
ON UNIFYING MODULE INTERFACES

Bjarne Stroustrup

The Computer Laboratory

University of Cambridge

England

Abstract

This paper presents the outline of a uniform interface mechanism for

activating different kinds of modules, e.g. processes, monitors, and pro-

cedures. The usefulness of such an interface in the design of modules and

in the tuning of a system is discussed. The overheads involved in using

it are explained, together with some implications that its general use has

on the system structure.

Introduction

The low price of hardware has lead to the proliferation of hardware
architectures and in particular opened new possibilities for using special

hardware, extra processors, extra front-end computers, and even complete

independent systems to enhance a basic system by speeding up specific

functions or just to take some load off the main part of the system.

The exploitation of such semi-distributed hardware systems by migra-
tion of software modules from the main part of the system to supporting

hardware is usually greatly hampered by the lack of a precise definition

of modules and their dependencies, so that the movement of a module involves

changes both to it and to all modules which activate it directly. Even

simple multiprocessor systems present problems of how to organize software

to exploit the extra parallellism offered by the hardware, because it is

difficult to vary the amount of potential parallellism offered by the basic

software to suit all the possible numbers of processors. In general one would

expect that the decision of whether a given module should be implemented as a
process or as a procedure will depend on the hardware configuration (and the
job load).

A uniform interface to all modules provides a possiblity for varying

the implementation of modules to suit a wide range of situations, e.g. a
uniform interface to both local and remote processes (i.e. processes running
on this machine and processes running on some other machine) <Wald72, Farb73>

allows one to write a network interface process which runs unchanged either

on the main computer or on a closely attached "NIP" computer. A uniform
interface to processes and to modules activated in a procedure-like mannner
(from now on simply called procedures) allows one to tune a system by provid-

ing more or less processes to suit the actual number of processors, e.g. a
directory manager module implemented as a procedure on a uni-processor instal-

ation could be made into a process after the installation has been enhanced

with a second processor.

90

It must be kept in mind throughout that the unification of the inter-

faces to the various kinds of modules is done to ease programming and to
provide a facility for varying the calling aspects of their implementation

without re-programming - not as a substitute for human understanding of the
way the system runs.

If modules in a system typically are very large and complex such a
variability would be extremely hard to achieve at a reasonable low cost
because of the consequent complexity of the calling conventions and mcdule
specifications. Even if such an interface was defined the apparent variability

would turn out to be useless as there would be relatively few such modules, and
because large complex modules tend to rely on many resources being directly
available so that they cannot easily be moved or changed.

In the following it will therefore, be assumed that modules are "quite
small" and "simple", i.e. of the type and magnitude found in systems based on
the principle of minimum privilege, type extension principle, data abstraction

principle, etc.. This implies that a typical system module would be measured in
hundreds of lines of (HHL) code, as opposed to tens or thousands, and would

rarely access more than one "resource" at a time.

The Cambridge CAP system <Need77-1, Need77-2> is a prime example of this.

Programming Considerations

Modules which try to implement one single abstraction (and many which do

not) appear to be of a common form:

BEGIN # pseudo Algol68 module #

initialization code;
DO # to infinity #

get arguments;
CASE first argument IN # one possible convention #

: o .

services offered

ESAC;
return results

OD
END; # of module #

Examples of modules conforming to this format are CAP protected pro-

cedures, most CAP processes, Simu!a67 classes, types, monitors, etc. in lang-
uages influenced by Simula. Obviously the CASE statement can be removed and

services be offered as procedures where a language dependent interface is
acceptable. Similarly the "get arguments" and "return results" can be made

implicit.

If the module is implemented as a process the "get arguments" statement
expands to the systems normal inter-process communication "receive a message"

code, e.g.

91

WHILE messages (input) = none DO wait event OD;

X :: receive message;

where X is of some standard "message" mode~

If on the other hand the module is implemented as a procedure a simpler
scheme can be used for assigning a value to X, but again the assignment can

only be made implicit at the cost of making the system language dependent,
and does exist at some lower level anyway.

