Stroustrup D-R-A-F-T P3984R0

Doc. No. P3984R0

Date: 2026-01-28

Audience: EWG, SG12, SG20, SG23
Author: Bjarne Stroustrup

Reply to: bjarne@stroustrup.com

A type-safety profile

Bjarne Stroustrup (bjarne(@stroustrup.com)
Columbia University

Abstract

First the concept of and rationale for Profiles [BS25b, BS22b, BS23] are summarized. Next the
type-safety and resource-safety profiles are presented in some details as an example to illustrate
the specification and implementation requirements of two of the most essential and difficult
profiles.

This is a description of Profiles in general terms aimed at understanding, not a standards text
aimed at standards experts only. However, it is sufficiently detailed to be translated in
“standardese” with relatively few technical changes. What is described has been prototyped
[HS21, CG, GDR25] and some parts used in the form of guidelines.

Finally, a plan for progress is outlined (§5).

1. Introduction

My initial motivation to develop C++ was to combine the best of C and Simula:

e (’s ability to access hardware and manipulate data without overhead.
e Simula’s ability to organize programs and guarantee type safety.

To this, I immediately added

e constructors and destructors to provide the ability to eliminate resource leaks and
uninitialized objects.

¢ uniform treatment of built-in types and user-defined types to lay the foundation of generic
programming.

C compatibility concerns and the zero overhead principle prevented me (and later the C++
standards committee) from enforcing complete type and resource safety. I (still) consider
compatibility/stability and the zero-overhead principle essential for the evolution of C++ and its
foundational libraries. Where this is not adhered to, problems emerge.

1

mailto:bjarne@stroustrup.com

Stroustrup D-R-A-F-T P3984R0

However, not everybody needs every old feature and not everybody needs ultimate performance.
In fact, many (probably most) C++ users don’t need all of the constraints and facilities needed to
conform to either or both compatibility and performance ideals. Also, they often have other
concerns, as do I for various projects. This is the motivation for all coding guidelines and for the
(still evolving) Profiles design [BS23, BS24b, GDR25]. In particular, we can design a Profile to
guarantee type safety and resource safety (the absence of resource leaks) without imposing
inessential overheads.

These guarantees are the ones I want for most application code:

e Type safety: Every object is used exclusively according to its definition.
e Resource safety: No resource is leaked.

We can achieve that by careful use of contemporary C++, but I want a Profile to guarantee it, as
do important C++ users. Otherwise, the approach won’t scale. This implies that the code that
needs to violate that guarantee or can’t be proven not to must be isolated. Examples of such
necessary code include the implementation of key abstractions (e.g., vector). It also implies that
the guarantee must be opt-in because essentially no existing code consistently meets the
requirements needed to provide this guarantee (even correct code because “correct” doesn’t
mean “provably correct”).

The fundamental assumptions behind the Profiles design are

e Some people need guaranteed properties of their code.

e Not everybody has the same needs.

e It is impossible to prove an arbitrary program safe for any reasonably definition of “safe”
in a language able to manipulate hardware and implement fundamental abstractions.

e A guarantee must be validated by software, not just by a review by developers.

This implies that we need a framework that allows programmers to request a variety of
guarantees and prevent the use of features deemed unsafe for the requested guarantees.

The fundamental technique for implementing a profile is to subset a superset of [SO standard
C++ [BS05, BS05a]:

o Superset: Extend the C++ to be used with the abstractions needed to conveniently
express what needs to be expressed for a given application area.

e Subset: Restrict the set of facilities to be used in application code to what can be used
while maintaining the desired guarantee (leaving “unsafe” uses to the implementation of
the abstractions).

Supersetting is done by adding libraries and eliminating undefined behavior. Subsetting is done
through static analysis (ideally by the compiler) supported by run-time checks where necessary.

Stroustrup D-R-A-F-T P3984R0

Subsetting alone cannot deliver many of the most desired guarantees because the implementation
of the abstractions required use of techniques that cannot be verified (e.g., pointer arithmetic and
linked structures).

Supersetting alone can’t deliver many of the most desired guarantees because the low-level
features would still be available to break them.

