, etc.

7 Problems: Execution

What happens when these ideals, ideas, and plans meet a
class of 240 freshmen of mixed abilities, aims, and back-
grounds? My experience is based on a mixture of EE, CE, and
CS students, 60% of whom have programmed before (mostly
in high school "advanced placement" CS courses) and 40%
have never seen a line of code. TAMU is a good public
university, but not an elite institution with the ability to re-
ject most applicants. This course has now been given nine
times by a variety of professors to about 1500 students. We
are reasonably convinced that the approach scales. A Col-
lege of Engineering survey showed that the students on this
course worked 25% longer hours than average for our en-
gineering school freshman classes, yet reported 20% higher
satisfaction. However, we can’t provide meaningful quanti-
tative measures of success.

The most common complaint about the course has been that
the order of topics is confusing and illogical. This primar-
ily comes from students who have programmed before and
have a firm idea of what should be taught and in which or-
der. Typically, “bottom up” or “all C language features first”
is seen as “natural” whereas the ordering based on program-
ming needs and principles rather than language features is
seen as “wrong and unnatural.” To contrast, students who
have never programmed before do not have a problem with
our early use of standard library facilities (such as iostreams,
string, and vector) and do not find the early absence of point-
ers and arrays strange. Appendices presenting C++ and its
standard library in conventional manual order aim to address
these comments.

The second most common complaint is that the repeated
statements of principles (to achieve correctness, maintain-
ability, etc.) is “over our heads” and “irrelevant for program-
mers.” The latter comment proves the need for an empha-
sis on professionalism. We address this problem primarily
through a close tie between concrete examples (code) and
statement of principles. In particular, we (also) present ex-
amples of errors to teach the students to recognize both “silly
errors” and violations of principles. The students do seem to
make fewer “stupid errors.”

Textbooks: Before starting to design the freshman program-
ming course, I surveyed a couple of dozen introductory
C++/programming textbooks and saw some patterns I found
disturbing. Most could fairly be criticized for teaching C++
more than programming and they tended to do the stu-
dent a disservice by presenting a very complete and detailed
bottom-up view. For example, some present all variants of
C++ built-in data types and control structures before pre-
senting meaningful examples of their use. Others present
all features present in C before “the extensions” provided by
C++ and avoid C++ standard library facilities. In the hands
of an uninspired (or weakly prepared) teacher, this bores a
good student to tears, presents programming as an unending
sequence of obscure technical details, gives a view of C++
an unnecessarily complicated variant of C, and presents cru-

5

cial higher-level concepts essential for industrial use (e.g., the
STL, ways of defining classes, and realistic uses of inheri-
tance) late labeled “advanced” (and consequently typically
avoided). In a one-semester course based on such books, stu-
dents never reach useful programming techniques and are
never faced with meaningful challenges. My response was to
teach based on notes and turn those notes into a book, which
is now the basis of the course as described above. Other soft-
ware courses face similar challenges. Too many textbooks are
either dumbed down, dissociated from real-world practice,
or simple how-to-guides that don’t expose students to prin-
ciples.

Students: Mostly, the students are not a problem. Exceptions
include students who have programmed before and insist on
showing off and to teach other students “cleverer, more effi-
cient, ways” of programming than what is taught, such as

char buf[128];
gets(buf); // Nifty! efficient! simple!

rather than

string buf;
getline(cin,buf); // professor’s boring stuff

(Quick test: Why is that gets(buf) a disaster waiting to hap-
pen?1) If not carefully instructed, TAs (Teaching Assistants)
can add to this problem by regurgitating what they have ab-
sorbed over the years rather than following the rules for the
course.

Having not taught freshmen before, my greatest surprise was
that a major component of the course became teaching the
students the need to work and to give guidance on how to do
that. Many had breezed through high school and expected to
do well reading notes or listening to the lectures (not both!)
and going to “the labs.” The idea of having to concentrate
during the lectures and then spend 10 hours a week outside
class re-reading the notes and working through exercises was
alien.

When we went from using notes to using the finished text-
book and also made the complete set of lecture slides avail-
able on the web (primarily for the benefit of readers who
are not TAMU students), we experienced a most unfortunate
drop in attendance. Apparently, many students think that
listening to a lecture as well as reading a chapter is a waste
of time. I see the redundancy as necessary reinforcement, so I
expect this drop in attendance to offset much of the gain from
the better material. Since almost all students miss important
points when doing a single pass over new material, they will
pay for their “saved effort” with longer debug sessions.