In nearly all systems and languages the decision of how to call a

module (e.g. should it be a process or a procedure) has to be taken at the

time where the module is designed, because of slight variations in the program

to implement the receiving end of the interface. A uniform structure (depend-
ent on the existence of a uniform calling mechanism) postpones this type of

decision to compile, system generation, link, or even call time for modules

which are not directly concerned with parallellism. This simplifies the initial

writing of the module and makes it possible to change the module with respect

to the calling interface without re-writing and maybe without re-compiling it.

A uniform way of writing modules is necessary for achieving this degree
of variability, but a uniform calling interface can be implemented without

enforcing (or defining) such a standard module format. This implies that one
can allow non-standard modules in the system, e.g. processes with more than
one request channel - without losing the other benefits of a uniform calling
interface.

The uniform interface itself would free the programmer from the need to

know the implementation of modules he wants to call in order to generate the
correct calling sequences. If benefits could conceivably be obtained from

parallel execution of a called module, then the calling module could be pro-

grammed using a sequence of operations specifying the desired parallellism,
e.g.

activate (X, arguments);

Y := results; # implies possible wait for X to finish #

otherwise a procedure-like activation would be used. e.g.

Y := call (X, arguments);

It must then be assumed that the reference (pointer, descriptor, capa-
bility, or whatever) X contains enough information to identify the type of

the module denoted by X so that the operations "call" "activate", and "results"

can be interpreted so as to use the systems standard procedure, process, monitor,
or remote process calling conventions. The overhead of this is quite low. One

statement to find or isolate the type, plus one case statement of the simplest

form to select the set of calling conventions that the programmer would have
specified directly in a traditional system. An extra overhead is incurred when
possible parallel execution is specified where the activated module is in fact

a procedure, but this is again marginal as it consists mainly in providing

92

storage for the results while the "parallel" execution of the callers module

takes place~

As an alternative to a uniform calling interface one can hide the actual

implementation of a module behind a library routine, or as in the CAP system

bury it behind a protected procedure acting as an interface or maybe even

encapsulating and protecting unknown processes and/or procedures. This stand-

ard technique gives some of the convenience of a uniform interface at the cost

of an extra layer of software, but it is not general unless there is some waz

of enforcing that all activations of a module "hidden" behind an interface

procedure in fact go through that procedure.

If this is not the case anyone wanting to change th implementation of

the module will still have to make changes to (an unknown n~nber of) user

programs - some of which he might not have the permission to change. Also,

if the encapsulation is not used for all modules a progran~ner will still have

to find out whether (and if so how) his particular module is encapsulated.

If the use of interface procedures is enforced at compile time the

system is likely to become dependent on a single language, and if the use is

enforced dynamically by some form of capability mechanism the interface

becomes intolerably slow - though this overhead is quite acceptable in special

cases and has been used with great success in the CAP system.

A Set of Inter Module Communication Primitives

There are of course numerous possible sets of inter module communica-

tion primitives which fulfil the general design aims. The set presented

below should be seen as only one that suited a particular prupose and

environment.

The scheme is based on passing of fixed sized argument blocks (though the

primitive operations could be defined using other data structures). An

argument block is used both for passing arguments and returning results. It

contains a few words without fixed interpretation, but normally interpreted

as integers, plus a few words interpreted as capabilities (references, descrip-

tors, pointers). In requests the "first argument" is conventionally interpreted

as an integer specifying the service required, and in results it is interpreted

as a return code. Zero indicates normal return. The "last argument" is a

capability interpreted as a module return link. This implies that a module can-

not (in general) be called recursively, that the system can be deadlocked by

recursion or mutual recursion, and that a module can "return" to a module

different from its caller. If the "last argument" is not specified no reply
is expected, no results can be returned, and the module can wait for a new

request.

The primitive operations are-

ACTIVATE (X,A)

will run the module identified by X with the argument block identified by A.

If possible X should run in parallel with the calling module.