By supersetting, we create a language that’s easier for analyzers (e.g., compilers) to understand.
Use of banned features outside explicitly trusted sections of code is simply considered errors.
This solves the problem that large chunks of C++ (especially old-style code) are too complex to
analyze efficiently relative to a requested guarantee.

By specifying requirements as profiles, we avoid having to rely on developers sprinkling
annotations all over the code. That approach is labor intensive, error prone, and basically not
feasible at scale. It doesn’t provide the guarantees required by many user organizations.

Profiles do not interfere with traditional C++ design and implementation techniques (e.g., OO,
GP, and functional styles) except when we define a profile to do so and explicitly require it.
Rather, a good profile eliminates misuses of those techniques.

The result of compiling a TU using profiles is ISO standard C++ that can be linked with other
TUs [GDR25].

Profiles are not just about “safety” (for a variety of kinds of safety). They also address the
widespread need for support of a better style of code (for a variety of definitions of “better”)
from both developers and educators.

Some, but not all, profiles will be standard. Profiles is an open framework so that profiles serving
specific needs can be added “locally.”. One limiting factor here will be the lack of a standard
internal representation of C++ (IPR [GDR11, CDR21], Clang AST [MK13]).

2. Specification
As an example, consider

e Type safety: Every object is used exclusively according to its definition.
e Resource safety: No resource is leaked.

That’s the definition of two profiles. In principle, from these simple definitions, we could
implement Profiles to enforce these requirements just as we write compilers and libraries to
implement specifications. That is, the detailed requirements can in most cases be deduced from
the general requirements. However, it is not fair or safe to leave the interpretation of these
requirements to implementers. In particular, we need a clear definition of “object” and
“resource.” Beyond that, we need detailed implementation guidance to avoid implementers
(possibly us) having to repeatedly reinvent techniques and rediscover problem areas.

3

Stroustrup D-R-A-F-T P3984R0

The border between what should be in the standards document and what should be in an
implementation guide is not trivial to define. That’s not new a new problem. However, not
everybody — not even in WG21 — is used to think about this in the context of defining a language
feature or a library component.

Code examples can be found in the references.

2.1. Object

An object is a region of memory that has been given a type and been initialized according to the
definition of that type.

Accessing an object exclusively according to its definition implies that we must not access

e an area of memory as an object before its initialization/construction has completed
(except from within its constructor). That is, before it becomes an object.

e an object after its destruction has started (except from within its destructor). That is, after
it ceases to be an object.

e an area of memory that hasn’t been initialized/constructed according to the type we use to
access it. That is, where it might not be an object, or it might be an object of a different

type.

That last point implies that we must eliminate range errors and access through dangling pointers.

2.2. Resource

A resource is an entity that must be acquired before use and released after its last use.

That’s a very broad definition that cannot be directly translated into verifiable rule. For example,
a FILE (a C stream) is a resource because it needs to be opened before use and closed (possibly
implicitly at the end of a program). Even an int can be a resource. For example, it could be
required that it must be increased when a scope is entered and decreased as that scope is exited.

To achieve this in a reasonably simple way, we must require that to be considered a resource an
entity must have a constructor and a destructor that manages it. That is, an entity that requires
explicit acquisition and/or explicit release is simply not considered a resource until it has been
encapsulated in a type with a constructor/destructor pair.

2.3. Constructors/destructors

A constructor is supposed to correctly initialize an object, and a destructor is supposed to release
every resource. To what extent are we willing to trust that?

We can ensure that every member is initialized in a constructor (except members explicitly
marked to remain uninitialized). There should be a separate profile to guarantee initialization for

Stroustrup D-R-A-F-T P3984R0

people who cannot adopt the complete type- and-resource profile. That initialization profile
should then be used as part of the type- and-resource profile.

The easiest way of ensuring that a destructor matches a constructor is to use only resources
managed by constructor/destructor pairs. That is, use only members that do not require explicit
destruction. For example, using a vector or a unique_ptr rather than a (pointer,size) pair to
represent owned memory. However, that solution doesn’t cover every case, e.g., unique_ptr’s
constructors and destructors.