Projects: The final 3-person 3-week project (alongside lec-
tures) is essential. That’s where everything comes together
and where the students get their first taste of project man-
agement. It’s hard to come up with a sufficiently long non-
repeating series of such projects. Examples so far include
scrabble, sudoku, and whack-a-mole. Games make good
projects because they are perceived as interesting and are
open-ended (e.g., improve the GUI interface, add “clever-
ness” to the computer “player,” etc.).

1The input may overflow the fixed-size buffer; this used
to be the single most common security hole in C code.

Exercises: Most exercises are of the “write a program” vari-
ety. So far, we have always been short of good exercises.
This problem is decreasing over time, but finding exercises
that are challenging (but not too challenging) for the students
and also present problems that the students can relate to is
hard. In particular, we need more exercises of the sort where
the teacher provides a larger program and the student fixes
bugs and/or extends functionality. Many exercises involve
improving solutions from previous chapters, thus hopefully
reinforcing the lesson that code is an artifact that needs a
structure to ease modification (a.k.a. “maintenance”).

Grading and testing: Obviously, grading of homework of the
“write a program” variety is time consuming and tedious. It
is also unavoidable and essential to provide students feed-
back on their coding style. In this, CS has much to learn
from the humanities. Inadequate feedback caused by lack of
time and attention can undermine the key message of “cor-
rectness and systematic testing of code.” The fact that we –
due to lack of funds and personnel for alternatives – regu-
larly have to use multiple-choice testing is a major problem.
Many students will study for the test, and multiple-choice
tests are ill suited for testing higher-level skills. Imagine bas-
ing a large part of a pianist’s or a soccer player’s ranking on
a multiple-choice test! I consider this analogy between pro-
grammers, artists, and athletes fair. My ideal world has much
feedback from teachers and no multiple-choice tests. But in
the real world, the student/teacher ratio often limits what
can be done.

The exact details of grading have varied over time, but this
should give an idea.

• 30% Homework and drills; a drill is a simple multi-step
programming exercise to ensure that a student has mas-
tered the basic practical aspects of a lecture.

• 45% Three (closed book) multiple-choice exams (Yuck!)

• 20% Final (group) project

• 5% Attendance and class participation (verified by pop
quizzes).

We plan to increase the weight given to pop quizzes (to in-
crease attendance) at the expense of the – quite likely coun-
terproductive – exams. This system of assessment is proba-
bly the weakest aspect of the course, but we are heavily con-
strained by local culture.

Teaching assistants: Typically, TAs are grad students that ar-
rive back on campus on the same day as the undergraduates.
This makes it really hard to be ready for the “Hello, World!”
program on day 1. Departmental machines have to be ready
and the TAs gathered together to be minimally trained. It is
hard not to stumble and immediately get the homework out
of sync with the lectures. Though fundamentally not the TAs’
fault, this has been a major problem.

Another problem is that not all TAs attend a lecture and
also carefully read the chapter before seeing the first student.
Some try to “wing it” by relying on earlier knowledge of
C/Java/C++/programming. However, what we teach is not
“your father’s C++” and our approach to software develop-
ment is less tolerant of “messy code” than they have been
used to, so sometimes they end up sending the message that
less rigorous approaches to programming are acceptable.

6

Professors: For scaling a new approach, we are the weak link.
Any mistake by the professor gets amplified by the TAs and
the students. In particular, falling back to a slower pace, ex-
plaining more of the basics early on, and giving the students
a break on exercises are obvious dangers. Students live up to
expectations, but are also quite willing to be convinced that
a course is “a waste of time” and “too difficult.” By slowing
down, a professor can significantly delay the point in time
where students gain satisfaction from completing a program
that actually does something interesting. By slowing down,
a professor can seriously delay the point where a motivated
student feel the satisfaction of mastery of new knowledge
or skill. By slowing down, a professor can trap motivated
students into a pattern of inattention, too little work, and al-
ternative activities (not leading to higher-level programming
skills). Whatever we do, we should take care not to demoti-
vate the students most likely to become the best software de-
velopers and computer scientists. Rather than slowing down,
we should – and do – add TA support and review sessions
(really catch-up session) for the tail end of the students.