93

Y:= GET ARGUMENTS (C)

will wait for some ACTIVATE or CALL of the current module to occurl and then

make Y denote the argument block sent. The argument C denotes a notional

communication channel. It can take two values "request" and "reply"° This

makes it possible to separate new requrests from replies° This is a minimal

facility which can be expanded to allow more complicated strategies for running

modules in parallel°

Y:= CALL (X,A)

is equivalent to

ACTIVATE (X,A) ; Y := GET ARGUMENTS (reply)

so it is not logically necessary, but can be implemented more efficiently as

a primitive operation.

There is obviously a need for precise specification of the size of argu-

ment blocks, their management, the underlying message system for local and remote

processes, how the "module return link" finds its way into the "last argument",

what references are and how they are translated, what the communication channels

used by GET ARGUMENT are, etc., but this is beyond the scope of this paper. It

can be seen though that a module can be written without knowledge of the im-

plementation of its calling interface (which therefore is variable), and that

it can activate other modules serially or in parallel without knowledge of their

implementation:

BEGIN # module #

initialize; ~
DO

arg := GET ARGUMENTS (request) ;

CASE first argument OF arg IN
• °

one service:

• o

res := CALL (A,arg2) ;

IF first argument OF res ~= 0 THEN error FI;

o .

another service :

• •

ACTIVATE (B,arg2) ;

res := GET AR~JMENTS (reply) ;

IF first argument OF res I= O THEN error FI;

• J

ESAC

ACTIVATE (last argument OF arg, results)

OD
END; # of module #

94

One final problem remains though. A process or a monitor module can

access resources used by it alone without any form of interlocking, as an

interlock mechanism is implicit in its implementation, but a module implem-

ented as a procedure with instances in many processes must use an interlock.

The simplest solution to this is to use a simple interlock mechanism on each

access to such resources in all cases, knowing that the overhead involved in

finding it locked will never be paid in the process and monitor cases. This

will ensure that the potential advantage in using procedures in the case where

the critical section is short relative to the whole module will be obtained.
If the system does not contain an interlock mechanism which reduces to a single

test instruction in the unlocked case, such a mechanism can easily be provided

to ensure that the (expensive) system interlock mechanism will only be used when
necessary.

Implications for System Structure

There are three major constraints which the interchangeability of proc-
edures, processes, and remote processes imposes on the general structure of the
system.

There can be no implicit passing of information in calls between pro-

cedures in the same process. This is arguably a good thing anyway, but for

efficiency reasons tricks like not saving the registers in this case and so

achieving a cheap way of passing integers is not uncommon.

The global context for a job cannot be provided in the data structure

defining the current process (process base, state word) as the current process

is quite likely to consist of only the module itself. Global parameters like

the current input stream and the user identifier must either be banned and

substituted by explicit passing or be provided as a special "current job" module
or data structure. This has the effect of making the processes slightly

cheaper to use, and also easing the implementation of scheduling and store

management algorithms based on jobs rather than processes.

Error codes must always be returned to the calling module unless some-

thing else is specifically requested. This is essential in the case where the

called module is implemented as a remote process and therefore susceptible to

soft errors <Metc72>.

Reconfiguration of Software

Given a uniform inter medule communication system one can experiment

with the implementation cf modules. This allows one to obtain data related

to design decisions in the area of parallellism/serialization, and to tune a

system to a specific hardware configuration and/or work load. In this way the

choice of implementation of a module can be seen as the first and most power-

ful of the system short term scheduling parameters. As a matter of fact if

one is willing to accept a process like format for all modules most of the

effects of using the interface for specifying modules as processes and monitors

can be obtained by using a flexible scheduling algorithm with extreme para-

meters.

95

Given the variability and consequently the possibility for data coll-

ection through experimentation there are three possible ways of exploiting

the interface as a tuning tool:

i: simple experimentation and adjustments of the implementation by a

system managere who can specify the implementation of modules at system

generation time in much the same way as he adjusts other scheduling parameters°

Changes in the system (in particular in connection with remote processes) will

be infrequent and whollely dependent on human decisions.

2: Adaptive algorithms can be introduced into the system controlling the
implementation of all modules. For this to be possible the implementation of

the uniform interface must be capable of handling changes on the fly. This in

itself is costly (but possible), and a suitable algorithm would not be easy to

find. This has been attempted with distributed systems <Farb73, Case77>.