We can

e Trust the definition of constructors and destructors to be correct (e.g., not leak).
e Require non-trivial constructor/destructor pairs to use explicitly unverified code.

The latter is the most theoretically correct solution. The former would be manageable.

How do we handle errors in destructors caused by an inability to release a resource? For
example, a socket that can’t be closed because the other end of a communication channel won’t
cooperate. We can handle that with the techniques we do today, such as transferring the
obligation to close an uncooperative socket to some other code, e.g., by putting it on a to-be-
handled-later error list.

2.4. Copies and moves

To be handled similar to constructors and destructors.

2.5. Ranges and nullptr

The two obvious ways of avoiding accessing an object that is not of the right type (or no type at
all) is to prevent

e Range errors
e Access through nullptr

This is (relatively) easily done by using hardened libraries doing range checking for types for
which the number of elements is known (e.g., vector and span), e.g. [KV25], and a pointer type
that’s checked for nullptr (e.g., gsl::not_null) [CG].

That solves half of the problem. The other half is to ensure that unsafe operations are not used
(e.g., subscripting a pointer for which the number of elements pointed to is unknown). For that,
we need simple static analysis (e.g., the compiler) to ban or restrict

e Pointer arithmetic
e Subscripting raw pointers

Together, these two approaches are a classical example of the subset-of-superset technique.
Without the hardened library, we couldn’t ban those basic uses of raw pointers and without the

5

Stroustrup D-R-A-F-T P3984R0

ban of those basic uses of raw pointers we couldn’t guarantee the absence of range errors and
nullptr violations.

2.6. Invalidation

There is a nasty third way that we might access an object of the wrong type (or no type at all):

e access through a invalidated pointer; that is, a pointer to an object that had been deleted
or gone out of scope

That’s also known as the dangling pointer problem. Preventing invalidation by run-time
measures implies complications and overheads (e.g., garbage collection). However, it is possible
to eliminate access through invalid pointers through static analysis [HS19, BS21, CG]. That
technique has been prototyped and is currently used as a guideline (at best partly enforced).

Here is an example that must be rejected because it invalidates:

void f(vector<int>& v)

{
v.push_back(7);
}
void g()
{
vector v = {1,2};
auto p = &v|[1];
f(v);
p=3; /I must be prevented
3

The problem/error occurs because an alias (p for &v[1]) is used after the object it referred to has
been moved. The basic solution is relatively simple and completely compile time.

When analyzing a function:

e Don’t access through an invalid pointer.

e Don’t let a pointer to a deleted object or to an object that is about to be destroyed out of
the function.

e Ifan alias to an object has been taken, don’t call a function that can invalidate it a use of
the object.

Or stated positively, return only pointers that are known to

e Have been received as arguments
e point to something static
e point to something on the free store

Stroustrup D-R-A-F-T P3984R0

When analyzing a set of functions:

e Assume that a non-const function and a function accessing an object through a non-const
pointer argument invalidates.

e Assume that a const function and a function accessing an object through a const pointer
argument doesn’t invalidate.

e Add a[[not_invalidating]] attribute to be used to speed up analysis by marking non-
const functions and functions that take non-const pointer arguments that don’t invalidate
(e.g., vector<T>::size()) [BS24c].

By “pointer” we include anything the refers to an object (e.g., references and lambda captures).

Note that a [[not_invalidating]] attribute can be verified when the function definition is
compiled. It is not an annotation that relies on programmers using it correctly, just an
optimization to save work for the compiler.

The implementation problem here is that what is returned from a function and what has been
deleted can be flow-dependent. So, we must accept only code that’s not too complex to analyze.

e Some examples are fundamentally impossible to statically analyze so some limitation on
complexity will be necessary.

e Some examples are so complex that a static analyzer would slow down compilation to an
unacceptable degree.