Software: We allow students to use any computer with a rea-
sonably up-to-date C++ compiler. That has worked pretty
well. The major problem is that C++ does not have an ISO
standard GUI. Instead I had to choose from among the couple
of dozen available C++ GUI libraries and toolkits. I chose to
use FLTK[4] because it was portable, reasonably simple, not
particularly controversial in the community (having several
GUIs creates confusion and competition that is not always
polite), and relatively easy to install. That “relatively easy”
can be hard for someone who has never downloaded and in-
stalled a library before. Obviously, we install a version for
students who use university computers, but more adventur-
ous students sometimes have to be helped by the TAs. Setting
up the correct compiler/IDE settings to use the GUI can also
be quite frustrating.

Other software is just standard libraries or header-only li-
braries which cause no significant problems. To simplify the
earliest classes, we use a header file that includes the nec-
essary standard headers and an error() function; that way,
we don’t get embroiled in discussions about header files, sys-
tem interfaces, and namespace management until those top-
ics natually fit into the sequence of topics (e.g., Chapters 6, 8,
and 12)

Non-problems: It is widely believed that any teaching of C++
is associated with endless searches for “buffer overruns” and
misused pointers. We relegated such problems to the sta-
tus of a minor nuisance through the systematic use of the
standard library (in particular, range-checked vectors and
strings) and the restriction of the use of pointers and arrays
to the innards of classes.

8 Etc.

The ideal CS curriculum consists of so many topics that are
fundamentally important, interesting, and in high demand
by “consumers” (that is, industry and grad schools) that no
student can complete it in four years – especially not if they
take a reasonable load of humanities and science courses that
they need to grow as individuals and to interact with non-CS
people in the workplace. There is a serious information over-
load. My suggestion is to make a Master’s degree the first

degree considered suitable for a software development job.
This view is hardly revolutionary: that used to be the view in
Bell Labs and is the traditional view in many European coun-
tries. However, in a US university, this would be a culture
change and is beyond the scope of a single department or a
single university. Independently of that, we need to increase
the level of professionalism, rather than pandering demands
for

• “better trained” (but not educated) students from indus-
try,

• “easier and more exciting courses” from students,

• “things done the way we are used to” from teachers un-
willing to face a serious challenge,

• “more concrete, simpler-to-grade material” from TAs
selected for their scholarly abilities rather than their
software development skills or teaching experience,

• “more advanced/scientific/theoretical courses” from
professors wanting Ph.D. students.

I am no fan of monocultures. I consider it essential that
universities offer a variety of undergraduate courses with
widely differing emphases in the area of software (and within
other areas of computer science). Ideally, different software
programs will emphasize different levels of “the software
stack” and target different “consumers” of graduates (e.g.
with emphasis on different programming languages and dif-
ferent application areas). Within the TAMU undergraduate
CS curriculum we cater to the need for diversity of subjects
by giving the students a choice of “tracks” with “software”
being just one alternative.

Our emphasis on code, correctness, and classical CS topics
may seem to go against the obvious and necessary aim of at-
tracting more students to the computing profession. I don’t
think it does. It has been suggested that such an emphasis
especially discourages women and minorities from studying
computer science. On the contrary, offer anybody something
they perceive as valuable and they’ll come. Medicine did not
go from having essentially no women to almost 50% women
by offering cuddly soft choices. It did so by offering solid
knowledge, professional status, good careers, and an obvious
way for an individual to benefit society. Our freshman pro-
gramming course contains a repeated emphasis on the bene-
fits to society provided by software developers and explana-
tions of the wide variety of applications areas. For freshmen,
appeals to idealism are fortunately still more effective than
quoting salary statistics (though the stellar statistics for CS,
CE, and EE majors also help). Other courses and lecture se-
ries follow up on this. Whether that can achieve anything
against “Hollywood”’s persistently negative image of pro-
grammers and engineers is doubtful, but it is a start.

9 Acknowledgements

Thanks to Walter Daugherity, Jaakko Järvi, Teresa Leyk, Ron-
nie Ward, and Jennifer Welch for constructive comments on
drafts of this note and/or discussion about the first program-
ming course. They all teach parts of the TAMU CS software
curriculum. Also thanks to the WCCCE reviewers for con-
structive comments and hard questions.

7

10 References

[1] Standard for the C++ Programming Language. ISO/IEC
14882-2003.

[2] B. Stroustrup: The C++ Programming language. Addison-
Wesley 2000. ISBN 0-201-70073-5.

[3] B. Stroustrup: Programming – Principles and Practice using
C++. Addison-Wesley 2008. ISBN 978-0321543721.

[4] FLTK: Fast Light Tool Kit. http://www.fltk.org/.

8