3: It is conceivable that an algorithm could be found which given a

specification of the hardware, the module interdependencies, and a "typical"

work load could compute a suitable set of implementations for the modules.

This would be ideal, but even specifying the inputs would be extremely

difficult.

An additional problem with reconfiguration must be mentioned. It is

possible to introduce a deadlock into the system by taking a module which

acquires two resources in a time dependent manner and has previously been

implemented as a process and making it into a procedure. Such problems must

be handled by human intelligence - the uniform interface is not designed as

a substitute for human knowledge of the system implementation, only as an aid
in the design phase and for subsequent tuning.

Possible Implementation Methods

The uniform inter module coFmmunication mechanism is an interface to the

usual calling mechanisms rather than a separate new mechanism. This implies

that the implementation problems lie in avoidance of overhead rather than in

actual building of new facilities. There are basically ~wo ways of implemen-
ting it;

One can implement the communication primitives in something which can

recognize the various types of modules and then perform the appropriate actions.

Because of its complexity this "some~ling" must be a high level facility - a

module or a set of modules. This implies that one will incur a large fixed

overhead in all cases and for that reason end up finding that the use of any

kind of module will have a cost of the same order of magnitude as a process.

The alternative is to allow the simplest inter module communication

primitive - e.g. a microprogrammed instruction for procedure like call of a

module (i.e. no process switch or interlocking implied) - to escape to
more complicated and therefore slower mechanism when the primitive is passed

a reference it cannot interpret. If this technique is used in all cases the

extra overhead will be nil in the simplest case and one escape action in the

next simplest case etc. As an example one can take a CAP like system. The

micropregram can handle the simple (protected) procedure call. A module in the

96

callers own process (known to the microprogram) can handle calls to other

processes via the message system, and calls to remote processes will have

to be redirected to a network interface process known to the simple message
system. This method minimizes the overhead in all cases.

Conclusion

It is possible to write most modules in a system without considering

their possible implementation as a procedure, process, monitor, or whatever.

In doing so one achieves a powerful tool for tm~ing the software to specific

hardware configurations and jobloads without noticeable overheads, q~e use-

fulness of this technique appears to be limited to systems in which modules

are fairly small, context swtiching not too expensive, and where information

is passed explicitly rather than relying on shared data.

Future Work

An inter module communication system of the class described in this paper

has been used as the interface between modules in an operating system based on
the CAPs operating system. This system is written in Simula67 and is running

synthetic jobloads on a variety of (simulated) hardware configurations. It is

used for providing data for a project to evaluate the use of procedures,
monitors, and processes, and to explore the possibilities for using remote

processes to exploit semi-distributed hardware configurations. Similar schemes

for unifying process and procedure calls are being microprogrammed for the CAP

computer.

Acknowledgements

This work was done while holding a research fellowship from the Danish

Natural Science Research Council. I am grateful te Roger M Needham for

constructive comments on an earlier version of this paper.

References

<Case77>

<Farb73>

<Need77-1>

<Need77-2>

Casey, L. and Shelness, N.
A Domain Structure for Distributed Computer Systems

ACM-OSR vol ii no 5 (Nov.77) pp 101-108

Farber, D.J. et al.
The Distrubted Computing System

7th annual IEEE Comp. Conf.(1973)

Needham, R.M. and Walker, R.D.H.
The Cambridge CAP Computer a~d its Protection System

ACM-OSR vol Ii no 5 (Nov. 77) pp i-iO

Needham, R.M.
The CAP Project - An Interim Evaluation

ACM-OSR vol ii no 5 (Nov.77) pp 17-22

97

<Metc72>

<Wald72>

Metcalfe, Robert M
Strategies for Operating Systems in Computer Networks

Proc. ACM National Conference, June 1972~ pp 278-281

Walden, David C.

A System for Interprocess Communication

in a Resource Sharing Computer Network
CACM vol 15 no 4 (April 72) pp 221-230

98