An example of code that is fundamentally too complex to accept:

int glob = 7;
int* f(int i)
{
intx=>5;
return (0<i) ? &glob : &x; // might return a pointer to a destroyed object
}

We need implementer input to choose what limitation is practical. In particular, to preserve
portability, we need a definition of “too complex™ so that all compilers agree what to reject. I
suggest:

e [fa condition cannot be evaluated at compile time, whatever is guarded by that condition
is assumed to be executed.

That is, conditional use of some constructs is treated as unconditional:

e creation of an alias,
e the return of an invalid pointer,
e the invalidation of a pointer,

Stroustrup D-R-A-F-T P3984R0

e the call of an invalidating function, or
e the use of an invalid pointer.

In older code and code written in older styles, this limitation will be a burden, but encouraging
the use of simpler code is beneficial in its own right.

One related issue must also be handled: an iterator to end() must not be dereferenced (§4)
[BS23b].

3. The Profiles framework

The Profiles framework (based on the subset-of-superset strategy (§1) [BS05, BS05a]) has been
developed over several years to cover a wide range of requests involving a variety of notions of
safety and style involving combinations of compile-time and run-time techniques [BS25a]. The
Framework, complete with syntax and WP wording is described in detail [GDR25]. In
particular, it introduces notation for enforcing, requiring, and suppressing profiles.

The framework is to be common to all profiles and independent of any particular profile.

4. Other profiles

To be complete the type-and-resource profile will depend on other profiles. To allow gradual
adoption of profiles, such profiles should be independently defined so that they can be used on
their own [BS25c¢]. Examples of possible standard profiles are:

e initialization: every object is properly constructed/initialized (or explicitly declared not to
be).

e casting: no old-style non-verifiable casts.

® union: no union use.

e ranges: all pointer arithmetic and all subscripting are checked.

Obviously, when some construct is banned (outside unverified/trusted code), alternatives must be
provided, e.g., variants instead of unions). The profiles listed above are relatively easy to
specify and thus good candidates for early implementation.

Most likely separate from the type-and-resource profile, but related, we need:

e arithmetic: eliminate implicit narrowing conversions, overflow, and underflow.

e algorithms: use only ranges (rather than iterator pairs) and prevent dereferencing of end()
iterators.

e concurrency: The type-and-resource profile assumes that there are no data races. To
ensure that, a separate concurrency profile is needed. Specifying that is non-trivial and

Stroustrup D-R-A-F-T P3984R0

beyond the scope of this paper. There must eventually be a concurrency profile and part
of that will undoubtedly be ways of minimizing sharing [CG].

These profiles are important, but harder to specify. Note that libraries for checking arithmetic
exists (e.g., [BS25d, HH25]).

5. What needs to be done soon

To make progress, we need implementations of a few simple profiles to gain experience. To
avoid chaos, we urgently need the framework to be approved for C++29 [DV26]. Many ideas
that are part of profiles have been prototyped and/or used, but to make progress we must build on
the proposed Profiles framework [GDR25] and start experimenting with specific profiles within
that framework.

For that to happen, we need the framework available and accessible on one or more C++
implementations, ideally on all major implementations. Otherwise, using different
initial/experimental profiles will require too much boilerplate code and different interfaces to
different tool chains (e.g., in-code annotations, compiler options, and build-system settings). That
will impede portability and possibly introduce incompatibilities that will be hard to root out in
the future. Currently, there is — to the best of our knowledge — a specification [GDR25] and an
experimental implementation is being conducted in a major C++ compiler. Also, an
implementation guide is being written. We encourage implementers to coordinate and if possible,
collaborate to avoid inessential incompatibilities [DV26].

Beyond the framework implementation(s), we need to design and precisely specify a few initial
profiles. We need a reasonable common style of Profile descriptions. That — and bringing the
older documents in line with the C++26 specification — is a necessary first step on the way to
standardization. A start is made in [BS24].

6. References

e [BS05] B. Stroustrup A rationale for semantically enhanced library languages
e [BS05a] B.Stroustrup and G. Dos Reis: Supporting SELL for High-Performance
Computing. LCPCO0S. October 2005.

e [BS21] B. Stroustrup: Type-and-resource safety in modern C++
e [BS22b] B. Stroustrup and G. Dos Reis: Design Alternatives for Type-and-Resource Safe C++.
WG21 P2687R0. 2022.
e [BS22¢] B. Stroustrup: A Tour of C++ (3" Edition). Addison-Wesley 2022. ISBN 978-
0136816485.
e [BS23] B. Stroustrup and G. Dos Reis: Safety Profiles: Type-and-resource Safe
programming in ISO Standard C++. P2816R0. 2023-02-16

https://www.stroustrup.com/SELLrationale.pdf
https://www.stroustrup.com/SELL-HPC.pdf
https://www.stroustrup.com/SELL-HPC.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2410r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf

Stroustrup D-R-A-F-T P3984R0

e [BS23a] B. Stroustrup, G. Dos Reis: Safety Profiles: Type-and-resource Safe programming
in ISO Standard C++. P2816R0. 2023-02-16.
e [BS23b] B. Stroustrup: Concrete suggestions for initial Profiles. P3038R0. 2023-12-16.
e [BS24] B. Stroustrup: A framework for Profiles development. P3274R0. 2024-05-5.
e [BS24] B. Stroustrup: Programming: Principle and Practice using C++. Addison-Wesley. 2024.
ISBN 978-0-13-830868-1.
e [BS24b] B. Stroustrup: A framework for Profiles development. WG21 P3274R0. 2024.
e [BS24c] B. Stroustrup: Profile invalidation - eliminating dangling pointers . WG21 P3346R0.
e [BS25] B. Stroustrup: 21st Century C++. P3650R0. 2025-3-6.
e [BS25a] B. Stroustrup: Dealing with pointer errors: Separating static and dynamic
checking). P3651R0. 2025-3-6.
e [BS25b] B. Stroustrup: What are profiles? P3704R0. 2025-05-19.
e [BS25c] B. Stroustrup: Profiles syntax. P3447R0. 2024-10-14.
e [BS25d] B. Stroustrup: Concept-Based Generic Programming in C++. 2025-10.
e [CQG] The C++ Core Guidelines.
e DV26] D. Vandevoorde, J. Garland, P. E. McKenney, R. Orr, B. Stroustrup, M. Wong:
Profiles and Safety: a call to action. D3970R0. 2026-01-16.
e [GDRI11] G. Dos Reis and B. Stroustrup: A Principled, Complete, and Efficient Representation of
C++. Journal of Mathematics in Computer Science Volume 5, Issue 3 (2011).
e [GDR21] G. Dos Reis: In-memory and Persistent Representations of C++ . CppCon 2021.
e [GDR25] G. Dos Reis: C++ Profiles: The Framework. P3589R2. 2025-05-19.
e [HH25] H. Hinnant: Better Behaved Integers (bbi). 2025.
e [HS19] H. Sutter: Lifetime safety: Preventineg common dangling. P1179 R1. 2019-11-22
e [KV25] Konstantin Varlamov and Louis Dionne: Standard library hardening. P3471R4. 2025-02-
14 .
e [MKI13] M. Klimek: The Clang AST - a Tutorial . LLVM Euro 2013.
e [ML25] M.Laverdiere, C. Lapkowski, and C.Gros,: A Safety Profile Verifying
Initialization. P3402R3. 2025-05-16.

Acknowledgements

Thanks to Howard Hinnant for constructive comments on an early draft of this paper.

10

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2816r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3038r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3274r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3274r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3446r0.pdf
https://isocpp.org/files/papers/P3650R0.pdf
https://isocpp.org/files/papers/P3611R0.pdf
https://isocpp.org/files/papers/P3611R0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3704r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3447r0.pdf
https://www.stroustrup.com/Concept-based-GP.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://www.stroustrup.com/gdr-bs-macis09.pdf
https://www.stroustrup.com/gdr-bs-macis09.pdf
https://www.youtube.com/watch?v=39wlNRk-nAg
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3589r2.pdf
https://github.com/HowardHinnant/bbi
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3471r4.html
https://www.youtube.com/watch?v=VqCkCDFLSsc
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3402r3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3402r3.html

